Hybrid dynamic arithmetic city council optimization for improved rainfall prediction

In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of system assurance engineering and management Jg. 15; H. 7; S. 3182 - 3192
Hauptverfasser: Lathika, P., Singh, D. Sheeba
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New Delhi Springer India 01.07.2024
Springer Nature B.V
Schlagworte:
ISSN:0975-6809, 0976-4348
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R 2 ), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R 2 of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction.
AbstractList In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R2), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R2 of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction.
In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a significant demand for accurate and effective rainfall prediction methods to make better decisions regarding precautionary measures. To predict rainfall amounts effectively, this study proposed a novel rainfall prediction method named the Hybrid Dynamic Arithmetic City Council Optimization (HDACO) algorithm. The proposed HDACO method is a combination of two algorithms namely the Dynamic Arithmetic Optimization (DAO) algorithm and the City Councils Evolution (CCE) algorithm. The study utilizes preprocessing steps namely data cleaning, filling missing values, and data normalization. After preprocessing, the features closely related to rainfall prediction are selected by the computation of the correlation matrix. Finally, based on the features selected the HDACO algorithm predicts the amount of rainfall. The HDACO algorithm is evaluated using an open weather dataset and the effectiveness of the HDACO algorithm is validated using measures such as rainfall rate, Mean Absolute Error (MAE), coefficient of determination (R 2 ), and Root Mean Square Error (RMSE). As a result, the HDACO algorithm achieved RMSE of 0.272, MAE of 0.184, and R 2 of 0.97 respectively. The performance of the HDACO algorithm is compared with existing methods and the results demonstrate the better performance of the HDACO algorithm in rainfall prediction.
Author Lathika, P.
Singh, D. Sheeba
Author_xml – sequence: 1
  givenname: P.
  surname: Lathika
  fullname: Lathika, P.
  organization: Department of Mathematics, Noorul Islam Centre for Higher Education
– sequence: 2
  givenname: D. Sheeba
  orcidid: 0009-0001-0009-6909
  surname: Singh
  fullname: Singh, D. Sheeba
  email: dssheeba@gmail.com
  organization: Department of Mathematics, Noorul Islam Centre for Higher Education
BookMark eNp9kMFLwzAUxoNMcM79A54KnqsvTZo2RxnqBMHLPIc0TTSjTWqaCfWvN9sEwcMOL-8Rvl_yve8SzZx3GqFrDLcYoLobMcG8zqGgqUg6-RmaA69YTgmtZ4e5zFkN_AItx3ELALjAtKAwR5v11ATbZu3kZG9VJoONH72OaVQ2TpnyO6dsl_kh2t5-y2i9y4wPme2H4L90mwVpnZFdlw1Bt1btBVfoPN2MevnbF-jt8WGzWucvr0_Pq_uXXCXDMa91WUqDFSYlbxowssSVog1uGtoSYBUhrJIAhDGjwBSEtRXhhSlr3XDCCJAFujm-m6x87vQYxdbvgktfClKUlDPK6V5VH1Uq-HEM2oi02WGRmLx3AoPYxyiOMYoUozjEKHhCi3_oEGwvw3QaIkdoTGL3rsOfqxPUD01Rhzk
CitedBy_id crossref_primary_10_1080_03091902_2025_2542273
Cites_doi 10.1016/j.techfore.2020.120532
10.1007/s00382-018-4252-x
10.3390/atmos10110668
10.1007/s40899-022-00689-y
10.1016/j.scitotenv.2020.144244
10.1109/ACCESS.2022.3146374
10.1007/s13201-022-01693-5
10.1007/s11356-022-19718-6
10.1007/s13201-021-01563-6
10.1007/s11269-020-02554-z
10.1016/j.jhydrol.2020.125133
10.2166/hydro.2020.095
10.1007/s13201-022-01701-8
10.1007/s12652-022-03765-5
10.1007/s00500-020-05480-9
10.1016/j.gfs.2020.100488
10.1007/978-981-19-2511-5_3
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024.
Copyright_xml – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024.
DBID AAYXX
CITATION
DOI 10.1007/s13198-024-02324-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 0976-4348
EndPage 3192
ExternalDocumentID 10_1007_s13198_024_02324_9
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -EM
06D
0R~
203
29~
2JY
30V
406
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
CSCUP
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PT4
R89
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7R
Z7X
Z7Z
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-8e55af1c1359bb0fa517c4b1bb4d30673367a00366fc0f236d7392f58eb936303
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223471300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0975-6809
IngestDate Fri Oct 03 08:20:54 EDT 2025
Tue Nov 18 20:59:10 EST 2025
Sat Nov 29 04:20:40 EST 2025
Fri Feb 21 02:39:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords City councils evolution algorithm
Open weather dataset
Dynamic arithmetic optimization algorithm
Correlation matrix
Rainfall prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8e55af1c1359bb0fa517c4b1bb4d30673367a00366fc0f236d7392f58eb936303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-0009-6909
PQID 3254964940
PQPubID 2043907
PageCount 11
ParticipantIDs proquest_journals_3254964940
crossref_citationtrail_10_1007_s13198_024_02324_9
crossref_primary_10_1007_s13198_024_02324_9
springer_journals_10_1007_s13198_024_02324_9
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle International journal of system assurance engineering and management
PublicationTitleAbbrev Int J Syst Assur Eng Manag
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Venkatesh, Balasubramanian, Kaliappan (CR19) 2021; 25
Li, Zhang, Gu, Feng, Yin, Chen, Cheng (CR10) 2021; 760
Khodadadi, Snasel, Mirjalili (CR8) 2022; 10
Talebmorad, Ostad-Ali-Askari (CR15) 2022; 8
Jaseena, Kovoor (CR7) 2022; 34
Pira (CR13) 2022
Kumar, Poonia, Gupta, Goyal (CR9) 2021; 165
Van, Le, Thanh, Dang, Loc, Anh (CR18) 2020; 22
Chong, Lai, Yao, Ahmed, Jaafar, El-Shafie (CR2) 2020; 34
Esteves, de Souza Rolim, Ferraudo (CR4) 2019; 52
Ghashghaie, Eslami, Ostad-Ali-Askari (CR5) 2022; 12
Godde, Mason-D’Croz, Mayberry, Thornton, Herrero (CR6) 2021; 28
Ostad-Ali-Askari (CR12) 2022; 12
Poornima, Pushpalatha (CR14) 2019; 10
Abbass, Qasim, Song, Murshed, Mahmood, Younis (CR1) 2022; 29
Nafchi, Pardis, Raeisi, Ostad-Ali-Askari, Jafar, Bizhan (CR11) 2022
Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (CR16) 2020; 589
Tran Anh, Duc Dang, Van Pham (CR17) 2019; 2
Das (CR3) 2022
M Ghashghaie (2324_CR5) 2022; 12
X Li (2324_CR10) 2021; 760
S Poornima (2324_CR14) 2019; 10
CM Godde (2324_CR6) 2021; 28
K Abbass (2324_CR1) 2022; 29
RF Nafchi (2324_CR11) 2022
H Talebmorad (2324_CR15) 2022; 8
R Venkatesh (2324_CR19) 2021; 25
JT Esteves (2324_CR4) 2019; 52
Y Tikhamarine (2324_CR16) 2020; 589
Pira (2324_CR13) 2022
D Tran Anh (2324_CR17) 2019; 2
SP Van (2324_CR18) 2020; 22
S Das (2324_CR3) 2022
N Kumar (2324_CR9) 2021; 165
N Khodadadi (2324_CR8) 2022; 10
K Ostad-Ali-Askari (2324_CR12) 2022; 12
KL Chong (2324_CR2) 2020; 34
KU Jaseena (2324_CR7) 2022; 34
References_xml – volume: 165
  year: 2021
  ident: CR9
  article-title: A novel framework for risk assessment and resilience of critical infrastructure towards climate change
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2020.120532
– volume: 52
  start-page: 2319
  year: 2019
  end-page: 2331
  ident: CR4
  article-title: Rainfall prediction methodology with binary multilayer perceptron neural networks
  publication-title: Clim Dyn
  doi: 10.1007/s00382-018-4252-x
– volume: 10
  start-page: 668
  issue: 11
  year: 2019
  ident: CR14
  article-title: Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units
  publication-title: Atmosphere
  doi: 10.3390/atmos10110668
– volume: 8
  start-page: 118
  issue: 4
  year: 2022
  ident: CR15
  article-title: Hydro geo-sphere integrated hydrologic model in modeling of wide basins
  publication-title: Sustain Water Resour Manag
  doi: 10.1007/s40899-022-00689-y
– volume: 760
  year: 2021
  ident: CR10
  article-title: Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144244
– volume: 10
  start-page: 16188
  year: 2022
  end-page: 16208
  ident: CR8
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– volume: 12
  start-page: 202
  issue: 8
  year: 2022
  ident: CR5
  article-title: Applications of time series analysis to investigate components of Madiyan-rood river water quality
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01693-5
– volume: 29
  start-page: 42539
  issue: 28
  year: 2022
  end-page: 42559
  ident: CR1
  article-title: A review of the global climate change impacts, adaptation, and sustainable mitigation measures
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-19718-6
– year: 2022
  ident: CR11
  article-title: Correction to: eco-hydrologic stability zonation of dams and power plants using the combined models of SMCE and CEQUALW2
  publication-title: Applied Water Science
  doi: 10.1007/s13201-021-01563-6
– volume: 34
  start-page: 2371
  year: 2020
  end-page: 2387
  ident: CR2
  article-title: Performance enhancement model for rainfall forecasting utilizing integrated wavelet-convolutional neural network
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-020-02554-z
– volume: 589
  start-page: 125133
  year: 2020
  ident: CR16
  article-title: Rainfall-runoff modelling using improved machine learning methods: harris hawks optimizer vs. particle swarm optimization
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125133
– volume: 34
  start-page: 3393
  issue: 6
  year: 2022
  end-page: 3412
  ident: CR7
  article-title: Deterministic weather forecasting models based on intelligent predictors: a survey
  publication-title: J King Saud Univ Comput Inform Sci
– volume: 22
  start-page: 541
  issue: 3
  year: 2020
  end-page: 561
  ident: CR18
  article-title: Deep learning convolutional neural network in rainfall–runoff modelling
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2020.095
– volume: 12
  start-page: 177
  issue: 8
  year: 2022
  ident: CR12
  article-title: Investigation of meteorological variables on runoff archetypal using SWAT: basic concepts and fundamentals
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01701-8
– year: 2022
  ident: CR13
  article-title: City councils evolution: a socio-inspired metaheuristic optimization algorithm
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-022-03765-5
– volume: 25
  start-page: 4725
  year: 2021
  end-page: 4738
  ident: CR19
  article-title: Rainfall prediction using generative adversarial networks with convolution neural network
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05480-9
– volume: 28
  year: 2021
  ident: CR6
  article-title: Impacts of climate change on the livestock food supply chain; a review of the evidence
  publication-title: Glob Food Sec
  doi: 10.1016/j.gfs.2020.100488
– start-page: 51
  year: 2022
  end-page: 106
  ident: CR3
  publication-title: Challenges in predicting extreme weather events over the South Asian region. Extreme natural events: sustainable solutions for developing countries
  doi: 10.1007/978-981-19-2511-5_3
– volume: 2
  start-page: 65
  issue: 1
  year: 2019
  end-page: 83
  ident: CR17
  article-title: Improved rainfall prediction using combined pre-processing methods and feed-forward neural networks
  publication-title: J
– volume: 165
  year: 2021
  ident: 2324_CR9
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2020.120532
– volume: 34
  start-page: 3393
  issue: 6
  year: 2022
  ident: 2324_CR7
  publication-title: J King Saud Univ Comput Inform Sci
– volume: 760
  year: 2021
  ident: 2324_CR10
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144244
– start-page: 51
  volume-title: Challenges in predicting extreme weather events over the South Asian region. Extreme natural events: sustainable solutions for developing countries
  year: 2022
  ident: 2324_CR3
  doi: 10.1007/978-981-19-2511-5_3
– year: 2022
  ident: 2324_CR11
  publication-title: Applied Water Science
  doi: 10.1007/s13201-021-01563-6
– volume: 10
  start-page: 668
  issue: 11
  year: 2019
  ident: 2324_CR14
  publication-title: Atmosphere
  doi: 10.3390/atmos10110668
– volume: 28
  year: 2021
  ident: 2324_CR6
  publication-title: Glob Food Sec
  doi: 10.1016/j.gfs.2020.100488
– volume: 12
  start-page: 177
  issue: 8
  year: 2022
  ident: 2324_CR12
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01701-8
– volume: 2
  start-page: 65
  issue: 1
  year: 2019
  ident: 2324_CR17
  publication-title: J
– volume: 10
  start-page: 16188
  year: 2022
  ident: 2324_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– volume: 29
  start-page: 42539
  issue: 28
  year: 2022
  ident: 2324_CR1
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-19718-6
– volume: 34
  start-page: 2371
  year: 2020
  ident: 2324_CR2
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-020-02554-z
– volume: 589
  start-page: 125133
  year: 2020
  ident: 2324_CR16
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125133
– volume: 25
  start-page: 4725
  year: 2021
  ident: 2324_CR19
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05480-9
– volume: 12
  start-page: 202
  issue: 8
  year: 2022
  ident: 2324_CR5
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01693-5
– volume: 22
  start-page: 541
  issue: 3
  year: 2020
  ident: 2324_CR18
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2020.095
– volume: 52
  start-page: 2319
  year: 2019
  ident: 2324_CR4
  publication-title: Clim Dyn
  doi: 10.1007/s00382-018-4252-x
– year: 2022
  ident: 2324_CR13
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-022-03765-5
– volume: 8
  start-page: 118
  issue: 4
  year: 2022
  ident: 2324_CR15
  publication-title: Sustain Water Resour Manag
  doi: 10.1007/s40899-022-00689-y
SSID ssj0001214240
Score 2.2909548
Snippet In the meteorological department rainfall prediction is one of the complex tasks because it is directly linked to human life and the Indian economy. There is a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3182
SubjectTerms Accuracy
Agriculture
Algorithms
Arithmetic
Artificial intelligence
Correlation analysis
Datasets
Deep learning
Developing countries
Effectiveness
Efficiency
Engineering
Engineering Economics
Evolutionary algorithms
Forecasting
LDCs
Logistics
Marketing
Missing data
Municipal government
Neural networks
Optimization
Organization
Original Article
Precipitation
Preprocessing
Quality Control
Rain
Rainfall
Reliability
Root-mean-square errors
Safety and Risk
Task complexity
Wavelet transforms
Title Hybrid dynamic arithmetic city council optimization for improved rainfall prediction
URI https://link.springer.com/article/10.1007/s13198-024-02324-9
https://www.proquest.com/docview/3254964940
Volume 15
WOSCitedRecordID wos001223471300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0976-4348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001214240
  issn: 0975-6809
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F1lRy8aaBtmjQ5irjsaRFcZW8lSVNc6D7YrYL_3km2tauooIeemoYwM818k8k3g9BlnFmhqORE2oCSWMmEKDBmoiIF1qPjTAjlm00k_b4YDuV9RQpb1Lfd65Sk36kbshtYiyDgU-ABGEDkOtpgrtqMi9EfnlZOVhx7yx-uyIQRLgJZsWW-n-azR2pg5pfMqHc43d3_LXUP7VQAE98sLWIfrdnJAdpeKTt4iAa9N8fTwtmyGz2GcLl8Hjs2IzYAyrHrH2FGBZ7CdjKueJoYwC0e-RMIm2HXVyJXRYFnc5focQOO0GP3bnDbI1V3BWJgdSURljGVhyakTGod5IqFiYl1qEFBLo6glCfKlavhuQnyiPIsASyVM2G1pBw83zFqTaYTe4KwtQnAGJZxwWWsea5FQiOphLZUuRbmbRTWEk5NVXrcdcAo0qZospNYChJLvcRS2UZXH9_MloU3fh3dqRWXVj_hIqUu-OWxjIM2uq4V1bz-ebbTvw0_Q1uR17W7xNtBrXL-Ys_RpnktR4v5hTfOd9ix3HM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah5800DbtPl4FHFMnENwim8laVMcdB9sVfC_N8laN0UFfehT0xDurrm7XH73AzgNU80lERQL7REcSsGwNMaMZSCN9agw5Vw6sgnW6fCnJ3FXgsIm1W33qiTpduoZ2M1YC8fGp5jHhAFYLMJSaGl2bI5-_zh3smLRW-5wRbAIU-6JEi3z_TSfPdIszPxSGXUOp7nxv6VuwnoZYKKLqUVswYIebMPaXNvBHei23ixOC6VTNnpk0uXiuW_RjCgxQTmy_BFJL0dDs530S5wmMsEt6rkTCJ0iyyuRyTxHo7Et9NgBu_DQvOpetnDJroATs7oCcx1FMvMTn0RCKS-Tkc-SUPnKKMjmEYRQJm27GpolXhYQmjITS2UR10oQajzfHtQGw4HeB6Q1M2FMlFJORahopjgjgZBcaSIthXkd_ErCcVK2HrcMGHk8a5psJRYbicVOYrGow9nHN6Np441fRzcqxcXlTziJiU1-aShCrw7nlaJmr3-e7eBvw09gpdW9bcft687NIawGTu_2Qm8DasX4RR_BcvJa9CbjY2eo7zbB31c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDv8Xp1Dz4pmFt06bJo6hjooyhU_ZWkjbFwX6xVcH_3kvXuSkqiA99ahrK3bX3XZLvPoBTPzFCMcmpNA6jvpIhVRjMVHkKo0f7iRAqF5sIGw3RbsvmHIs_P-0-3ZKccBpsl6Z-Vh0maXVGfMPIERTzC14ICahchCUfKxl7qOv-4WlulcUyufKFFhkGlAtHFsyZ76f5nJ1mkPPLLmmefGob_3_tTVgvgCe5mETKFiyY_jaszbUj3IFW_c3yt0gyUaknWEZnzz3LciQxgnVidSXiTpcM8DfTK_ibBEEv6eQrEyYhVm8iVd0uGY7sBpAdsAuPtevWZZ0Wqgs0xrfLqDBBoFI3dlkgtXZSFbhh7GtXo-NsfcEYD5VtY8PT2Ek9xpMQMVYaCKMl45gR96DUH_TNPhBjQoQ3QcIFl77mqRYh86QS2jBlpc3L4E6tHcVFS3KrjNGNZs2UrcUitFiUWyySZTj7eGY4acjx6-jK1IlR8XGOI2aLYu5L3ynD-dRps9s_z3bwt-EnsNK8qkV3N43bQ1j1crfbc74VKGWjF3MEy_Fr1hmPjvOYfQep_Og7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+dynamic+arithmetic+city+council+optimization+for+improved+rainfall+prediction&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Lathika%2C+P&rft.au=Singh%2C+D.+Sheeba&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=15&rft.issue=7&rft.spage=3182&rft.epage=3192&rft_id=info:doi/10.1007%2Fs13198-024-02324-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon