QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment
Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challengin...
Gespeichert in:
| Veröffentlicht in: | Neural computing & applications Jg. 32; H. 10; S. 5553 - 5570 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.05.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challenging non-deterministic polynomial-hard problems in cloud computing. In task scheduling, obtaining shorter makespan is an important objective and is related to the pros and cons of the algorithm. Machine learning algorithms represent a new method for solving this type of problem. In this paper, we propose a novel task scheduling algorithm called QL-HEFT that combines
Q
-learning with the heterogeneous earliest finish time (HEFT) algorithm to reduce the makespan. The algorithm uses the upward rank (
rank
u
) value of HEFT as the immediate reward in the
Q
-learning framework. The agent can obtain better learning results to update the
Q
-table through the self-learning process. The QL-HEFT algorithm is divided into two major phases: a task sorting phase based on
Q
-learning for obtaining an optimal order and a processor allocation phase using the earliest finish time strategy. Experiments show that QL-HEFT achieves a shorter makespan compared to three other classical scheduling algorithms as well as good performances in terms of the average response time. |
|---|---|
| AbstractList | Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challenging non-deterministic polynomial-hard problems in cloud computing. In task scheduling, obtaining shorter makespan is an important objective and is related to the pros and cons of the algorithm. Machine learning algorithms represent a new method for solving this type of problem. In this paper, we propose a novel task scheduling algorithm called QL-HEFT that combines Q-learning with the heterogeneous earliest finish time (HEFT) algorithm to reduce the makespan. The algorithm uses the upward rank (ranku) value of HEFT as the immediate reward in the Q-learning framework. The agent can obtain better learning results to update the Q-table through the self-learning process. The QL-HEFT algorithm is divided into two major phases: a task sorting phase based on Q-learning for obtaining an optimal order and a processor allocation phase using the earliest finish time strategy. Experiments show that QL-HEFT achieves a shorter makespan compared to three other classical scheduling algorithms as well as good performances in terms of the average response time. Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. Task scheduling is one of the crucial and challenging non-deterministic polynomial-hard problems in cloud computing. In task scheduling, obtaining shorter makespan is an important objective and is related to the pros and cons of the algorithm. Machine learning algorithms represent a new method for solving this type of problem. In this paper, we propose a novel task scheduling algorithm called QL-HEFT that combines Q -learning with the heterogeneous earliest finish time (HEFT) algorithm to reduce the makespan. The algorithm uses the upward rank ( rank u ) value of HEFT as the immediate reward in the Q -learning framework. The agent can obtain better learning results to update the Q -table through the self-learning process. The QL-HEFT algorithm is divided into two major phases: a task sorting phase based on Q -learning for obtaining an optimal order and a processor allocation phase using the earliest finish time strategy. Experiments show that QL-HEFT achieves a shorter makespan compared to three other classical scheduling algorithms as well as good performances in terms of the average response time. |
| Author | Mei, Jing Liu, Hong Deng, Xiaomei Chen, Hongjian Tong, Zhao |
| Author_xml | – sequence: 1 givenname: Zhao orcidid: 0000-0002-8624-6364 surname: Tong fullname: Tong, Zhao email: tongzhao@hunnu.edu.cn organization: College of Information Science and Engineering, Hunan Normal University – sequence: 2 givenname: Xiaomei surname: Deng fullname: Deng, Xiaomei organization: College of Information Science and Engineering, Hunan Normal University – sequence: 3 givenname: Hongjian surname: Chen fullname: Chen, Hongjian organization: College of Information Science and Engineering, Hunan Normal University – sequence: 4 givenname: Jing surname: Mei fullname: Mei, Jing organization: College of Information Science and Engineering, Hunan Normal University – sequence: 5 givenname: Hong surname: Liu fullname: Liu, Hong organization: College of Information Science and Engineering, Hunan Normal University |
| BookMark | eNp9kFFLwzAQx4MouE2_gE8Bn6uXJulS32RsThiIMPExZOl162iTmbQDv72dUwQf9nQH__vdHb8hOXfeISE3DO4YwPg-AsiUJcDyBARjKlFnZMAE5wkHqc7JAHLRx5ngl2QY4xYARKbkgLy_LpL5dLZ8oIY6v8eaNsZuKoe0RhNc5dY02g0WXf3bNkhXJiL1jtradwW1vtl17SFGt6-Cdw269opclKaOeP1TR-RtNl1O5sni5el58rhILGd5m6jVmJWpkQp5ZnmRAxRZKTNRGg6iUBkKI2GMRklMlVSWCZljKkpkUhmlcj4it8e9u-A_Ooyt3vouuP6kTnmeSSWyXsOIpMcpG3yMAUu9C1VjwqdmoA8C9VGg7gXqb4Fa9ZD6B9mqNW3lXRtMVZ9G-RGN_R23xvD31QnqC1T6hgQ |
| CitedBy_id | crossref_primary_10_1016_j_icte_2024_08_007 crossref_primary_10_1002_cpe_7228 crossref_primary_10_1007_s40747_021_00528_1 crossref_primary_10_1002_itl2_70037 crossref_primary_10_1007_s12652_021_03198_6 crossref_primary_10_1007_s00607_021_00920_2 crossref_primary_10_1007_s11042_023_17216_6 crossref_primary_10_1007_s00607_020_00813_w crossref_primary_10_1007_s10586_025_05532_5 crossref_primary_10_1007_s10586_025_05361_6 crossref_primary_10_3390_info16010008 crossref_primary_10_3233_JIFS_211250 crossref_primary_10_1016_j_future_2022_12_014 crossref_primary_10_1007_s00500_023_09582_y crossref_primary_10_1109_TSC_2022_3196620 crossref_primary_10_1109_ACCESS_2024_3355092 crossref_primary_10_1016_j_eswa_2025_127376 crossref_primary_10_1016_j_neucom_2021_05_070 crossref_primary_10_1007_s11277_021_08569_y crossref_primary_10_1007_s40747_023_01023_5 crossref_primary_10_3390_s24165272 crossref_primary_10_1016_j_scs_2022_104322 crossref_primary_10_3389_fenvs_2022_996483 crossref_primary_10_1007_s11227_020_03364_1 crossref_primary_10_1007_s12530_025_09725_6 crossref_primary_10_1016_j_engappai_2023_107300 crossref_primary_10_1007_s10586_024_04712_z crossref_primary_10_1186_s13677_024_00670_4 crossref_primary_10_1007_s11227_023_05521_8 crossref_primary_10_1007_s12652_020_02884_1 crossref_primary_10_1007_s00500_020_04931_7 crossref_primary_10_1007_s11831_023_09921_0 crossref_primary_10_23919_cje_2023_00_378 crossref_primary_10_1155_2022_6456242 crossref_primary_10_1109_ACCESS_2022_3163273 crossref_primary_10_3390_app132112015 crossref_primary_10_1016_j_comnet_2025_111227 crossref_primary_10_1016_j_asoc_2022_109707 crossref_primary_10_1016_j_eswa_2024_124845 crossref_primary_10_1007_s42044_023_00163_8 crossref_primary_10_1109_ACCESS_2024_3435914 crossref_primary_10_1007_s00521_019_04436_x crossref_primary_10_3390_systems11020059 crossref_primary_10_1109_ACCESS_2024_3488965 crossref_primary_10_1007_s11277_024_11258_1 crossref_primary_10_1007_s10586_021_03334_z crossref_primary_10_1016_j_parco_2024_103114 crossref_primary_10_1016_j_future_2025_108050 crossref_primary_10_1109_TPDS_2023_3288702 crossref_primary_10_1177_00375497221105530 crossref_primary_10_1109_ACCESS_2021_3101454 crossref_primary_10_1016_j_ins_2022_06_078 crossref_primary_10_1109_TSC_2024_3463423 crossref_primary_10_1007_s11227_023_05489_5 crossref_primary_10_1002_cpe_7409 crossref_primary_10_1002_cpe_7954 crossref_primary_10_1002_int_22983 crossref_primary_10_1109_ACCESS_2023_3251359 crossref_primary_10_1109_ACCESS_2024_3404643 crossref_primary_10_1007_s11042_023_16008_2 crossref_primary_10_1007_s40747_021_00479_7 crossref_primary_10_1109_ACCESS_2024_3462720 crossref_primary_10_1109_COMST_2023_3329027 crossref_primary_10_1007_s10586_023_04090_y crossref_primary_10_1016_j_compeleceng_2023_108653 crossref_primary_10_3390_electronics9060936 crossref_primary_10_4018_IJBDAH_287104 crossref_primary_10_1145_3609108 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_1109_TCAD_2024_3445815 crossref_primary_10_1016_j_matpr_2021_01_508 |
| Cites_doi | 10.1007/978-1-84628-757-2_4 10.2991/ijndc.2013.1.1.2 10.1109/TNNLS.2017.2654357 10.1109/71.993206 10.1109/E-SCIENCE.2006.261098 10.1109/ICCV.2015.425 10.1109/CCAA.2016.7813746 10.1109/TNN.1998.712192 10.1109/ICCKE.2016.7802135 10.1109/TSC.2016.2589241 10.1016/j.asoc.2016.10.028 10.1002/cpe.3939 10.1007/s10586-016-0575-8 10.1109/eScience.2012.6404430 10.1109/TCC.2017.2773078 10.1007/978-3-319-28034-9_27 10.1109/CHINACOM.2014.7054272 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.143 10.1109/ICASSP.2017.7953159 10.1016/j.future.2017.01.002 10.1016/j.ins.2014.02.122 10.1109/ICGI.2017.13 10.1177/0278364913495721 10.1109/ICALIP.2014.7009859 10.1109/TPDS.2013.57 10.1016/j.jpdc.2014.03.007 10.1016/j.jpdc.2016.02.006 10.1016/j.jpdc.2011.10.003 10.1016/j.comnet.2017.06.005 10.1109/TCC.2017.2701793 10.1016/j.future.2016.06.027 10.1016/j.jpdc.2017.05.001 10.1109/PAAP.2014.34 10.1109/WORKS.2008.4723958 10.1145/1721654.1721672 10.1613/jair.301 10.1109/IACC.2016.45 10.1257/jep.31.2.87 10.1109/CCIOT.2016.7868297 10.1109/25.790549 10.1007/s10586-015-0484-2 10.1016/j.future.2012.08.015 10.1002/spe.995 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-019-04118-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 5570 |
| ExternalDocumentID | 10_1007_s00521_019_04118_8 |
| GrantInformation_xml | – fundername: the Research Foundation of Education Bureau of Hunan Province grantid: 17C0959 – fundername: Young Scientists Fund grantid: 61502165; 61602170 funderid: http://dx.doi.org/10.13039/501100010909 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-8b71f2a58e36c3d900d6f564fa304d86e4a507ea85e2858c1459e24fe158a8893 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529745200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 23:37:16 EST 2025 Sat Nov 29 02:59:11 EST 2025 Tue Nov 18 21:15:49 EST 2025 Fri Feb 21 02:35:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Task scheduling Cloud computing Directed acyclic graph Makespan Reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-8b71f2a58e36c3d900d6f564fa304d86e4a507ea85e2858c1459e24fe158a8893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8624-6364 |
| PQID | 2396584614 |
| PQPubID | 2043988 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2396584614 crossref_primary_10_1007_s00521_019_04118_8 crossref_citationtrail_10_1007_s00521_019_04118_8 springer_journals_10_1007_s00521_019_04118_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20200500 2020-5-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Moradi M (2016) A centralized reinforcement learning method for multiagent job scheduling in Grid. In: 2016 6th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 171–176 WeiZZhangYXuXShiLFengLA task scheduling algorithm based on Q-learning and shared value function for WSNsComput Netw201712614114910.1016/j.comnet.2017.06.005 Xu L, Wang K, Ouyang Z, Qi X (2014) An improved binary PSO-based task scheduling algorithm in green cloud computing. In: 2014 9th international conference on communications and networking in China (CHINACOM). IEEE, pp 126–131 Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738 MullainathanSSpiessJMachine learning: an applied econometric approachJ Econ Perspect20173128710610.1257/jep.31.2.87 TongZChenHDengXLiKLiKA novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimizationSoft Comput201811120 JuveGChervenakADeelmanEBharathiSMehtaGVahiKCharacterizing and profiling scientific workflowsFuture Gener Comput Syst201329368269210.1016/j.future.2012.08.015 Chen W, Deelman E (2012) Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: 2012 IEEE 8th international conference on E-science (e-science). IEEE, pp 1–8 KianpishehSCharkariNMKargahiMAnt colony based constrained workflow scheduling for heterogeneous computing systemsCluster Comput20161931053107010.1007/s10586-016-0575-8 NieJHaykinSA Q-learning-based dynamic channel assignment technique for mobile communication systemsIEEE Trans Veh Technol19994851676168710.1109/25.790549 SiarHNabaviSHShahaboddinSStatic task scheduling in cooperative distributed systems based on soft computing techniquesAust J Basic Appl Sci20104615181526 SuttonRSBartoAGReinforcement learning: An introduction2018CambridgeMIT Press1407.68009 CuiDPengZLinWA reinforcement learning-based mixed job scheduler scheme for grid or IaaS cloudIEEE Trans Cloud Comput20171499110.1109/TCC.2017.2773078 LiuCLiKLiKBuyyaRA new cloud service mechanism for profit optimizations of a cloud provider and its usersIEEE Trans Cloud Comput201771 Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y (2015) Attention-based models for speech recognition. In: Advances in neural information processing systems, pp 577–585 Agarwal M, Srivastava GMS (2016) A genetic algorithm inspired task scheduling in cloud computing. In: 2016 international conference on computing, communication and automation (ICCCA). IEEE, pp 364–367 KaelblingLPLittmanMLMooreAWReinforcement learning: a surveyJ Artif Intell Res1996423728510.1613/jair.301 OrheanAIPopFRaicuINew scheduling approach using reinforcement learning for heterogeneous distributed systemsJ Parallel Distrib Comput201811729230210.1016/j.jpdc.2017.05.001 ArabnejadVBubendorferKNgBScheduling deadline constrained scientific workflows on dynamically provisioned cloud resourcesFuture Gener Comput Syst20177534836410.1016/j.future.2017.01.002 DuanMLiKLiaoXLiKA parallel multiclassification algorithm for big data using an extreme learning machineIEEE Trans Neural Netw Learn Syst201829623372351381142010.1109/TNNLS.2017.2654357 TangZZhangXLiKLiKAn intermediate data placement algorithm for load balancing in Spark computing environmentFuture Gener Comput Syst20187828730110.1016/j.future.2016.06.027 ArmbrustMFoxAGriffithRJosephADKatzRKonwinskiALeeGPattersonDRabkinAStoicaIA view of cloud computingCommun ACM2010534505810.1145/1721654.1721672 Montage: An astronomical image engine. http://montage.ipac.caltech.edu. Accessed 10 Aug 2018 ArabnejadHBarbosaJGList scheduling algorithm for heterogeneous systems by an optimistic cost tableIEEE Trans Parallel Distrib Syst201425368269410.1109/TPDS.2013.57 Zhang L, Tong W, Lu S (2014) Task scheduling of cloud computing based on Improved CHC algorithm. In: 2014 international conference on audio, language and image processing (ICALIP). IEEE, pp 574–577 LiKEnergy and time constrained task scheduling on multiprocessor computers with discrete speed levelsJ Parallel Distrib Comput201695152810.1016/j.jpdc.2016.02.006 Brown DA, Brady PR, Dietz A, Cao J, Johnson B, McNabb J (2007) A case study on the use of workflow technologies for scientific analysis: gravitational wave data analysis. In: Workflows for e-Science. Springer, pp 39–59 SuttonRSBartoAGIntroduction to reinforcement learning1998CambridgeMIT press1407.6800910.1109/TNN.1998.712192 Aladwani T (2017) Improving tasks scheduling performance in cloud computing environment by using analytic hierarchy process model. In: international conference on green informatics (ICGI). IEEE, pp 98–104 Cui D, Ke W, Peng Z, Zuo J (2015) Multiple DAGs workflow scheduling algorithm based on reinforcement learning in cloud computing. In: International symposium on intelligence computation and applications. Springer, pp 305–311 XiaoZLiangPTongZLiKKhanSULiKSelf-adaptation and mutual adaptation for distributed scheduling in benevolent cloudsConcurrency Comput Pract Exp201729511210.1002/cpe.3939 LiuJLiKZhuDHanJLiKMinimizing cost of scheduling tasks on heterogeneous multicore embedded systemsACM Trans Embed Comput Syst (TECS)201716236 PengZCuiDZuoJLiQXuBLinWRandom task scheduling scheme based on reinforcement learning in cloud computingCluster Comput20151841595160710.1007/s10586-015-0484-2 XuC-ZRaoJBuXURL: a unified reinforcement learning approach for autonomic cloud managementJ Parallel Distrib Comput20127229510510.1016/j.jpdc.2011.10.003 KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt J Robot Res201332111238127410.1177/0278364913495721 WangGWangYLiuHGuoHHSIP: a Novel Task Scheduling Algorithm for Heterogeneous ComputingSci Program20162016111 Deelman E, Callaghan S, Field E, Francoeur H, Graves R, Gupta N, Gupta V, Jordan TH, Kesselman C, Maechling P (2006) Managing large-scale workflow execution from resource provisioning to provenance tracking: The cybershake example. In: Second IEEE international conference on e-Science and grid computing, 2006. e-Science’06. IEEE, p 14 XuYLiKHuJLiKA genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queuesInf Sci201427025528731904481341.6802010.1016/j.ins.2014.02.122 TopcuogluHHaririSM-yWuPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans Parallel Distrib Syst200213326027410.1109/71.993206 Roy A, Xu H, Pokutta S (2017) Reinforcement learning under model mismatch. In: Advances in neural information processing systems, pp 3043–3052 TongZXiaoZLiKLiKProactive scheduling in distributed computing—a reinforcement learning approachJ Parallel Distrib Comput20147472662267210.1016/j.jpdc.2014.03.007 LeeJA view of cloud computingInt J Netw Distrib Comput2013112810.2991/ijndc.2013.1.1.2 Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2016) List-based task scheduling for cloud computing. In: 2016 IEEE international conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 652–659 USC Epigenome Center. http://epigenome.usc.edu. Accessed 10 Aug 2018 SinghPWaliaNKA review: cloud computing using various task scheduling algorithmsInt J Comput Appl201614273032 Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H, Vahi K (2008) Characterization of scientific workflows. In: Third workshop on workflows in support of large-scale science, 2008. WORKS 2008. IEEE, pp 1–10 Zimba A, Hongsong C (2016) Analyzing trust concerns in public clouds using finite state automata. In: 2016 2nd international conference on cloud computing and internet of things (CCIOT). IEEE, pp 25–29 Mittal S, Katal A (2016) An optimized task scheduling algorithm in cloud computing. In: 2016 IEEE 6th international conference on advanced computing (IACC). IEEE, pp 197–202 Sirisha D, Vijaya Kumari G (2016) Minimal start time heuristics for scheduling workflows in heterogeneous computing systems. In: International conference on distributed computing and internet technology. Springer, pp 199–212 LiKMeiJLiKA fund-constrained investment scheme for profit maximization in cloud computingIEEE Trans Serv Comput201811689390710.1109/TSC.2016.2589241 XiaoZTongZLiKLiKLearning non-cooperative game for load balancing under self-interested distributed environmentAppl Soft Comput20175237638610.1016/j.asoc.2016.10.028 Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stolcke A, Yu D, Zweig G (2017) The microsoft 2016 conversational speech recognition system. In: IEEE international conference on acoustics, speech and signal processing, pp 5255–5259 Li K, Li S, Xu Y, Xie Z (2014) A DAG task scheduling scheme on heterogeneous computing systems using invasive weed optimization algorithm. In: 2014 sixth international symposium on parallel architectures, algorithms and programming (PAAP). IEEE, pp 262–267 CalheirosRNRanjanRBeloglazovADe RoseCABuyyaRCloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw Pract Exp2011411235010.1002/spe.995 Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2017) List-based task scheduling for cloud computing. In: IEEE international conference on internet of things, pp 652–659 J Nie (4118_CR44) 1999; 48 M Duan (4118_CR14) 2018; 29 Z Tang (4118_CR26) 2018; 78 V Arabnejad (4118_CR51) 2017; 75 4118_CR29 H Siar (4118_CR16) 2010; 4 4118_CR22 Z Peng (4118_CR23) 2015; 18 4118_CR27 C-Z Xu (4118_CR18) 2012; 72 4118_CR25 S Mullainathan (4118_CR10) 2017; 31 Z Wei (4118_CR24) 2017; 126 H Arabnejad (4118_CR33) 2014; 25 C Liu (4118_CR5) 2017; 7 RN Calheiros (4118_CR45) 2011; 41 J Liu (4118_CR28) 2017; 16 4118_CR12 Y Xu (4118_CR9) 2014; 270 4118_CR11 4118_CR55 4118_CR54 Z Xiao (4118_CR19) 2017; 29 4118_CR53 4118_CR13 G Wang (4118_CR35) 2016; 2016 4118_CR52 P Singh (4118_CR7) 2016; 142 J Kober (4118_CR21) 2013; 32 S Kianpisheh (4118_CR49) 2016; 19 Z Tong (4118_CR15) 2014; 74 AI Orhean (4118_CR40) 2018; 117 Z Tong (4118_CR50) 2018; 11 RS Sutton (4118_CR20) 1998 D Cui (4118_CR39) 2017; 14 4118_CR42 Z Xiao (4118_CR17) 2017; 52 4118_CR47 4118_CR46 H Topcuoglu (4118_CR8) 2002; 13 4118_CR41 4118_CR6 RS Sutton (4118_CR37) 2018 K Li (4118_CR32) 2016; 95 LP Kaelbling (4118_CR43) 1996; 4 M Armbrust (4118_CR4) 2010; 53 4118_CR1 G Juve (4118_CR48) 2013; 29 4118_CR34 K Li (4118_CR2) 2018; 11 4118_CR31 J Lee (4118_CR3) 2013; 1 4118_CR38 4118_CR36 4118_CR30 |
| References_xml | – reference: JuveGChervenakADeelmanEBharathiSMehtaGVahiKCharacterizing and profiling scientific workflowsFuture Gener Comput Syst201329368269210.1016/j.future.2012.08.015 – reference: XuC-ZRaoJBuXURL: a unified reinforcement learning approach for autonomic cloud managementJ Parallel Distrib Comput20127229510510.1016/j.jpdc.2011.10.003 – reference: Li K, Li S, Xu Y, Xie Z (2014) A DAG task scheduling scheme on heterogeneous computing systems using invasive weed optimization algorithm. In: 2014 sixth international symposium on parallel architectures, algorithms and programming (PAAP). IEEE, pp 262–267 – reference: ArmbrustMFoxAGriffithRJosephADKatzRKonwinskiALeeGPattersonDRabkinAStoicaIA view of cloud computingCommun ACM2010534505810.1145/1721654.1721672 – reference: ArabnejadVBubendorferKNgBScheduling deadline constrained scientific workflows on dynamically provisioned cloud resourcesFuture Gener Comput Syst20177534836410.1016/j.future.2017.01.002 – reference: SuttonRSBartoAGReinforcement learning: An introduction2018CambridgeMIT Press1407.68009 – reference: CuiDPengZLinWA reinforcement learning-based mixed job scheduler scheme for grid or IaaS cloudIEEE Trans Cloud Comput20171499110.1109/TCC.2017.2773078 – reference: Chen W, Deelman E (2012) Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: 2012 IEEE 8th international conference on E-science (e-science). IEEE, pp 1–8 – reference: Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H, Vahi K (2008) Characterization of scientific workflows. In: Third workshop on workflows in support of large-scale science, 2008. WORKS 2008. IEEE, pp 1–10 – reference: Mittal S, Katal A (2016) An optimized task scheduling algorithm in cloud computing. In: 2016 IEEE 6th international conference on advanced computing (IACC). IEEE, pp 197–202 – reference: TongZChenHDengXLiKLiKA novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimizationSoft Comput201811120 – reference: Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2016) List-based task scheduling for cloud computing. In: 2016 IEEE international conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 652–659 – reference: SiarHNabaviSHShahaboddinSStatic task scheduling in cooperative distributed systems based on soft computing techniquesAust J Basic Appl Sci20104615181526 – reference: Brown DA, Brady PR, Dietz A, Cao J, Johnson B, McNabb J (2007) A case study on the use of workflow technologies for scientific analysis: gravitational wave data analysis. In: Workflows for e-Science. Springer, pp 39–59 – reference: Cui D, Ke W, Peng Z, Zuo J (2015) Multiple DAGs workflow scheduling algorithm based on reinforcement learning in cloud computing. In: International symposium on intelligence computation and applications. Springer, pp 305–311 – reference: KianpishehSCharkariNMKargahiMAnt colony based constrained workflow scheduling for heterogeneous computing systemsCluster Comput20161931053107010.1007/s10586-016-0575-8 – reference: KaelblingLPLittmanMLMooreAWReinforcement learning: a surveyJ Artif Intell Res1996423728510.1613/jair.301 – reference: Zhang L, Tong W, Lu S (2014) Task scheduling of cloud computing based on Improved CHC algorithm. In: 2014 international conference on audio, language and image processing (ICALIP). IEEE, pp 574–577 – reference: Montage: An astronomical image engine. http://montage.ipac.caltech.edu. Accessed 10 Aug 2018 – reference: XiaoZTongZLiKLiKLearning non-cooperative game for load balancing under self-interested distributed environmentAppl Soft Comput20175237638610.1016/j.asoc.2016.10.028 – reference: USC Epigenome Center. http://epigenome.usc.edu. Accessed 10 Aug 2018 – reference: SinghPWaliaNKA review: cloud computing using various task scheduling algorithmsInt J Comput Appl201614273032 – reference: Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738 – reference: Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stolcke A, Yu D, Zweig G (2017) The microsoft 2016 conversational speech recognition system. In: IEEE international conference on acoustics, speech and signal processing, pp 5255–5259 – reference: WeiZZhangYXuXShiLFengLA task scheduling algorithm based on Q-learning and shared value function for WSNsComput Netw201712614114910.1016/j.comnet.2017.06.005 – reference: Aladwani T (2017) Improving tasks scheduling performance in cloud computing environment by using analytic hierarchy process model. In: international conference on green informatics (ICGI). IEEE, pp 98–104 – reference: NieJHaykinSA Q-learning-based dynamic channel assignment technique for mobile communication systemsIEEE Trans Veh Technol19994851676168710.1109/25.790549 – reference: TongZXiaoZLiKLiKProactive scheduling in distributed computing—a reinforcement learning approachJ Parallel Distrib Comput20147472662267210.1016/j.jpdc.2014.03.007 – reference: Zimba A, Hongsong C (2016) Analyzing trust concerns in public clouds using finite state automata. In: 2016 2nd international conference on cloud computing and internet of things (CCIOT). IEEE, pp 25–29 – reference: Roy A, Xu H, Pokutta S (2017) Reinforcement learning under model mismatch. In: Advances in neural information processing systems, pp 3043–3052 – reference: SuttonRSBartoAGIntroduction to reinforcement learning1998CambridgeMIT press1407.6800910.1109/TNN.1998.712192 – reference: Xu L, Wang K, Ouyang Z, Qi X (2014) An improved binary PSO-based task scheduling algorithm in green cloud computing. In: 2014 9th international conference on communications and networking in China (CHINACOM). IEEE, pp 126–131 – reference: TangZZhangXLiKLiKAn intermediate data placement algorithm for load balancing in Spark computing environmentFuture Gener Comput Syst20187828730110.1016/j.future.2016.06.027 – reference: Sirisha D, Vijaya Kumari G (2016) Minimal start time heuristics for scheduling workflows in heterogeneous computing systems. In: International conference on distributed computing and internet technology. Springer, pp 199–212 – reference: LeeJA view of cloud computingInt J Netw Distrib Comput2013112810.2991/ijndc.2013.1.1.2 – reference: OrheanAIPopFRaicuINew scheduling approach using reinforcement learning for heterogeneous distributed systemsJ Parallel Distrib Comput201811729230210.1016/j.jpdc.2017.05.001 – reference: MullainathanSSpiessJMachine learning: an applied econometric approachJ Econ Perspect20173128710610.1257/jep.31.2.87 – reference: CalheirosRNRanjanRBeloglazovADe RoseCABuyyaRCloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw Pract Exp2011411235010.1002/spe.995 – reference: WangGWangYLiuHGuoHHSIP: a Novel Task Scheduling Algorithm for Heterogeneous ComputingSci Program20162016111 – reference: Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y (2015) Attention-based models for speech recognition. In: Advances in neural information processing systems, pp 577–585 – reference: KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt J Robot Res201332111238127410.1177/0278364913495721 – reference: XuYLiKHuJLiKA genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queuesInf Sci201427025528731904481341.6802010.1016/j.ins.2014.02.122 – reference: Moradi M (2016) A centralized reinforcement learning method for multiagent job scheduling in Grid. In: 2016 6th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 171–176 – reference: Akbar MF, Munir EU, Rafique MM, Malik Z, Khan SU, Yang LT (2017) List-based task scheduling for cloud computing. In: IEEE international conference on internet of things, pp 652–659 – reference: LiKEnergy and time constrained task scheduling on multiprocessor computers with discrete speed levelsJ Parallel Distrib Comput201695152810.1016/j.jpdc.2016.02.006 – reference: Deelman E, Callaghan S, Field E, Francoeur H, Graves R, Gupta N, Gupta V, Jordan TH, Kesselman C, Maechling P (2006) Managing large-scale workflow execution from resource provisioning to provenance tracking: The cybershake example. In: Second IEEE international conference on e-Science and grid computing, 2006. e-Science’06. IEEE, p 14 – reference: DuanMLiKLiaoXLiKA parallel multiclassification algorithm for big data using an extreme learning machineIEEE Trans Neural Netw Learn Syst201829623372351381142010.1109/TNNLS.2017.2654357 – reference: PengZCuiDZuoJLiQXuBLinWRandom task scheduling scheme based on reinforcement learning in cloud computingCluster Comput20151841595160710.1007/s10586-015-0484-2 – reference: LiuCLiKLiKBuyyaRA new cloud service mechanism for profit optimizations of a cloud provider and its usersIEEE Trans Cloud Comput201771 – reference: TopcuogluHHaririSM-yWuPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans Parallel Distrib Syst200213326027410.1109/71.993206 – reference: ArabnejadHBarbosaJGList scheduling algorithm for heterogeneous systems by an optimistic cost tableIEEE Trans Parallel Distrib Syst201425368269410.1109/TPDS.2013.57 – reference: Agarwal M, Srivastava GMS (2016) A genetic algorithm inspired task scheduling in cloud computing. In: 2016 international conference on computing, communication and automation (ICCCA). IEEE, pp 364–367 – reference: LiKMeiJLiKA fund-constrained investment scheme for profit maximization in cloud computingIEEE Trans Serv Comput201811689390710.1109/TSC.2016.2589241 – reference: XiaoZLiangPTongZLiKKhanSULiKSelf-adaptation and mutual adaptation for distributed scheduling in benevolent cloudsConcurrency Comput Pract Exp201729511210.1002/cpe.3939 – reference: LiuJLiKZhuDHanJLiKMinimizing cost of scheduling tasks on heterogeneous multicore embedded systemsACM Trans Embed Comput Syst (TECS)201716236 – ident: 4118_CR11 – ident: 4118_CR52 doi: 10.1007/978-1-84628-757-2_4 – ident: 4118_CR38 – volume: 1 start-page: 2 issue: 1 year: 2013 ident: 4118_CR3 publication-title: Int J Netw Distrib Comput doi: 10.2991/ijndc.2013.1.1.2 – volume: 142 start-page: 30 issue: 7 year: 2016 ident: 4118_CR7 publication-title: Int J Comput Appl – volume: 29 start-page: 2337 issue: 6 year: 2018 ident: 4118_CR14 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2654357 – volume: 13 start-page: 260 issue: 3 year: 2002 ident: 4118_CR8 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/71.993206 – ident: 4118_CR53 doi: 10.1109/E-SCIENCE.2006.261098 – ident: 4118_CR13 doi: 10.1109/ICCV.2015.425 – ident: 4118_CR25 doi: 10.1109/CCAA.2016.7813746 – volume-title: Introduction to reinforcement learning year: 1998 ident: 4118_CR20 doi: 10.1109/TNN.1998.712192 – ident: 4118_CR54 – ident: 4118_CR41 doi: 10.1109/ICCKE.2016.7802135 – volume: 11 start-page: 893 issue: 6 year: 2018 ident: 4118_CR2 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2016.2589241 – volume: 52 start-page: 376 year: 2017 ident: 4118_CR17 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.10.028 – volume: 29 start-page: 1 issue: 5 year: 2017 ident: 4118_CR19 publication-title: Concurrency Comput Pract Exp doi: 10.1002/cpe.3939 – volume: 19 start-page: 1053 issue: 3 year: 2016 ident: 4118_CR49 publication-title: Cluster Comput doi: 10.1007/s10586-016-0575-8 – ident: 4118_CR46 doi: 10.1109/eScience.2012.6404430 – ident: 4118_CR22 – volume: 14 start-page: 1 issue: 99 year: 2017 ident: 4118_CR39 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2017.2773078 – ident: 4118_CR36 doi: 10.1007/978-3-319-28034-9_27 – ident: 4118_CR29 doi: 10.1109/CHINACOM.2014.7054272 – ident: 4118_CR34 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.143 – ident: 4118_CR12 doi: 10.1109/ICASSP.2017.7953159 – volume: 75 start-page: 348 year: 2017 ident: 4118_CR51 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.01.002 – volume: 270 start-page: 255 year: 2014 ident: 4118_CR9 publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.122 – ident: 4118_CR30 doi: 10.1109/ICGI.2017.13 – volume: 32 start-page: 1238 issue: 11 year: 2013 ident: 4118_CR21 publication-title: Int J Robot Res doi: 10.1177/0278364913495721 – ident: 4118_CR55 – ident: 4118_CR6 doi: 10.1109/ICALIP.2014.7009859 – volume: 25 start-page: 682 issue: 3 year: 2014 ident: 4118_CR33 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2013.57 – volume: 74 start-page: 2662 issue: 7 year: 2014 ident: 4118_CR15 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2014.03.007 – volume: 11 start-page: 1 year: 2018 ident: 4118_CR50 publication-title: Soft Comput – volume: 95 start-page: 15 year: 2016 ident: 4118_CR32 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.02.006 – volume: 4 start-page: 1518 issue: 6 year: 2010 ident: 4118_CR16 publication-title: Aust J Basic Appl Sci – volume: 72 start-page: 95 issue: 2 year: 2012 ident: 4118_CR18 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2011.10.003 – volume: 126 start-page: 141 year: 2017 ident: 4118_CR24 publication-title: Comput Netw doi: 10.1016/j.comnet.2017.06.005 – volume: 7 start-page: 1 year: 2017 ident: 4118_CR5 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2017.2701793 – volume: 78 start-page: 287 year: 2018 ident: 4118_CR26 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.06.027 – volume: 117 start-page: 292 year: 2018 ident: 4118_CR40 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2017.05.001 – ident: 4118_CR42 doi: 10.1109/PAAP.2014.34 – ident: 4118_CR47 doi: 10.1109/WORKS.2008.4723958 – ident: 4118_CR31 – volume: 53 start-page: 50 issue: 4 year: 2010 ident: 4118_CR4 publication-title: Commun ACM doi: 10.1145/1721654.1721672 – volume: 16 start-page: 36 issue: 2 year: 2017 ident: 4118_CR28 publication-title: ACM Trans Embed Comput Syst (TECS) – volume: 4 start-page: 237 year: 1996 ident: 4118_CR43 publication-title: J Artif Intell Res doi: 10.1613/jair.301 – ident: 4118_CR27 doi: 10.1109/IACC.2016.45 – volume: 31 start-page: 87 issue: 2 year: 2017 ident: 4118_CR10 publication-title: J Econ Perspect doi: 10.1257/jep.31.2.87 – ident: 4118_CR1 doi: 10.1109/CCIOT.2016.7868297 – volume-title: Reinforcement learning: An introduction year: 2018 ident: 4118_CR37 – volume: 48 start-page: 1676 issue: 5 year: 1999 ident: 4118_CR44 publication-title: IEEE Trans Veh Technol doi: 10.1109/25.790549 – volume: 18 start-page: 1595 issue: 4 year: 2015 ident: 4118_CR23 publication-title: Cluster Comput doi: 10.1007/s10586-015-0484-2 – volume: 2016 start-page: 1 year: 2016 ident: 4118_CR35 publication-title: Sci Program – volume: 29 start-page: 682 issue: 3 year: 2013 ident: 4118_CR48 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2012.08.015 – volume: 41 start-page: 23 issue: 1 year: 2011 ident: 4118_CR45 publication-title: Softw Pract Exp doi: 10.1002/spe.995 |
| SSID | ssj0004685 |
| Score | 2.489658 |
| Snippet | Cloud computing is a computing model that fully utilizes the resources on the Internet to maximize the utilization of resources. Due to a large number of users... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5553 |
| SubjectTerms | Advances in Parallel and Distributed Computing for Neural Computing Algorithms Artificial Intelligence Classification Cloud computing Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Machine learning Microprocessors Polynomials Probability and Statistics in Computer Science Response time Scheduling Sorting algorithms Task scheduling |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sECmO7cRhQ6hVhwrxKNAtch0HIaUJ6uv3Y7tOWxAgwRbJ9im68_m-s-8BcK5NcMAkzrzIpPVQTrnHB770tI5nTANUTKTtWtKNbm95vx_fuaSwcRXtXj1J2pN6kexmbjCN62su8zUs9vg6bGhzx406Pjw-r2RD2kac2m8xMT2UuFSZ72l8NkdLjPnlWdRam3b9f_-5A9sOXaLr-XbYhTVV7EG96tyAnCLvw8t91-u02r0rJFBRzlSOhjaoUiHXReIVaa9XW6G8-hwqZAweKgsk83KaImmJmuGVXLkDeGq3ejcdz7VY8KTWvYmWS4SzQDCuSChJGvt-GmoZ0UwQn6Y8VFRowKgEZyrgjEtMWawCminMuOAa6xxCrSgLdQSIkAFLByyKpYyoTzMuKPZFqA8MxfWKqAG44nQiXf1x0wYjTxaVky3nEs25xHIu4Q24WKx5n1ff-HV2sxJg4jRxnAQktiAL0wZcVgJbDv9M7fhv009gKzCuuI2FbEJtMpqqU9iUs8nbeHRmd-gHQSvccg priority: 102 providerName: Springer Nature |
| Title | QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment |
| URI | https://link.springer.com/article/10.1007/s00521-019-04118-8 https://www.proquest.com/docview/2396584614 |
| Volume | 32 |
| WOSCitedRecordID | wos000529745200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8OBF_Iwokh686eK2tlvnxaiBcCAEEZV4WUbXGRPYkK-_37Z0gCZy8bIs6dos_fX1vde-934Al1IFu5Q7ieWrtB7CCLNY3-aWlPGESgPVwVyzljT9Vov1ekHbHLhNTFhlvifqjTrOuDojv3FxoJWlQ-5GX5ZijVK3q4ZCYxuKqkqCEsw2fV_Li9SUnNKDUdE9BJukGZ06p85DlSOtrgakkW2xn4ppZW3-uiDVeqde-u8f78OesTjR_WKJHMCWSA-hlLM5ICPcR_D21LQatXr3FkUozeZigIY60FIgwyzxgaQnLDXTIH8dCqSUIMpSxAfZLEZcD6qa1_LnjuGlXus-NixDu2BxKY9TiZXvJG5EmcAex3Fg27EncSNJhG0SM0-QSBqRImJUuIwy7hAaCJckwqEsYtL-OYFCmqXiFBDGfRr3qR9w7hObJCwijh15chMRTPbwy-Dkcx5yU5NcUWMMwmU1ZY1TKHEKNU4hK8PVss9oUZFj49eVHJzQSOckXCFThusc3lXz36OdbR7tHHZd5Y7reMgKFKbjmbiAHT6ffk7GVSg-1FrtTlWvUfnsPL9-Axrr6V8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD6ICvriXZzXPOiTFntJ1lQQEXVsbI4JE4cvtUtTEbpWd1H8U_5GT7LWTUHf9uBbIU1Imy_nkpxzPoB9VME2E1ZkuCqth3LKDd42hYF7PGJooFqO0KwlNbde562W15iCjzwXRoVV5jJRC-owFeqM_Nh2PK0sLXr2_GIo1ih1u5pTaAxhUZXvb-iy9U4rl7i-B7ZdumpelI2MVcAQCLc-TsW1IjtgXDpF4YSeaYZFnBaNAvTsQ16UNEAbSQacSZszLizKPGnTSFqMB5yr4kso8mcoRWcJ90-D3Y_lYWoKUPSYVDQRdbIkHZ2qp85fleOuriLQqDf4d0U4sm5_XMhqPVda_G9_aAkWMouanA-3wDJMyWQFFnO2CpIJr1W4u6kZ5atS84QEJElfZUw6OpBUkow545Ggp4-aN84fO5IoJU_ShIg4HYRE6EFV81h-4BrcTuTz1mE6SRO5AcRx2ixsM9cTwqUmjXhALTMoopCUHHu4BbDyNfZFVnNdUX_E_le1aI0LH3Hha1z4vACHX32ehxVH_nx7OweDn0mfnj9CQgGOcjiNmn8fbfPv0fZgrty8rvm1Sr26BfO2OnrQsZ_bMN3vDuQOzIrX_lOvu6v3BYGHScPsE_d6Qfk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psW2SdrUN9GViWNMnLq30qWpCF07tm5_v0nWblNUEN8K-aDc5Xq_a-53B3AuXbBNuRUbrqL1EEaYwfomN6SNx1QCVAtz3bWk5bbbrNfzOkssfp3tXl5JzjgNqkpTml8No_hqTnxTfzNVGKx-7EuIbLBVWCOqaZCK159elpiRuimnjGFUfg_BBW3m-z0-u6YF3vxyRao9j1_9_ztvw1aBOtHN7JjswIpId6FadnRAhYHvwetjy2g2_O41ClGaTUWCBjrZUqCiu8QbktGw9E5J-TgQSDlClKWIJ9kkQlxvqoaXOHT78Ow3urdNo2i9YHBpk7nUl2vFdkiZwA7HkWeakSN1R-IQmyRijiChBJIiZFTYjDJuEeoJm8TCoixkEgMdQCXNUnEICOM-jfrU9Th3iUliFkpFhY78kAgmV7g1sEqpB7yoS67aYyTBvKKyllwgJRdoyQWsBhfzNcNZVY5fZ9dLZQaFhY4DG3safFmkBpel8hbDP-929LfpZ7DRufOD1n374Rg2bRWt63TJOlTy0UScwDqf5u_j0ak-uB89zOg6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QL-HEFT%3A+a+novel+machine+learning+scheduling+scheme+base+on+cloud+computing+environment&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhao%2C+Tong&rft.au=Deng+Xiaomei&rft.au=Chen%2C+Hongjian&rft.au=Mei+Jing&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=5553&rft.epage=5570&rft_id=info:doi/10.1007%2Fs00521-019-04118-8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |