Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint

In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary mem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 82; číslo 4; s. 1006 - 1032
Hlavní autori: Huang, Chien-Chung, Kakimura, Naonori, Yoshida, Yuichi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2020
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a ( 0.363 - ε ) -approximation algorithm, requiring only a single pass through the data; moreover, we propose a ( 0.4 - ε ) -approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and ε .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-019-00628-y