Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint

In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary mem...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 82; no. 4; pp. 1006 - 1032
Main Authors: Huang, Chien-Chung, Kakimura, Naonori, Yoshida, Yuichi
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2020
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a ( 0.363 - ε ) -approximation algorithm, requiring only a single pass through the data; moreover, we propose a ( 0.4 - ε ) -approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and ε .
AbstractList In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a (0.363-ε)-approximation algorithm, requiring only a single pass through the data; moreover, we propose a (0.4-ε)-approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and ε.
In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a ( 0.363 - ε ) -approximation algorithm, requiring only a single pass through the data; moreover, we propose a ( 0.4 - ε ) -approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and ε .
Author Kakimura, Naonori
Huang, Chien-Chung
Yoshida, Yuichi
Author_xml – sequence: 1
  givenname: Chien-Chung
  surname: Huang
  fullname: Huang, Chien-Chung
  organization: DIENS, École Normale Supérieure, Université PSL
– sequence: 2
  givenname: Naonori
  orcidid: 0000-0002-3918-3479
  surname: Kakimura
  fullname: Kakimura, Naonori
  email: kakimura@math.keio.ac.jp
  organization: Department of Mathematics, Keio University
– sequence: 3
  givenname: Yuichi
  surname: Yoshida
  fullname: Yoshida, Yuichi
  organization: National Institute of Informatics
BookMark eNp9kEFPwzAMhSMEEtvgD3CKxLlgp23SHqeJAWITh7EjirI2HR1rMpJUYvx6WoaExGEnS_b77Oc3JKfGGk3IFcINAohbD5CkcQSYRwCcZdH-hAwwiVkEaYKnZAAosijhKM7J0PsNADKR8wF5XQSnVVObNR1v19bV4a3xtLKOztVn3dRf_WRujQ3dQbpoV40t261ydNqaItTWeLo0pXZU0Sejdl4V73TSdYNTtQkX5KxSW68vf-uILKd3L5OHaPZ8_zgZz6IixjxEmRacc13mFU-xSLBUpaoYjwtExVJM1SorE8ZECkojaChFIUT_guYAWqt4RK4Pe3fOfrTaB7mxrTPdSclinmCc5yLvVNlBVTjrvdOVLOqg-id6t1uJIPsw5SFM2YUpf8KU-w5l_9Cdqxvl9seh-AD5TmzW2v25OkJ9AxWxitQ
CitedBy_id crossref_primary_10_1007_s00224_021_10065_6
crossref_primary_10_1007_s11432_020_3420_9
crossref_primary_10_1145_3543516_3453922
crossref_primary_10_26599_TST_2022_9010068
crossref_primary_10_1007_s10878_022_00858_x
crossref_primary_10_26599_TST_2022_9010033
crossref_primary_10_1007_s11704_024_40266_4
crossref_primary_10_1145_3447383
crossref_primary_10_26599_TST_2023_9010121
crossref_primary_10_1142_S0217595922500130
crossref_primary_10_1137_20M1357317
crossref_primary_10_1145_3570615
Cites_doi 10.1137/130920277
10.1145/2187836.2187888
10.1137/1.9781611973402.110
10.1145/956750.956769
10.1007/s10107-015-0900-7
10.1287/moor.1100.0463
10.1016/S0167-6377(03)00062-2
10.1007/BFb0121195
10.1145/2623330.2623637
10.1137/080733991
10.1137/110839655
10.1287/moor.7.3.410
10.1137/1.9781611974782.78
10.1007/978-3-662-47672-7_26
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-019-00628-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1032
ExternalDocumentID 10_1007_s00453_019_00628_y
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP18H05291
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP17K00028; JP17H04676
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Exploratory Research for Advanced Technology
  grantid: JPMJER1201
  funderid: http://dx.doi.org/10.13039/501100009024
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-8e7666ed9f651c41dadaf263c11a2515ab8d422750ae10e0d7c770012e600eea3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001027952200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:35:05 EDT 2025
Tue Nov 18 22:13:00 EST 2025
Sat Nov 29 02:20:29 EST 2025
Fri Feb 21 02:43:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multiple-pass streaming
Submodular functions
Single-pass streaming
Constant approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8e7666ed9f651c41dadaf263c11a2515ab8d422750ae10e0d7c770012e600eea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3918-3479
PQID 2364139979
PQPubID 2043795
PageCount 27
ParticipantIDs proquest_journals_2364139979
crossref_citationtrail_10_1007_s00453_019_00628_y
crossref_primary_10_1007_s00453_019_00628_y
springer_journals_10_1007_s00453_019_00628_y
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 671–680 (2014)
FilmusYWardJA tight combinatorial algorithm for submodular maximization subject to a matroid constraintSIAM J. Comput.2014432514542318305010.1137/130920277
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)
Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 545–554 (2013)
CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463
Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: theoretical guarantee and efficient algorithm. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 351–359 (2014)
WolseyLMaximising real-valued submodular functions: primal and dual heuristics for location problemsMath. Oper. Res.1982741042566793210.1287/moor.7.3.410
KrauseASinghAPGuestrinCNear-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studiesJ. Mach. Learn. Res.200892352841225.68192
Yu, Q., Xu, E.L., Cui, S.: Streaming algorithms for news and scientific literature recommendation: submodular maximization with a d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraint. In: IEEE Global Conference on Signal and Information Processing (2016)
Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1497–1514 (2013)
Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 912–920 (2010)
ChakrabartiAKaleSSubmodular maximization meets streaming: matchings, matroids, and moreMath. Program.20151541–2225247342193410.1007/s10107-015-0900-7
FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions IIMath. Program. Study19788738751036910.1007/BFb0121195
Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), pp. 510–520 (2011)
LeeJMaximum Entropy Sampling, Encyclopedia of Environmetrics2006New YorkWiley12291234
Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web (WWW), pp. 381–388 (2012)
Chan, T.H.H., Huang, Z., Jiang, S.H.C., Kang, N., Tang, Z.G.: Online submodular maximization with free disposal: Randomization beats for partition matroids online. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1204–1223 (2017)
ChekuriChandraGuptaShalmoliQuanrudKentStreaming Algorithms for Submodular Function MaximizationAutomata, Languages, and Programming2015Berlin, HeidelbergSpringer Berlin Heidelberg31833010.1007/978-3-662-47672-7_26
ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
628_CR6
G Calinescu (628_CR4) 2011; 40
A Krause (628_CR12) 2008; 9
628_CR2
628_CR3
J Lee (628_CR14) 2006
L Wolsey (628_CR20) 1982; 7
Chandra Chekuri (628_CR7) 2015
ML Fisher (628_CR10) 1978; 8
C Chekuri (628_CR8) 2014; 43
628_CR21
628_CR11
628_CR13
M Sviridenko (628_CR19) 2004; 32
628_CR16
628_CR17
Y Filmus (628_CR9) 2014; 43
628_CR18
628_CR1
A Chakrabarti (628_CR5) 2015; 154
J Lee (628_CR15) 2010; 35
References_xml – reference: Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 671–680 (2014)
– reference: Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 912–920 (2010)
– reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
– reference: LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463
– reference: Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1497–1514 (2013)
– reference: KrauseASinghAPGuestrinCNear-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studiesJ. Mach. Learn. Res.200892352841225.68192
– reference: ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
– reference: Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), pp. 510–520 (2011)
– reference: CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
– reference: Chan, T.H.H., Huang, Z., Jiang, S.H.C., Kang, N., Tang, Z.G.: Online submodular maximization with free disposal: Randomization beats for partition matroids online. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1204–1223 (2017)
– reference: Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)
– reference: Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: theoretical guarantee and efficient algorithm. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 351–359 (2014)
– reference: ChakrabartiAKaleSSubmodular maximization meets streaming: matchings, matroids, and moreMath. Program.20151541–2225247342193410.1007/s10107-015-0900-7
– reference: WolseyLMaximising real-valued submodular functions: primal and dual heuristics for location problemsMath. Oper. Res.1982741042566793210.1287/moor.7.3.410
– reference: Yu, Q., Xu, E.L., Cui, S.: Streaming algorithms for news and scientific literature recommendation: submodular maximization with a d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraint. In: IEEE Global Conference on Signal and Information Processing (2016)
– reference: LeeJMaximum Entropy Sampling, Encyclopedia of Environmetrics2006New YorkWiley12291234
– reference: ChekuriChandraGuptaShalmoliQuanrudKentStreaming Algorithms for Submodular Function MaximizationAutomata, Languages, and Programming2015Berlin, HeidelbergSpringer Berlin Heidelberg31833010.1007/978-3-662-47672-7_26
– reference: Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 545–554 (2013)
– reference: FilmusYWardJA tight combinatorial algorithm for submodular maximization subject to a matroid constraintSIAM J. Comput.2014432514542318305010.1137/130920277
– reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions IIMath. Program. Study19788738751036910.1007/BFb0121195
– reference: Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web (WWW), pp. 381–388 (2012)
– volume: 9
  start-page: 235
  year: 2008
  ident: 628_CR12
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 514
  issue: 2
  year: 2014
  ident: 628_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/130920277
– ident: 628_CR1
  doi: 10.1145/2187836.2187888
– ident: 628_CR3
  doi: 10.1137/1.9781611973402.110
– ident: 628_CR11
  doi: 10.1145/956750.956769
– volume: 154
  start-page: 225
  issue: 1–2
  year: 2015
  ident: 628_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0900-7
– volume: 35
  start-page: 795
  issue: 4
  year: 2010
  ident: 628_CR15
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0463
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 628_CR19
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 8
  start-page: 73
  year: 1978
  ident: 628_CR10
  publication-title: Math. Program. Study
  doi: 10.1007/BFb0121195
– ident: 628_CR21
– ident: 628_CR16
– start-page: 1229
  volume-title: Maximum Entropy Sampling, Encyclopedia of Environmetrics
  year: 2006
  ident: 628_CR14
– ident: 628_CR2
  doi: 10.1145/2623330.2623637
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 628_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: 628_CR17
– ident: 628_CR18
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  ident: 628_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– ident: 628_CR13
– volume: 7
  start-page: 410
  year: 1982
  ident: 628_CR20
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.7.3.410
– ident: 628_CR6
  doi: 10.1137/1.9781611974782.78
– start-page: 318
  volume-title: Automata, Languages, and Programming
  year: 2015
  ident: 628_CR7
  doi: 10.1007/978-3-662-47672-7_26
SSID ssj0012796
Score 2.3493693
Snippet In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1006
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematical analysis
Mathematics of Computing
Maximization
Optimization
Theory of Computation
Title Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
URI https://link.springer.com/article/10.1007/s00453-019-00628-y
https://www.proquest.com/docview/2364139979
Volume 82
WOSCitedRecordID wos001027952200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNLA27ZoehzgEdYhf7CLlLUm1uG5jreL8633J2g1FBT0nTcNLXt7v8T5-hByi0cSzBck49GLmcYiZ4EoxVwsV-kpLHtvu-hdBpyO63fCqKArLymz3MiRpX-pZsZtBHyb3J2S28I9NFskSmjth1PH65n4WO3ADy8pleOeZhwa6KJX5fo3P5miOMb-ERa21aVf_t881slqgS9qaXod1sqAHG6RaMjfQQpE3yYMJRkOKy9JW_3E4TvKnNKOIX-klvCVp8m5GUN2HplU3xcclHSqTr0rbaAbtTaWWMIkCPR_AKAP5TA31pyWcyLfIXfv09uSMFUQLTKIG5kzoAL0YrcK46TvScxQoiN0ml44DiH986AnluaYTPGinoRsqkIGJV7sa4ZLWwLdJZYD72SEU4YMOJHAOPngeCAFuiC6M7_fQU8P_1IhTyjuSRRdys7d-NOufbOUXofwiK79oUiNHs29G0x4cv86ul8cYFfqYRaZNPmLdMAhr5Lg8tvnwz6vt_m36HllxjUNuU3vqpJKPX_Q-WZaveZKND-w9_QCjvOMM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB68QF-sJ1ar5sE3DXQvd_dRxFLpgWiVvsgyTbJa7EV3FfXXO0l3WxQV9DnZbJhkMt8wxwdwREaTzhYFd7ATc9fBmAeOlNxWgQw9qYQTm-76db_ZDNrt8CorCkvybPc8JGle6mmxm0YfOvcn5Kbwj7_Nw6JLFksn8l3f3E1jB7ZvWLk07zx3yUBnpTLfr_HZHM0w5pewqLE2lcL_9rkGqxm6ZGeT67AOc2qwAYWcuYFlirwJ9zoYjX1alp31HobjbvrYTxjhV9bA126_-65HSN2HulU3o8elP5Q6X5VVyAyam8oMYRJDVhvgKEHxxDT1pyGcSLfgtnLROq_yjGiBC9LAlAfKJy9GyTA-9SzhWhIlxvapIywLCf942Amka-tO8KissipLX_g6Xm0rgktKobMNCwPazw4wgg_KF-g46KHrYhCgHZIL43kd8tToP0WwcnlHIutCrvfWi6b9k438IpJfZOQXvRXhePrNaNKD49fZpfwYo0wfk0i3ySesG_phEU7yY5sN_7za7t-mH8JytdWoR_XLZm0PVmztnJs0nxIspONntQ9L4iXtJuMDc2c_AFEK5fA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGuq-urvHohalWgo-8CLLNMlqsS_aVay_3km626qoIJ43m4S85htm5vsA9slo0t6i4A42Y-46GPPAkZLbKpChJ5VwYsOuf-HX68HdXdj4UMVvst2zkOS4pkGzNHWTUl_GpUnhm0YiOg8o5KYIkI9mYc7VokHaX7-6ncQRbN8odGkNeu6SsU7LZr7v47NpmuLNLyFSY3mq-f_PeRmWUtTJKuNjsgIzqrsK-UzRgaUXfA3udZAaOzQEq7QfeoNW8tgZMsK17BJfW53Wm_5Cz0BPU3gzenQ6PanzWFmVzKM5wcwIKTFktS72hyiemJYENUIUyTrcVE-vj894KsDABd3MhAfKJ-9GyTAue5ZwLYkSY7vsCMtCwkUeNgPp2pohHpV1pI6kL3wdx7YVwSil0NmAXJfmswmMYIXyBToOeui6GARoh-TaeF6TPDgapwBWtvaRSNnJ9dza0YRX2axfROsXmfWLRgU4mPzTH3Nz_Nq6mG1plN7TYaTp8wkDh35YgMNsC6eff-5t62_N92ChcVKNLs7rtW1YtLXPbrJ_ipBLBs9qB-bFS9IaDnbN8X0HQX3u1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streaming+Algorithms+for+Maximizing+Monotone+Submodular+Functions+Under+a+Knapsack+Constraint&rft.jtitle=Algorithmica&rft.au=Huang%2C+Chien-Chung&rft.au=Kakimura%2C+Naonori&rft.au=Yoshida%2C+Yuichi&rft.date=2020-04-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=82&rft.issue=4&rft.spage=1006&rft.epage=1032&rft_id=info:doi/10.1007%2Fs00453-019-00628-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_019_00628_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon