QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment

Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 32; H. 10; S. 5553 - 5570
Hauptverfasser: Tong, Zhao, Deng, Xiaomei, Chen, Hongjian, Mei, Jing, Liu, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.05.2020
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challenging non-deterministic polynomial-hard problems in cloud computing. In task scheduling, obtaining shorter makespan is an important objective and is related to the pros and cons of the algorithm. Machine learning algorithms represent a new method for solving this type of problem. In this paper, we propose a novel task scheduling algorithm called QL-HEFT that combines Q -learning with the heterogeneous earliest finish time (HEFT) algorithm to reduce the makespan. The algorithm uses the upward rank ( rank u ) value of HEFT as the immediate reward in the Q -learning framework. The agent can obtain better learning results to update the Q -table through the self-learning process. The QL-HEFT algorithm is divided into two major phases: a task sorting phase based on Q -learning for obtaining an optimal order and a processor allocation phase using the earliest finish time strategy. Experiments show that QL-HEFT achieves a shorter makespan compared to three other classical scheduling algorithms as well as good performances in terms of the average response time.
AbstractList Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challenging non-deterministic polynomial-hard problems in cloud computing. In task scheduling, obtaining shorter makespan is an important objective and is related to the pros and cons of the algorithm. Machine learning algorithms represent a new method for solving this type of problem. In this paper, we propose a novel task scheduling algorithm called QL-HEFT that combines Q-learning with the heterogeneous earliest finish time (HEFT) algorithm to reduce the makespan. The algorithm uses the upward rank (ranku) value of HEFT as the immediate reward in the Q-learning framework. The agent can obtain better learning results to update the Q-table through the self-learning process. The QL-HEFT algorithm is divided into two major phases: a task sorting phase based on Q-learning for obtaining an optimal order and a processor allocation phase using the earliest finish time strategy. Experiments show that QL-HEFT achieves a shorter makespan compared to three other classical scheduling algorithms as well as good performances in terms of the average response time.
Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challenging non-deterministic polynomial-hard problems in cloud computing. In task scheduling, obtaining shorter makespan is an important objective and is related to the pros and cons of the algorithm. Machine learning algorithms represent a new method for solving this type of problem. In this paper, we propose a novel task scheduling algorithm called QL-HEFT that combines Q -learning with the heterogeneous earliest finish time (HEFT) algorithm to reduce the makespan. The algorithm uses the upward rank ( rank u ) value of HEFT as the immediate reward in the Q -learning framework. The agent can obtain better learning results to update the Q -table through the self-learning process. The QL-HEFT algorithm is divided into two major phases: a task sorting phase based on Q -learning for obtaining an optimal order and a processor allocation phase using the earliest finish time strategy. Experiments show that QL-HEFT achieves a shorter makespan compared to three other classical scheduling algorithms as well as good performances in terms of the average response time.
Author Mei, Jing
Liu, Hong
Deng, Xiaomei
Chen, Hongjian
Tong, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  orcidid: 0000-0002-8624-6364
  surname: Tong
  fullname: Tong, Zhao
  email: tongzhao@hunnu.edu.cn
  organization: College of Information Science and Engineering, Hunan Normal University
– sequence: 2
  givenname: Xiaomei
  surname: Deng
  fullname: Deng, Xiaomei
  organization: College of Information Science and Engineering, Hunan Normal University
– sequence: 3
  givenname: Hongjian
  surname: Chen
  fullname: Chen, Hongjian
  organization: College of Information Science and Engineering, Hunan Normal University
– sequence: 4
  givenname: Jing
  surname: Mei
  fullname: Mei, Jing
  organization: College of Information Science and Engineering, Hunan Normal University
– sequence: 5
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: College of Information Science and Engineering, Hunan Normal University
BookMark eNp9kFFLwzAQx4MouE2_gE8Bn6uXJulS32RsThiIMPExZOl162iTmbQDv72dUwQf9nQH__vdHb8hOXfeISE3DO4YwPg-AsiUJcDyBARjKlFnZMAE5wkHqc7JAHLRx5ngl2QY4xYARKbkgLy_LpL5dLZ8oIY6v8eaNsZuKoe0RhNc5dY02g0WXf3bNkhXJiL1jtradwW1vtl17SFGt6-Cdw269opclKaOeP1TR-RtNl1O5sni5el58rhILGd5m6jVmJWpkQp5ZnmRAxRZKTNRGg6iUBkKI2GMRklMlVSWCZljKkpkUhmlcj4it8e9u-A_Ooyt3vouuP6kTnmeSSWyXsOIpMcpG3yMAUu9C1VjwqdmoA8C9VGg7gXqb4Fa9ZD6B9mqNW3lXRtMVZ9G-RGN_R23xvD31QnqC1T6hgQ
CitedBy_id crossref_primary_10_1016_j_icte_2024_08_007
crossref_primary_10_1002_cpe_7228
crossref_primary_10_1007_s40747_021_00528_1
crossref_primary_10_1002_itl2_70037
crossref_primary_10_1007_s12652_021_03198_6
crossref_primary_10_1007_s00607_021_00920_2
crossref_primary_10_1007_s11042_023_17216_6
crossref_primary_10_1007_s00607_020_00813_w
crossref_primary_10_1007_s10586_025_05532_5
crossref_primary_10_1007_s10586_025_05361_6
crossref_primary_10_3390_info16010008
crossref_primary_10_3233_JIFS_211250
crossref_primary_10_1016_j_future_2022_12_014
crossref_primary_10_1007_s00500_023_09582_y
crossref_primary_10_1109_TSC_2022_3196620
crossref_primary_10_1109_ACCESS_2024_3355092
crossref_primary_10_1016_j_eswa_2025_127376
crossref_primary_10_1016_j_neucom_2021_05_070
crossref_primary_10_1007_s11277_021_08569_y
crossref_primary_10_1007_s40747_023_01023_5
crossref_primary_10_3390_s24165272
crossref_primary_10_1016_j_scs_2022_104322
crossref_primary_10_3389_fenvs_2022_996483
crossref_primary_10_1007_s11227_020_03364_1
crossref_primary_10_1007_s12530_025_09725_6
crossref_primary_10_1016_j_engappai_2023_107300
crossref_primary_10_1007_s10586_024_04712_z
crossref_primary_10_1186_s13677_024_00670_4
crossref_primary_10_1007_s11227_023_05521_8
crossref_primary_10_1007_s12652_020_02884_1
crossref_primary_10_1007_s00500_020_04931_7
crossref_primary_10_1007_s11831_023_09921_0
crossref_primary_10_23919_cje_2023_00_378
crossref_primary_10_1155_2022_6456242
crossref_primary_10_1109_ACCESS_2022_3163273
crossref_primary_10_3390_app132112015
crossref_primary_10_1016_j_comnet_2025_111227
crossref_primary_10_1016_j_asoc_2022_109707
crossref_primary_10_1016_j_eswa_2024_124845
crossref_primary_10_1007_s42044_023_00163_8
crossref_primary_10_1109_ACCESS_2024_3435914
crossref_primary_10_1007_s00521_019_04436_x
crossref_primary_10_3390_systems11020059
crossref_primary_10_1109_ACCESS_2024_3488965
crossref_primary_10_1007_s11277_024_11258_1
crossref_primary_10_1007_s10586_021_03334_z
crossref_primary_10_1016_j_parco_2024_103114
crossref_primary_10_1016_j_future_2025_108050
crossref_primary_10_1109_TPDS_2023_3288702
crossref_primary_10_1177_00375497221105530
crossref_primary_10_1109_ACCESS_2021_3101454
crossref_primary_10_1016_j_ins_2022_06_078
crossref_primary_10_1109_TSC_2024_3463423
crossref_primary_10_1007_s11227_023_05489_5
crossref_primary_10_1002_cpe_7409
crossref_primary_10_1002_cpe_7954
crossref_primary_10_1002_int_22983
crossref_primary_10_1109_ACCESS_2023_3251359
crossref_primary_10_1109_ACCESS_2024_3404643
crossref_primary_10_1007_s11042_023_16008_2
crossref_primary_10_1007_s40747_021_00479_7
crossref_primary_10_1109_ACCESS_2024_3462720
crossref_primary_10_1109_COMST_2023_3329027
crossref_primary_10_1007_s10586_023_04090_y
crossref_primary_10_1016_j_compeleceng_2023_108653
crossref_primary_10_3390_electronics9060936
crossref_primary_10_4018_IJBDAH_287104
crossref_primary_10_1145_3609108
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1109_TCAD_2024_3445815
crossref_primary_10_1016_j_matpr_2021_01_508
Cites_doi 10.1007/978-1-84628-757-2_4
10.2991/ijndc.2013.1.1.2
10.1109/TNNLS.2017.2654357
10.1109/71.993206
10.1109/E-SCIENCE.2006.261098
10.1109/ICCV.2015.425
10.1109/CCAA.2016.7813746
10.1109/TNN.1998.712192
10.1109/ICCKE.2016.7802135
10.1109/TSC.2016.2589241
10.1016/j.asoc.2016.10.028
10.1002/cpe.3939
10.1007/s10586-016-0575-8
10.1109/eScience.2012.6404430
10.1109/TCC.2017.2773078
10.1007/978-3-319-28034-9_27
10.1109/CHINACOM.2014.7054272
10.1109/iThings-GreenCom-CPSCom-SmartData.2016.143
10.1109/ICASSP.2017.7953159
10.1016/j.future.2017.01.002
10.1016/j.ins.2014.02.122
10.1109/ICGI.2017.13
10.1177/0278364913495721
10.1109/ICALIP.2014.7009859
10.1109/TPDS.2013.57
10.1016/j.jpdc.2014.03.007
10.1016/j.jpdc.2016.02.006
10.1016/j.jpdc.2011.10.003
10.1016/j.comnet.2017.06.005
10.1109/TCC.2017.2701793
10.1016/j.future.2016.06.027
10.1016/j.jpdc.2017.05.001
10.1109/PAAP.2014.34
10.1109/WORKS.2008.4723958
10.1145/1721654.1721672
10.1613/jair.301
10.1109/IACC.2016.45
10.1257/jep.31.2.87
10.1109/CCIOT.2016.7868297
10.1109/25.790549
10.1007/s10586-015-0484-2
10.1016/j.future.2012.08.015
10.1002/spe.995
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04118-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5570
ExternalDocumentID 10_1007_s00521_019_04118_8
GrantInformation_xml – fundername: the Research Foundation of Education Bureau of Hunan Province
  grantid: 17C0959
– fundername: Young Scientists Fund
  grantid: 61502165; 61602170
  funderid: http://dx.doi.org/10.13039/501100010909
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-8b71f2a58e36c3d900d6f564fa304d86e4a507ea85e2858c1459e24fe158a8893
IEDL.DBID P5Z
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529745200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 23:37:16 EST 2025
Sat Nov 29 02:59:11 EST 2025
Tue Nov 18 21:15:49 EST 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Task scheduling
Cloud computing
Directed acyclic graph
Makespan
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8b71f2a58e36c3d900d6f564fa304d86e4a507ea85e2858c1459e24fe158a8893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8624-6364
PQID 2396584614
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_2396584614
crossref_primary_10_1007_s00521_019_04118_8
crossref_citationtrail_10_1007_s00521_019_04118_8
springer_journals_10_1007_s00521_019_04118_8
PublicationCentury 2000
PublicationDate 20200500
2020-5-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Moradi M (2016) A centralized reinforcement learning method for multiagent job scheduling in Grid. In: 2016 6th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 171–176
WeiZZhangYXuXShiLFengLA task scheduling algorithm based on Q-learning and shared value function for WSNsComput Netw201712614114910.1016/j.comnet.2017.06.005
Xu L, Wang K, Ouyang Z, Qi X (2014) An improved binary PSO-based task scheduling algorithm in green cloud computing. In: 2014 9th international conference on communications and networking in China (CHINACOM). IEEE, pp 126–131
Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738
MullainathanSSpiessJMachine learning: an applied econometric approachJ Econ Perspect20173128710610.1257/jep.31.2.87
TongZChenHDengXLiKLiKA novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimizationSoft Comput201811120
JuveGChervenakADeelmanEBharathiSMehtaGVahiKCharacterizing and profiling scientific workflowsFuture Gener Comput Syst201329368269210.1016/j.future.2012.08.015
Chen W, Deelman E (2012) Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: 2012 IEEE 8th international conference on E-science (e-science). IEEE, pp 1–8
KianpishehSCharkariNMKargahiMAnt colony based constrained workflow scheduling for heterogeneous computing systemsCluster Comput20161931053107010.1007/s10586-016-0575-8
NieJHaykinSA Q-learning-based dynamic channel assignment technique for mobile communication systemsIEEE Trans Veh Technol19994851676168710.1109/25.790549
SiarHNabaviSHShahaboddinSStatic task scheduling in cooperative distributed systems based on soft computing techniquesAust J Basic Appl Sci20104615181526
SuttonRSBartoAGReinforcement learning: An introduction2018CambridgeMIT Press1407.68009
CuiDPengZLinWA reinforcement learning-based mixed job scheduler scheme for grid or IaaS cloudIEEE Trans Cloud Comput20171499110.1109/TCC.2017.2773078
LiuCLiKLiKBuyyaRA new cloud service mechanism for profit optimizations of a cloud provider and its usersIEEE Trans Cloud Comput201771
Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y (2015) Attention-based models for speech recognition. In: Advances in neural information processing systems, pp 577–585
Agarwal M, Srivastava GMS (2016) A genetic algorithm inspired task scheduling in cloud computing. In: 2016 international conference on computing, communication and automation (ICCCA). IEEE, pp 364–367
KaelblingLPLittmanMLMooreAWReinforcement learning: a surveyJ Artif Intell Res1996423728510.1613/jair.301
OrheanAIPopFRaicuINew scheduling approach using reinforcement learning for heterogeneous distributed systemsJ Parallel Distrib Comput201811729230210.1016/j.jpdc.2017.05.001
ArabnejadVBubendorferKNgBScheduling deadline constrained scientific workflows on dynamically provisioned cloud resourcesFuture Gener Comput Syst20177534836410.1016/j.future.2017.01.002
DuanMLiKLiaoXLiKA parallel multiclassification algorithm for big data using an extreme learning machineIEEE Trans Neural Netw Learn Syst201829623372351381142010.1109/TNNLS.2017.2654357
TangZZhangXLiKLiKAn intermediate data placement algorithm for load balancing in Spark computing environmentFuture Gener Comput Syst20187828730110.1016/j.future.2016.06.027
ArmbrustMFoxAGriffithRJosephADKatzRKonwinskiALeeGPattersonDRabkinAStoicaIA view of cloud computingCommun ACM2010534505810.1145/1721654.1721672
Montage: An astronomical image engine. http://montage.ipac.caltech.edu. Accessed 10 Aug 2018
ArabnejadHBarbosaJGList scheduling algorithm for heterogeneous systems by an optimistic cost tableIEEE Trans Parallel Distrib Syst201425368269410.1109/TPDS.2013.57
Zhang L, Tong W, Lu S (2014) Task scheduling of cloud computing based on Improved CHC algorithm. In: 2014 international conference on audio, language and image processing (ICALIP). IEEE, pp 574–577
LiKEnergy and time constrained task scheduling on multiprocessor computers with discrete speed levelsJ Parallel Distrib Comput201695152810.1016/j.jpdc.2016.02.006
Brown DA, Brady PR, Dietz A, Cao J, Johnson B, McNabb J (2007) A case study on the use of workflow technologies for scientific analysis: gravitational wave data analysis. In: Workflows for e-Science. Springer, pp 39–59
SuttonRSBartoAGIntroduction to reinforcement learning1998CambridgeMIT press1407.6800910.1109/TNN.1998.712192
Aladwani T (2017) Improving tasks scheduling performance in cloud computing environment by using analytic hierarchy process model. In: international conference on green informatics (ICGI). IEEE, pp 98–104
Cui D, Ke W, Peng Z, Zuo J (2015) Multiple DAGs workflow scheduling algorithm based on reinforcement learning in cloud computing. In: International symposium on intelligence computation and applications. Springer, pp 305–311
XiaoZLiangPTongZLiKKhanSULiKSelf-adaptation and mutual adaptation for distributed scheduling in benevolent cloudsConcurrency Comput Pract Exp201729511210.1002/cpe.3939
LiuJLiKZhuDHanJLiKMinimizing cost of scheduling tasks on heterogeneous multicore embedded systemsACM Trans Embed Comput Syst (TECS)201716236
PengZCuiDZuoJLiQXuBLinWRandom task scheduling scheme based on reinforcement learning in cloud computingCluster Comput20151841595160710.1007/s10586-015-0484-2
XuC-ZRaoJBuXURL: a unified reinforcement learning approach for autonomic cloud managementJ Parallel Distrib Comput20127229510510.1016/j.jpdc.2011.10.003
KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt J Robot Res201332111238127410.1177/0278364913495721
WangGWangYLiuHGuoHHSIP: a Novel Task Scheduling Algorithm for Heterogeneous ComputingSci Program20162016111
Deelman E, Callaghan S, Field E, Francoeur H, Graves R, Gupta N, Gupta V, Jordan TH, Kesselman C, Maechling P (2006) Managing large-scale workflow execution from resource provisioning to provenance tracking: The cybershake example. In: Second IEEE international conference on e-Science and grid computing, 2006. e-Science’06. IEEE, p 14
XuYLiKHuJLiKA genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queuesInf Sci201427025528731904481341.6802010.1016/j.ins.2014.02.122
TopcuogluHHaririSM-yWuPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans Parallel Distrib Syst200213326027410.1109/71.993206
Roy A, Xu H, Pokutta S (2017) Reinforcement learning under model mismatch. In: Advances in neural information processing systems, pp 3043–3052
TongZXiaoZLiKLiKProactive scheduling in distributed computing—a reinforcement learning approachJ Parallel Distrib Comput20147472662267210.1016/j.jpdc.2014.03.007
LeeJA view of cloud computingInt J Netw Distrib Comput2013112810.2991/ijndc.2013.1.1.2
Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2016) List-based task scheduling for cloud computing. In: 2016 IEEE international conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 652–659
USC Epigenome Center. http://epigenome.usc.edu. Accessed 10 Aug 2018
SinghPWaliaNKA review: cloud computing using various task scheduling algorithmsInt J Comput Appl201614273032
Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H, Vahi K (2008) Characterization of scientific workflows. In: Third workshop on workflows in support of large-scale science, 2008. WORKS 2008. IEEE, pp 1–10
Zimba A, Hongsong C (2016) Analyzing trust concerns in public clouds using finite state automata. In: 2016 2nd international conference on cloud computing and internet of things (CCIOT). IEEE, pp 25–29
Mittal S, Katal A (2016) An optimized task scheduling algorithm in cloud computing. In: 2016 IEEE 6th international conference on advanced computing (IACC). IEEE, pp 197–202
Sirisha D, Vijaya Kumari G (2016) Minimal start time heuristics for scheduling workflows in heterogeneous computing systems. In: International conference on distributed computing and internet technology. Springer, pp 199–212
LiKMeiJLiKA fund-constrained investment scheme for profit maximization in cloud computingIEEE Trans Serv Comput201811689390710.1109/TSC.2016.2589241
XiaoZTongZLiKLiKLearning non-cooperative game for load balancing under self-interested distributed environmentAppl Soft Comput20175237638610.1016/j.asoc.2016.10.028
Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stolcke A, Yu D, Zweig G (2017) The microsoft 2016 conversational speech recognition system. In: IEEE international conference on acoustics, speech and signal processing, pp 5255–5259
Li K, Li S, Xu Y, Xie Z (2014) A DAG task scheduling scheme on heterogeneous computing systems using invasive weed optimization algorithm. In: 2014 sixth international symposium on parallel architectures, algorithms and programming (PAAP). IEEE, pp 262–267
CalheirosRNRanjanRBeloglazovADe RoseCABuyyaRCloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw Pract Exp2011411235010.1002/spe.995
Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2017) List-based task scheduling for cloud computing. In: IEEE international conference on internet of things, pp 652–659
J Nie (4118_CR44) 1999; 48
M Duan (4118_CR14) 2018; 29
Z Tang (4118_CR26) 2018; 78
V Arabnejad (4118_CR51) 2017; 75
4118_CR29
H Siar (4118_CR16) 2010; 4
4118_CR22
Z Peng (4118_CR23) 2015; 18
4118_CR27
C-Z Xu (4118_CR18) 2012; 72
4118_CR25
S Mullainathan (4118_CR10) 2017; 31
Z Wei (4118_CR24) 2017; 126
H Arabnejad (4118_CR33) 2014; 25
C Liu (4118_CR5) 2017; 7
RN Calheiros (4118_CR45) 2011; 41
J Liu (4118_CR28) 2017; 16
4118_CR12
Y Xu (4118_CR9) 2014; 270
4118_CR11
4118_CR55
4118_CR54
Z Xiao (4118_CR19) 2017; 29
4118_CR53
4118_CR13
G Wang (4118_CR35) 2016; 2016
4118_CR52
P Singh (4118_CR7) 2016; 142
J Kober (4118_CR21) 2013; 32
S Kianpisheh (4118_CR49) 2016; 19
Z Tong (4118_CR15) 2014; 74
AI Orhean (4118_CR40) 2018; 117
Z Tong (4118_CR50) 2018; 11
RS Sutton (4118_CR20) 1998
D Cui (4118_CR39) 2017; 14
4118_CR42
Z Xiao (4118_CR17) 2017; 52
4118_CR47
4118_CR46
H Topcuoglu (4118_CR8) 2002; 13
4118_CR41
4118_CR6
RS Sutton (4118_CR37) 2018
K Li (4118_CR32) 2016; 95
LP Kaelbling (4118_CR43) 1996; 4
M Armbrust (4118_CR4) 2010; 53
4118_CR1
G Juve (4118_CR48) 2013; 29
4118_CR34
K Li (4118_CR2) 2018; 11
4118_CR31
J Lee (4118_CR3) 2013; 1
4118_CR38
4118_CR36
4118_CR30
References_xml – reference: JuveGChervenakADeelmanEBharathiSMehtaGVahiKCharacterizing and profiling scientific workflowsFuture Gener Comput Syst201329368269210.1016/j.future.2012.08.015
– reference: XuC-ZRaoJBuXURL: a unified reinforcement learning approach for autonomic cloud managementJ Parallel Distrib Comput20127229510510.1016/j.jpdc.2011.10.003
– reference: Li K, Li S, Xu Y, Xie Z (2014) A DAG task scheduling scheme on heterogeneous computing systems using invasive weed optimization algorithm. In: 2014 sixth international symposium on parallel architectures, algorithms and programming (PAAP). IEEE, pp 262–267
– reference: ArmbrustMFoxAGriffithRJosephADKatzRKonwinskiALeeGPattersonDRabkinAStoicaIA view of cloud computingCommun ACM2010534505810.1145/1721654.1721672
– reference: ArabnejadVBubendorferKNgBScheduling deadline constrained scientific workflows on dynamically provisioned cloud resourcesFuture Gener Comput Syst20177534836410.1016/j.future.2017.01.002
– reference: SuttonRSBartoAGReinforcement learning: An introduction2018CambridgeMIT Press1407.68009
– reference: CuiDPengZLinWA reinforcement learning-based mixed job scheduler scheme for grid or IaaS cloudIEEE Trans Cloud Comput20171499110.1109/TCC.2017.2773078
– reference: Chen W, Deelman E (2012) Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: 2012 IEEE 8th international conference on E-science (e-science). IEEE, pp 1–8
– reference: Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H, Vahi K (2008) Characterization of scientific workflows. In: Third workshop on workflows in support of large-scale science, 2008. WORKS 2008. IEEE, pp 1–10
– reference: Mittal S, Katal A (2016) An optimized task scheduling algorithm in cloud computing. In: 2016 IEEE 6th international conference on advanced computing (IACC). IEEE, pp 197–202
– reference: TongZChenHDengXLiKLiKA novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimizationSoft Comput201811120
– reference: Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2016) List-based task scheduling for cloud computing. In: 2016 IEEE international conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 652–659
– reference: SiarHNabaviSHShahaboddinSStatic task scheduling in cooperative distributed systems based on soft computing techniquesAust J Basic Appl Sci20104615181526
– reference: Brown DA, Brady PR, Dietz A, Cao J, Johnson B, McNabb J (2007) A case study on the use of workflow technologies for scientific analysis: gravitational wave data analysis. In: Workflows for e-Science. Springer, pp 39–59
– reference: Cui D, Ke W, Peng Z, Zuo J (2015) Multiple DAGs workflow scheduling algorithm based on reinforcement learning in cloud computing. In: International symposium on intelligence computation and applications. Springer, pp 305–311
– reference: KianpishehSCharkariNMKargahiMAnt colony based constrained workflow scheduling for heterogeneous computing systemsCluster Comput20161931053107010.1007/s10586-016-0575-8
– reference: KaelblingLPLittmanMLMooreAWReinforcement learning: a surveyJ Artif Intell Res1996423728510.1613/jair.301
– reference: Zhang L, Tong W, Lu S (2014) Task scheduling of cloud computing based on Improved CHC algorithm. In: 2014 international conference on audio, language and image processing (ICALIP). IEEE, pp 574–577
– reference: Montage: An astronomical image engine. http://montage.ipac.caltech.edu. Accessed 10 Aug 2018
– reference: XiaoZTongZLiKLiKLearning non-cooperative game for load balancing under self-interested distributed environmentAppl Soft Comput20175237638610.1016/j.asoc.2016.10.028
– reference: USC Epigenome Center. http://epigenome.usc.edu. Accessed 10 Aug 2018
– reference: SinghPWaliaNKA review: cloud computing using various task scheduling algorithmsInt J Comput Appl201614273032
– reference: Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738
– reference: Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stolcke A, Yu D, Zweig G (2017) The microsoft 2016 conversational speech recognition system. In: IEEE international conference on acoustics, speech and signal processing, pp 5255–5259
– reference: WeiZZhangYXuXShiLFengLA task scheduling algorithm based on Q-learning and shared value function for WSNsComput Netw201712614114910.1016/j.comnet.2017.06.005
– reference: Aladwani T (2017) Improving tasks scheduling performance in cloud computing environment by using analytic hierarchy process model. In: international conference on green informatics (ICGI). IEEE, pp 98–104
– reference: NieJHaykinSA Q-learning-based dynamic channel assignment technique for mobile communication systemsIEEE Trans Veh Technol19994851676168710.1109/25.790549
– reference: TongZXiaoZLiKLiKProactive scheduling in distributed computing—a reinforcement learning approachJ Parallel Distrib Comput20147472662267210.1016/j.jpdc.2014.03.007
– reference: Zimba A, Hongsong C (2016) Analyzing trust concerns in public clouds using finite state automata. In: 2016 2nd international conference on cloud computing and internet of things (CCIOT). IEEE, pp 25–29
– reference: Roy A, Xu H, Pokutta S (2017) Reinforcement learning under model mismatch. In: Advances in neural information processing systems, pp 3043–3052
– reference: SuttonRSBartoAGIntroduction to reinforcement learning1998CambridgeMIT press1407.6800910.1109/TNN.1998.712192
– reference: Xu L, Wang K, Ouyang Z, Qi X (2014) An improved binary PSO-based task scheduling algorithm in green cloud computing. In: 2014 9th international conference on communications and networking in China (CHINACOM). IEEE, pp 126–131
– reference: TangZZhangXLiKLiKAn intermediate data placement algorithm for load balancing in Spark computing environmentFuture Gener Comput Syst20187828730110.1016/j.future.2016.06.027
– reference: Sirisha D, Vijaya Kumari G (2016) Minimal start time heuristics for scheduling workflows in heterogeneous computing systems. In: International conference on distributed computing and internet technology. Springer, pp 199–212
– reference: LeeJA view of cloud computingInt J Netw Distrib Comput2013112810.2991/ijndc.2013.1.1.2
– reference: OrheanAIPopFRaicuINew scheduling approach using reinforcement learning for heterogeneous distributed systemsJ Parallel Distrib Comput201811729230210.1016/j.jpdc.2017.05.001
– reference: MullainathanSSpiessJMachine learning: an applied econometric approachJ Econ Perspect20173128710610.1257/jep.31.2.87
– reference: CalheirosRNRanjanRBeloglazovADe RoseCABuyyaRCloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw Pract Exp2011411235010.1002/spe.995
– reference: WangGWangYLiuHGuoHHSIP: a Novel Task Scheduling Algorithm for Heterogeneous ComputingSci Program20162016111
– reference: Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y (2015) Attention-based models for speech recognition. In: Advances in neural information processing systems, pp 577–585
– reference: KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt J Robot Res201332111238127410.1177/0278364913495721
– reference: XuYLiKHuJLiKA genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queuesInf Sci201427025528731904481341.6802010.1016/j.ins.2014.02.122
– reference: Moradi M (2016) A centralized reinforcement learning method for multiagent job scheduling in Grid. In: 2016 6th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 171–176
– reference: Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2017) List-based task scheduling for cloud computing. In: IEEE international conference on internet of things, pp 652–659
– reference: LiKEnergy and time constrained task scheduling on multiprocessor computers with discrete speed levelsJ Parallel Distrib Comput201695152810.1016/j.jpdc.2016.02.006
– reference: Deelman E, Callaghan S, Field E, Francoeur H, Graves R, Gupta N, Gupta V, Jordan TH, Kesselman C, Maechling P (2006) Managing large-scale workflow execution from resource provisioning to provenance tracking: The cybershake example. In: Second IEEE international conference on e-Science and grid computing, 2006. e-Science’06. IEEE, p 14
– reference: DuanMLiKLiaoXLiKA parallel multiclassification algorithm for big data using an extreme learning machineIEEE Trans Neural Netw Learn Syst201829623372351381142010.1109/TNNLS.2017.2654357
– reference: PengZCuiDZuoJLiQXuBLinWRandom task scheduling scheme based on reinforcement learning in cloud computingCluster Comput20151841595160710.1007/s10586-015-0484-2
– reference: LiuCLiKLiKBuyyaRA new cloud service mechanism for profit optimizations of a cloud provider and its usersIEEE Trans Cloud Comput201771
– reference: TopcuogluHHaririSM-yWuPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans Parallel Distrib Syst200213326027410.1109/71.993206
– reference: ArabnejadHBarbosaJGList scheduling algorithm for heterogeneous systems by an optimistic cost tableIEEE Trans Parallel Distrib Syst201425368269410.1109/TPDS.2013.57
– reference: Agarwal M, Srivastava GMS (2016) A genetic algorithm inspired task scheduling in cloud computing. In: 2016 international conference on computing, communication and automation (ICCCA). IEEE, pp 364–367
– reference: LiKMeiJLiKA fund-constrained investment scheme for profit maximization in cloud computingIEEE Trans Serv Comput201811689390710.1109/TSC.2016.2589241
– reference: XiaoZLiangPTongZLiKKhanSULiKSelf-adaptation and mutual adaptation for distributed scheduling in benevolent cloudsConcurrency Comput Pract Exp201729511210.1002/cpe.3939
– reference: LiuJLiKZhuDHanJLiKMinimizing cost of scheduling tasks on heterogeneous multicore embedded systemsACM Trans Embed Comput Syst (TECS)201716236
– ident: 4118_CR11
– ident: 4118_CR52
  doi: 10.1007/978-1-84628-757-2_4
– ident: 4118_CR38
– volume: 1
  start-page: 2
  issue: 1
  year: 2013
  ident: 4118_CR3
  publication-title: Int J Netw Distrib Comput
  doi: 10.2991/ijndc.2013.1.1.2
– volume: 142
  start-page: 30
  issue: 7
  year: 2016
  ident: 4118_CR7
  publication-title: Int J Comput Appl
– volume: 29
  start-page: 2337
  issue: 6
  year: 2018
  ident: 4118_CR14
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2654357
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 4118_CR8
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/71.993206
– ident: 4118_CR53
  doi: 10.1109/E-SCIENCE.2006.261098
– ident: 4118_CR13
  doi: 10.1109/ICCV.2015.425
– ident: 4118_CR25
  doi: 10.1109/CCAA.2016.7813746
– volume-title: Introduction to reinforcement learning
  year: 1998
  ident: 4118_CR20
  doi: 10.1109/TNN.1998.712192
– ident: 4118_CR54
– ident: 4118_CR41
  doi: 10.1109/ICCKE.2016.7802135
– volume: 11
  start-page: 893
  issue: 6
  year: 2018
  ident: 4118_CR2
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2016.2589241
– volume: 52
  start-page: 376
  year: 2017
  ident: 4118_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.10.028
– volume: 29
  start-page: 1
  issue: 5
  year: 2017
  ident: 4118_CR19
  publication-title: Concurrency Comput Pract Exp
  doi: 10.1002/cpe.3939
– volume: 19
  start-page: 1053
  issue: 3
  year: 2016
  ident: 4118_CR49
  publication-title: Cluster Comput
  doi: 10.1007/s10586-016-0575-8
– ident: 4118_CR46
  doi: 10.1109/eScience.2012.6404430
– ident: 4118_CR22
– volume: 14
  start-page: 1
  issue: 99
  year: 2017
  ident: 4118_CR39
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2017.2773078
– ident: 4118_CR36
  doi: 10.1007/978-3-319-28034-9_27
– ident: 4118_CR29
  doi: 10.1109/CHINACOM.2014.7054272
– ident: 4118_CR34
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.143
– ident: 4118_CR12
  doi: 10.1109/ICASSP.2017.7953159
– volume: 75
  start-page: 348
  year: 2017
  ident: 4118_CR51
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.01.002
– volume: 270
  start-page: 255
  year: 2014
  ident: 4118_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.122
– ident: 4118_CR30
  doi: 10.1109/ICGI.2017.13
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  ident: 4118_CR21
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913495721
– ident: 4118_CR55
– ident: 4118_CR6
  doi: 10.1109/ICALIP.2014.7009859
– volume: 25
  start-page: 682
  issue: 3
  year: 2014
  ident: 4118_CR33
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2013.57
– volume: 74
  start-page: 2662
  issue: 7
  year: 2014
  ident: 4118_CR15
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2014.03.007
– volume: 11
  start-page: 1
  year: 2018
  ident: 4118_CR50
  publication-title: Soft Comput
– volume: 95
  start-page: 15
  year: 2016
  ident: 4118_CR32
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2016.02.006
– volume: 4
  start-page: 1518
  issue: 6
  year: 2010
  ident: 4118_CR16
  publication-title: Aust J Basic Appl Sci
– volume: 72
  start-page: 95
  issue: 2
  year: 2012
  ident: 4118_CR18
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2011.10.003
– volume: 126
  start-page: 141
  year: 2017
  ident: 4118_CR24
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2017.06.005
– volume: 7
  start-page: 1
  year: 2017
  ident: 4118_CR5
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2017.2701793
– volume: 78
  start-page: 287
  year: 2018
  ident: 4118_CR26
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.06.027
– volume: 117
  start-page: 292
  year: 2018
  ident: 4118_CR40
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2017.05.001
– ident: 4118_CR42
  doi: 10.1109/PAAP.2014.34
– ident: 4118_CR47
  doi: 10.1109/WORKS.2008.4723958
– ident: 4118_CR31
– volume: 53
  start-page: 50
  issue: 4
  year: 2010
  ident: 4118_CR4
  publication-title: Commun ACM
  doi: 10.1145/1721654.1721672
– volume: 16
  start-page: 36
  issue: 2
  year: 2017
  ident: 4118_CR28
  publication-title: ACM Trans Embed Comput Syst (TECS)
– volume: 4
  start-page: 237
  year: 1996
  ident: 4118_CR43
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.301
– ident: 4118_CR27
  doi: 10.1109/IACC.2016.45
– volume: 31
  start-page: 87
  issue: 2
  year: 2017
  ident: 4118_CR10
  publication-title: J Econ Perspect
  doi: 10.1257/jep.31.2.87
– ident: 4118_CR1
  doi: 10.1109/CCIOT.2016.7868297
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: 4118_CR37
– volume: 48
  start-page: 1676
  issue: 5
  year: 1999
  ident: 4118_CR44
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.790549
– volume: 18
  start-page: 1595
  issue: 4
  year: 2015
  ident: 4118_CR23
  publication-title: Cluster Comput
  doi: 10.1007/s10586-015-0484-2
– volume: 2016
  start-page: 1
  year: 2016
  ident: 4118_CR35
  publication-title: Sci Program
– volume: 29
  start-page: 682
  issue: 3
  year: 2013
  ident: 4118_CR48
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2012.08.015
– volume: 41
  start-page: 23
  issue: 1
  year: 2011
  ident: 4118_CR45
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.995
SSID ssj0004685
Score 2.489658
Snippet Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5553
SubjectTerms Advances in Parallel and Distributed Computing for Neural Computing
Algorithms
Artificial Intelligence
Classification
Cloud computing
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Machine learning
Microprocessors
Polynomials
Probability and Statistics in Computer Science
Response time
Scheduling
Sorting algorithms
Task scheduling
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sECmO7cRhQ6hVhwrxKNAtch0HIaUJ6uv3Y7tOWxAgwRbJ9im68_m-s-8BcK5NcMAkzrzIpPVQTrnHB770tI5nTANUTKTtWtKNbm95vx_fuaSwcRXtXj1J2pN6kexmbjCN62su8zUs9vg6bGhzx406Pjw-r2RD2kac2m8xMT2UuFSZ72l8NkdLjPnlWdRam3b9f_-5A9sOXaLr-XbYhTVV7EG96tyAnCLvw8t91-u02r0rJFBRzlSOhjaoUiHXReIVaa9XW6G8-hwqZAweKgsk83KaImmJmuGVXLkDeGq3ejcdz7VY8KTWvYmWS4SzQDCuSChJGvt-GmoZ0UwQn6Y8VFRowKgEZyrgjEtMWawCminMuOAa6xxCrSgLdQSIkAFLByyKpYyoTzMuKPZFqA8MxfWKqAG44nQiXf1x0wYjTxaVky3nEs25xHIu4Q24WKx5n1ff-HV2sxJg4jRxnAQktiAL0wZcVgJbDv9M7fhv009gKzCuuI2FbEJtMpqqU9iUs8nbeHRmd-gHQSvccg
  priority: 102
  providerName: Springer Nature
Title QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment
URI https://link.springer.com/article/10.1007/s00521-019-04118-8
https://www.proquest.com/docview/2396584614
Volume 32
WOSCitedRecordID wos000529745200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8OBF_Iwokh686eK2tlvnxaiBcCAEEZV4WUbXGRPYkK-_37Z0gCZy8bIs6dos_fX1vde-934Al1IFu5Q7ieWrtB7CCLNY3-aWlPGESgPVwVyzljT9Vov1ekHbHLhNTFhlvifqjTrOuDojv3FxoJWlQ-5GX5ZijVK3q4ZCYxuKqkqCEsw2fV_Li9SUnNKDUdE9BJukGZ06p85DlSOtrgakkW2xn4ppZW3-uiDVeqde-u8f78OesTjR_WKJHMCWSA-hlLM5ICPcR_D21LQatXr3FkUozeZigIY60FIgwyzxgaQnLDXTIH8dCqSUIMpSxAfZLEZcD6qa1_LnjuGlXus-NixDu2BxKY9TiZXvJG5EmcAex3Fg27EncSNJhG0SM0-QSBqRImJUuIwy7hAaCJckwqEsYtL-OYFCmqXiFBDGfRr3qR9w7hObJCwijh15chMRTPbwy-Dkcx5yU5NcUWMMwmU1ZY1TKHEKNU4hK8PVss9oUZFj49eVHJzQSOckXCFThusc3lXz36OdbR7tHHZd5Y7reMgKFKbjmbiAHT6ffk7GVSg-1FrtTlWvUfnsPL9-Axrr6V8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD6ICvriXZzXPOiTFntJ1lQQEXVsbI4JE4cvtUtTEbpWd1H8U_5GT7LWTUHf9uBbIU1Imy_nkpxzPoB9VME2E1ZkuCqth3LKDd42hYF7PGJooFqO0KwlNbde562W15iCjzwXRoVV5jJRC-owFeqM_Nh2PK0sLXr2_GIo1ih1u5pTaAxhUZXvb-iy9U4rl7i-B7ZdumpelI2MVcAQCLc-TsW1IjtgXDpF4YSeaYZFnBaNAvTsQ16UNEAbSQacSZszLizKPGnTSFqMB5yr4kso8mcoRWcJ90-D3Y_lYWoKUPSYVDQRdbIkHZ2qp85fleOuriLQqDf4d0U4sm5_XMhqPVda_G9_aAkWMouanA-3wDJMyWQFFnO2CpIJr1W4u6kZ5atS84QEJElfZUw6OpBUkow545Ggp4-aN84fO5IoJU_ShIg4HYRE6EFV81h-4BrcTuTz1mE6SRO5AcRx2ixsM9cTwqUmjXhALTMoopCUHHu4BbDyNfZFVnNdUX_E_le1aI0LH3Hha1z4vACHX32ehxVH_nx7OweDn0mfnj9CQgGOcjiNmn8fbfPv0fZgrty8rvm1Sr26BfO2OnrQsZ_bMN3vDuQOzIrX_lOvu6v3BYGHScPsE_d6Qfk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psW2SdrUN9GViWNMnLq30qWpCF07tm5_v0nWblNUEN8K-aDc5Xq_a-53B3AuXbBNuRUbrqL1EEaYwfomN6SNx1QCVAtz3bWk5bbbrNfzOkssfp3tXl5JzjgNqkpTml8No_hqTnxTfzNVGKx-7EuIbLBVWCOqaZCK159elpiRuimnjGFUfg_BBW3m-z0-u6YF3vxyRao9j1_9_ztvw1aBOtHN7JjswIpId6FadnRAhYHvwetjy2g2_O41ClGaTUWCBjrZUqCiu8QbktGw9E5J-TgQSDlClKWIJ9kkQlxvqoaXOHT78Ow3urdNo2i9YHBpk7nUl2vFdkiZwA7HkWeakSN1R-IQmyRijiChBJIiZFTYjDJuEeoJm8TCoixkEgMdQCXNUnEICOM-jfrU9Th3iUliFkpFhY78kAgmV7g1sEqpB7yoS67aYyTBvKKyllwgJRdoyQWsBhfzNcNZVY5fZ9dLZQaFhY4DG3safFmkBpel8hbDP-929LfpZ7DRufOD1n374Rg2bRWt63TJOlTy0UScwDqf5u_j0ak-uB89zOg6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QL-HEFT%3A+a+novel+machine+learning+scheduling+scheme+base+on+cloud+computing+environment&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhao%2C+Tong&rft.au=Deng+Xiaomei&rft.au=Chen%2C+Hongjian&rft.au=Mei+Jing&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=5553&rft.epage=5570&rft_id=info:doi/10.1007%2Fs00521-019-04118-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon