Hybrid dynamic arithmetic city council optimization for improved rainfall prediction
In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To pred...
Gespeichert in:
| Veröffentlicht in: | International journal of system assurance engineering and management Jg. 15; H. 7; S. 3182 - 3192 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New Delhi
Springer India
01.07.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0975-6809, 0976-4348 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R
2
), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R
2
of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction. |
|---|---|
| AbstractList | In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R2), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R2 of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction. In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R 2 ), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R 2 of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction. |
| Author | Lathika, P. Singh, D. Sheeba |
| Author_xml | – sequence: 1 givenname: P. surname: Lathika fullname: Lathika, P. organization: Department of Mathematics, Noorul Islam Centre for Higher Education – sequence: 2 givenname: D. Sheeba orcidid: 0009-0001-0009-6909 surname: Singh fullname: Singh, D. Sheeba email: dssheeba@gmail.com organization: Department of Mathematics, Noorul Islam Centre for Higher Education |
| BookMark | eNp9kMFLwzAUxoNMcM79A54KnqsvTZo2RxnqBMHLPIc0TTSjTWqaCfWvN9sEwcMOL-8Rvl_yve8SzZx3GqFrDLcYoLobMcG8zqGgqUg6-RmaA69YTgmtZ4e5zFkN_AItx3ELALjAtKAwR5v11ATbZu3kZG9VJoONH72OaVQ2TpnyO6dsl_kh2t5-y2i9y4wPme2H4L90mwVpnZFdlw1Bt1btBVfoPN2MevnbF-jt8WGzWucvr0_Pq_uXXCXDMa91WUqDFSYlbxowssSVog1uGtoSYBUhrJIAhDGjwBSEtRXhhSlr3XDCCJAFujm-m6x87vQYxdbvgktfClKUlDPK6V5VH1Uq-HEM2oi02WGRmLx3AoPYxyiOMYoUozjEKHhCi3_oEGwvw3QaIkdoTGL3rsOfqxPUD01Rhzk |
| CitedBy_id | crossref_primary_10_1080_03091902_2025_2542273 |
| Cites_doi | 10.1016/j.techfore.2020.120532 10.1007/s00382-018-4252-x 10.3390/atmos10110668 10.1007/s40899-022-00689-y 10.1016/j.scitotenv.2020.144244 10.1109/ACCESS.2022.3146374 10.1007/s13201-022-01693-5 10.1007/s11356-022-19718-6 10.1007/s13201-021-01563-6 10.1007/s11269-020-02554-z 10.1016/j.jhydrol.2020.125133 10.2166/hydro.2020.095 10.1007/s13201-022-01701-8 10.1007/s12652-022-03765-5 10.1007/s00500-020-05480-9 10.1016/j.gfs.2020.100488 10.1007/978-981-19-2511-5_3 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13198-024-02324-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 0976-4348 |
| EndPage | 3192 |
| ExternalDocumentID | 10_1007_s13198_024_02324_9 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -EM 06D 0R~ 203 29~ 2JY 30V 406 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY CSCUP DNIVK DPUIP EBLON EIOEI ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HG6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J PT4 R89 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7R Z7X Z7Z Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-8e55af1c1359bb0fa517c4b1bb4d30673367a00366fc0f236d7392f58eb936303 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223471300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0975-6809 |
| IngestDate | Fri Oct 03 08:20:54 EDT 2025 Tue Nov 18 20:59:10 EST 2025 Sat Nov 29 04:20:40 EST 2025 Fri Feb 21 02:39:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | City councils evolution algorithm Open weather dataset Dynamic arithmetic optimization algorithm Correlation matrix Rainfall prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-8e55af1c1359bb0fa517c4b1bb4d30673367a00366fc0f236d7392f58eb936303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-0009-6909 |
| PQID | 3254964940 |
| PQPubID | 2043907 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3254964940 crossref_citationtrail_10_1007_s13198_024_02324_9 crossref_primary_10_1007_s13198_024_02324_9 springer_journals_10_1007_s13198_024_02324_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationTitle | International journal of system assurance engineering and management |
| PublicationTitleAbbrev | Int J Syst Assur Eng Manag |
| PublicationYear | 2024 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Venkatesh, Balasubramanian, Kaliappan (CR19) 2021; 25 Li, Zhang, Gu, Feng, Yin, Chen, Cheng (CR10) 2021; 760 Khodadadi, Snasel, Mirjalili (CR8) 2022; 10 Talebmorad, Ostad-Ali-Askari (CR15) 2022; 8 Jaseena, Kovoor (CR7) 2022; 34 Pira (CR13) 2022 Kumar, Poonia, Gupta, Goyal (CR9) 2021; 165 Van, Le, Thanh, Dang, Loc, Anh (CR18) 2020; 22 Chong, Lai, Yao, Ahmed, Jaafar, El-Shafie (CR2) 2020; 34 Esteves, de Souza Rolim, Ferraudo (CR4) 2019; 52 Ghashghaie, Eslami, Ostad-Ali-Askari (CR5) 2022; 12 Godde, Mason-D’Croz, Mayberry, Thornton, Herrero (CR6) 2021; 28 Ostad-Ali-Askari (CR12) 2022; 12 Poornima, Pushpalatha (CR14) 2019; 10 Abbass, Qasim, Song, Murshed, Mahmood, Younis (CR1) 2022; 29 Nafchi, Pardis, Raeisi, Ostad-Ali-Askari, Jafar, Bizhan (CR11) 2022 Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (CR16) 2020; 589 Tran Anh, Duc Dang, Van Pham (CR17) 2019; 2 Das (CR3) 2022 M Ghashghaie (2324_CR5) 2022; 12 X Li (2324_CR10) 2021; 760 S Poornima (2324_CR14) 2019; 10 CM Godde (2324_CR6) 2021; 28 K Abbass (2324_CR1) 2022; 29 RF Nafchi (2324_CR11) 2022 H Talebmorad (2324_CR15) 2022; 8 R Venkatesh (2324_CR19) 2021; 25 JT Esteves (2324_CR4) 2019; 52 Y Tikhamarine (2324_CR16) 2020; 589 Pira (2324_CR13) 2022 D Tran Anh (2324_CR17) 2019; 2 SP Van (2324_CR18) 2020; 22 S Das (2324_CR3) 2022 N Kumar (2324_CR9) 2021; 165 N Khodadadi (2324_CR8) 2022; 10 K Ostad-Ali-Askari (2324_CR12) 2022; 12 KL Chong (2324_CR2) 2020; 34 KU Jaseena (2324_CR7) 2022; 34 |
| References_xml | – volume: 165 year: 2021 ident: CR9 article-title: A novel framework for risk assessment and resilience of critical infrastructure towards climate change publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2020.120532 – volume: 52 start-page: 2319 year: 2019 end-page: 2331 ident: CR4 article-title: Rainfall prediction methodology with binary multilayer perceptron neural networks publication-title: Clim Dyn doi: 10.1007/s00382-018-4252-x – volume: 10 start-page: 668 issue: 11 year: 2019 ident: CR14 article-title: Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units publication-title: Atmosphere doi: 10.3390/atmos10110668 – volume: 8 start-page: 118 issue: 4 year: 2022 ident: CR15 article-title: Hydro geo-sphere integrated hydrologic model in modeling of wide basins publication-title: Sustain Water Resour Manag doi: 10.1007/s40899-022-00689-y – volume: 760 year: 2021 ident: CR10 article-title: Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144244 – volume: 10 start-page: 16188 year: 2022 end-page: 16208 ident: CR8 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – volume: 12 start-page: 202 issue: 8 year: 2022 ident: CR5 article-title: Applications of time series analysis to investigate components of Madiyan-rood river water quality publication-title: Appl Water Sci doi: 10.1007/s13201-022-01693-5 – volume: 29 start-page: 42539 issue: 28 year: 2022 end-page: 42559 ident: CR1 article-title: A review of the global climate change impacts, adaptation, and sustainable mitigation measures publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-19718-6 – year: 2022 ident: CR11 article-title: Correction to: eco-hydrologic stability zonation of dams and power plants using the combined models of SMCE and CEQUALW2 publication-title: Applied Water Science doi: 10.1007/s13201-021-01563-6 – volume: 34 start-page: 2371 year: 2020 end-page: 2387 ident: CR2 article-title: Performance enhancement model for rainfall forecasting utilizing integrated wavelet-convolutional neural network publication-title: Water Resour Manage doi: 10.1007/s11269-020-02554-z – volume: 589 start-page: 125133 year: 2020 ident: CR16 article-title: Rainfall-runoff modelling using improved machine learning methods: harris hawks optimizer vs. particle swarm optimization publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125133 – volume: 34 start-page: 3393 issue: 6 year: 2022 end-page: 3412 ident: CR7 article-title: Deterministic weather forecasting models based on intelligent predictors: a survey publication-title: J King Saud Univ Comput Inform Sci – volume: 22 start-page: 541 issue: 3 year: 2020 end-page: 561 ident: CR18 article-title: Deep learning convolutional neural network in rainfall–runoff modelling publication-title: J Hydroinf doi: 10.2166/hydro.2020.095 – volume: 12 start-page: 177 issue: 8 year: 2022 ident: CR12 article-title: Investigation of meteorological variables on runoff archetypal using SWAT: basic concepts and fundamentals publication-title: Appl Water Sci doi: 10.1007/s13201-022-01701-8 – year: 2022 ident: CR13 article-title: City councils evolution: a socio-inspired metaheuristic optimization algorithm publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-022-03765-5 – volume: 25 start-page: 4725 year: 2021 end-page: 4738 ident: CR19 article-title: Rainfall prediction using generative adversarial networks with convolution neural network publication-title: Soft Comput doi: 10.1007/s00500-020-05480-9 – volume: 28 year: 2021 ident: CR6 article-title: Impacts of climate change on the livestock food supply chain; a review of the evidence publication-title: Glob Food Sec doi: 10.1016/j.gfs.2020.100488 – start-page: 51 year: 2022 end-page: 106 ident: CR3 publication-title: Challenges in predicting extreme weather events over the South Asian region. Extreme natural events: sustainable solutions for developing countries doi: 10.1007/978-981-19-2511-5_3 – volume: 2 start-page: 65 issue: 1 year: 2019 end-page: 83 ident: CR17 article-title: Improved rainfall prediction using combined pre-processing methods and feed-forward neural networks publication-title: J – volume: 165 year: 2021 ident: 2324_CR9 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2020.120532 – volume: 34 start-page: 3393 issue: 6 year: 2022 ident: 2324_CR7 publication-title: J King Saud Univ Comput Inform Sci – volume: 760 year: 2021 ident: 2324_CR10 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144244 – start-page: 51 volume-title: Challenges in predicting extreme weather events over the South Asian region. Extreme natural events: sustainable solutions for developing countries year: 2022 ident: 2324_CR3 doi: 10.1007/978-981-19-2511-5_3 – year: 2022 ident: 2324_CR11 publication-title: Applied Water Science doi: 10.1007/s13201-021-01563-6 – volume: 10 start-page: 668 issue: 11 year: 2019 ident: 2324_CR14 publication-title: Atmosphere doi: 10.3390/atmos10110668 – volume: 28 year: 2021 ident: 2324_CR6 publication-title: Glob Food Sec doi: 10.1016/j.gfs.2020.100488 – volume: 12 start-page: 177 issue: 8 year: 2022 ident: 2324_CR12 publication-title: Appl Water Sci doi: 10.1007/s13201-022-01701-8 – volume: 2 start-page: 65 issue: 1 year: 2019 ident: 2324_CR17 publication-title: J – volume: 10 start-page: 16188 year: 2022 ident: 2324_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – volume: 29 start-page: 42539 issue: 28 year: 2022 ident: 2324_CR1 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-19718-6 – volume: 34 start-page: 2371 year: 2020 ident: 2324_CR2 publication-title: Water Resour Manage doi: 10.1007/s11269-020-02554-z – volume: 589 start-page: 125133 year: 2020 ident: 2324_CR16 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125133 – volume: 25 start-page: 4725 year: 2021 ident: 2324_CR19 publication-title: Soft Comput doi: 10.1007/s00500-020-05480-9 – volume: 12 start-page: 202 issue: 8 year: 2022 ident: 2324_CR5 publication-title: Appl Water Sci doi: 10.1007/s13201-022-01693-5 – volume: 22 start-page: 541 issue: 3 year: 2020 ident: 2324_CR18 publication-title: J Hydroinf doi: 10.2166/hydro.2020.095 – volume: 52 start-page: 2319 year: 2019 ident: 2324_CR4 publication-title: Clim Dyn doi: 10.1007/s00382-018-4252-x – year: 2022 ident: 2324_CR13 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-022-03765-5 – volume: 8 start-page: 118 issue: 4 year: 2022 ident: 2324_CR15 publication-title: Sustain Water Resour Manag doi: 10.1007/s40899-022-00689-y |
| SSID | ssj0001214240 |
| Score | 2.2909548 |
| Snippet | In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3182 |
| SubjectTerms | Accuracy Agriculture Algorithms Arithmetic Artificial intelligence Correlation analysis Datasets Deep learning Developing countries Effectiveness Efficiency Engineering Engineering Economics Evolutionary algorithms Forecasting LDCs Logistics Marketing Missing data Municipal government Neural networks Optimization Organization Original Article Precipitation Preprocessing Quality Control Rain Rainfall Reliability Root-mean-square errors Safety and Risk Task complexity Wavelet transforms |
| Title | Hybrid dynamic arithmetic city council optimization for improved rainfall prediction |
| URI | https://link.springer.com/article/10.1007/s13198-024-02324-9 https://www.proquest.com/docview/3254964940 |
| Volume | 15 |
| WOSCitedRecordID | wos001223471300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0976-4348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001214240 issn: 0975-6809 databaseCode: RSV dateStart: 20100301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F1lRy8aaBtmjQ5irjsaRFcZW8lSVNc6D7YrYL_3km2tauooIeemoYwM818k8k3g9BlnFmhqORE2oCSWMmEKDBmoiIF1qPjTAjlm00k_b4YDuV9RQpb1Lfd65Sk36kbshtYiyDgU-ABGEDkOtpgrtqMi9EfnlZOVhx7yx-uyIQRLgJZsWW-n-azR2pg5pfMqHc43d3_LXUP7VQAE98sLWIfrdnJAdpeKTt4iAa9N8fTwtmyGz2GcLl8Hjs2IzYAyrHrH2FGBZ7CdjKueJoYwC0e-RMIm2HXVyJXRYFnc5focQOO0GP3bnDbI1V3BWJgdSURljGVhyakTGod5IqFiYl1qEFBLo6glCfKlavhuQnyiPIsASyVM2G1pBw83zFqTaYTe4KwtQnAGJZxwWWsea5FQiOphLZUuRbmbRTWEk5NVXrcdcAo0qZospNYChJLvcRS2UZXH9_MloU3fh3dqRWXVj_hIqUu-OWxjIM2uq4V1bz-ebbTvw0_Q1uR17W7xNtBrXL-Ys_RpnktR4v5hTfOd9ix3HM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah5800DbtPl4FHFMnENwim8laVMcdB9sVfC_N8laN0UFfehT0xDurrm7XH73AzgNU80lERQL7REcSsGwNMaMZSCN9agw5Vw6sgnW6fCnJ3FXgsIm1W33qiTpduoZ2M1YC8fGp5jHhAFYLMJSaGl2bI5-_zh3smLRW-5wRbAIU-6JEi3z_TSfPdIszPxSGXUOp7nxv6VuwnoZYKKLqUVswYIebMPaXNvBHei23ixOC6VTNnpk0uXiuW_RjCgxQTmy_BFJL0dDs530S5wmMsEt6rkTCJ0iyyuRyTxHo7Et9NgBu_DQvOpetnDJroATs7oCcx1FMvMTn0RCKS-Tkc-SUPnKKMjmEYRQJm27GpolXhYQmjITS2UR10oQajzfHtQGw4HeB6Q1M2FMlFJORahopjgjgZBcaSIthXkd_ErCcVK2HrcMGHk8a5psJRYbicVOYrGow9nHN6Np441fRzcqxcXlTziJiU1-aShCrw7nlaJmr3-e7eBvw09gpdW9bcft687NIawGTu_2Qm8DasX4RR_BcvJa9CbjY2eo7zbB31c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDv8Xp1Dz4pmFt06bJo6hjooyhU_ZWkjbFwX6xVcH_3kvXuSkqiA99ahrK3bX3XZLvPoBTPzFCMcmpNA6jvpIhVRjMVHkKo0f7iRAqF5sIGw3RbsvmHIs_P-0-3ZKccBpsl6Z-Vh0maXVGfMPIERTzC14ICahchCUfKxl7qOv-4WlulcUyufKFFhkGlAtHFsyZ76f5nJ1mkPPLLmmefGob_3_tTVgvgCe5mETKFiyY_jaszbUj3IFW_c3yt0gyUaknWEZnzz3LciQxgnVidSXiTpcM8DfTK_ibBEEv6eQrEyYhVm8iVd0uGY7sBpAdsAuPtevWZZ0Wqgs0xrfLqDBBoFI3dlkgtXZSFbhh7GtXo-NsfcEYD5VtY8PT2Ek9xpMQMVYaCKMl45gR96DUH_TNPhBjQoQ3QcIFl77mqRYh86QS2jBlpc3L4E6tHcVFS3KrjNGNZs2UrcUitFiUWyySZTj7eGY4acjx6-jK1IlR8XGOI2aLYu5L3ynD-dRps9s_z3bwt-EnsNK8qkV3N43bQ1j1crfbc74VKGWjF3MEy_Fr1hmPjvOYfQep_Og7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+dynamic+arithmetic+city+council+optimization+for+improved+rainfall+prediction&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Lathika%2C+P&rft.au=Singh%2C+D.+Sheeba&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=15&rft.issue=7&rft.spage=3182&rft.epage=3192&rft_id=info:doi/10.1007%2Fs13198-024-02324-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon |