An adaptive grey wolf optimization with differential evolution operator for solving the discount {0–1} knapsack problem

The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the grey wolf optimizer (GWO) can solve NP problems more effecti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 27; s. 22369 - 22385
Hlavní autoři: Wang, Zijian, Fang, Xi, Gao, Fei, Xie, Liang, Meng, Xianchen
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the grey wolf optimizer (GWO) can solve NP problems more effectively than accurate algorithms. At the same time, the GWO has fewer parameters, faster calculations, and easier implementation than other intelligent algorithms. This paper introduces a method of adaptively updating the prey position of wolves and a differential evolution operator with a scaling factor that adaptively changes according to the number of iterations, and selects which operator to use for iteration by the value of the search agent parameter. Finally, it combines the improved greedy repair operator based on D {0–1} KP to form the adaptive grey wolf optimization with differential evolution operator (de-AGWO). The experimental results of the standard test function prove that the algorithm in this paper has a significant improvement in function optimization performance. And the experimental results of D {0–1} KP shows that the proposed algorithm yields superior solution outcomes, except for unrelated datasets, and exhibits significant advantages when solving strongly correlated datasets. Finally, it is verified that more than 80% of the iterations utilize the grey wolf evolution operator, highlighting that the core of the algorithm remains the GWO.
AbstractList The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the grey wolf optimizer (GWO) can solve NP problems more effectively than accurate algorithms. At the same time, the GWO has fewer parameters, faster calculations, and easier implementation than other intelligent algorithms. This paper introduces a method of adaptively updating the prey position of wolves and a differential evolution operator with a scaling factor that adaptively changes according to the number of iterations, and selects which operator to use for iteration by the value of the search agent parameter. Finally, it combines the improved greedy repair operator based on D {0–1} KP to form the adaptive grey wolf optimization with differential evolution operator (de-AGWO). The experimental results of the standard test function prove that the algorithm in this paper has a significant improvement in function optimization performance. And the experimental results of D {0–1} KP shows that the proposed algorithm yields superior solution outcomes, except for unrelated datasets, and exhibits significant advantages when solving strongly correlated datasets. Finally, it is verified that more than 80% of the iterations utilize the grey wolf evolution operator, highlighting that the core of the algorithm remains the GWO.
Author Xie, Liang
Fang, Xi
Wang, Zijian
Gao, Fei
Meng, Xianchen
Author_xml – sequence: 1
  givenname: Zijian
  surname: Wang
  fullname: Wang, Zijian
  organization: School of Science, Wuhan University of Technology
– sequence: 2
  givenname: Xi
  orcidid: 0000-0002-3783-2041
  surname: Fang
  fullname: Fang, Xi
  email: fangxi@whut.edu.cn
  organization: School of Science, Wuhan University of Technology
– sequence: 3
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: School of Science, Wuhan University of Technology
– sequence: 4
  givenname: Liang
  surname: Xie
  fullname: Xie, Liang
  organization: School of Science, Wuhan University of Technology
– sequence: 5
  givenname: Xianchen
  surname: Meng
  fullname: Meng, Xianchen
  organization: School of Science, Wuhan University of Technology
BookMark eNp9kM1q3DAQx0VJoZu0L9CToGc3I0u25WMI_QgEemnPYmyPNkq8kitpN9mUQt-hb9gnqbpbKPSQwzAw8__Nx_-UnfjgibHXAt4KgO48ATS1qKCWFfTQNdXDM7YSSspKQqNP2Ap6Vdqtki_YaUq3AKBa3azY_sJznHDJbkd8HWnP78NseSiFjXvE7ILn9y7f8MlZS5F8djhz2oV5e-iFhSLmELktkcK8c37N8w0VfRrD1mf-DX79-Cm-8zuPS8Lxji8xDDNtXrLnFudEr_7mM_bl_bvPlx-r608fri4vrqtRij5XGhX1ZLupIdm1Iwo9woRoEaehQy0H0YFSrYK-GcsjNLR6moZB4iCGZrK1PGNvjnPL3q9bStnchm30ZaWRtdJ93etGFpU-qsYYUopkzejy4f0c0c1GgPljtDkabYrR5mC0eSho_R-6RLfBuH8akkcoFbFfU_x31RPUbyLSmHM
CitedBy_id crossref_primary_10_3390_biomimetics10040228
crossref_primary_10_1007_s40314_025_03279_8
Cites_doi 10.1016/j.eswa.2020.113310
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2017.08.002
10.3982/TE700
10.1016/j.disopt.2008.09.004
10.1109/ACCESS.2018.2809445
10.1016/j.asoc.2019.01.025
10.1287/opre.1080.0555
10.1016/j.ins.2016.07.037
10.1016/j.advengsoft.2016.05.015
10.1016/j.compeleceng.2021.107399
10.1016/j.cor.2003.08.021
10.1007/s00521-017-2903-1
10.1016/j.asoc.2019.105645
10.1016/j.energy.2016.05.105
10.1111/itor.13176
10.1007/978-3-540-24777-7
10.1007/s00521-014-1806-7
10.1016/S0045-7825(01)00323-1
10.1007/978-3-030-60376-2_10
10.1016/j.knosys.2019.06.028
10.1016/j.asoc.2017.06.044
10.1109/SIS.2007.368045
10.1162/evco.1996.4.1.1
10.1016/j.cam.2013.09.052
10.1109/CEC.2010.5586543
10.1504/IJBIC.2017.087924
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
DBID AAYXX
CITATION
DOI 10.1007/s00521-023-09075-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 22385
ExternalDocumentID 10_1007_s00521_023_09075_x
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c319t-8a4e9ef7d5e376ca18c0daafaadb7a83b1704464095cadaeb68ddbb3ab1b5df23
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077141300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 08:31:59 EST 2025
Sat Nov 29 07:33:50 EST 2025
Tue Nov 18 22:26:13 EST 2025
Tue Sep 09 01:10:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords D {0–1}
NP-hard
Grey wolf optimizer
KP
Greedy repair operator
Differential evolution operator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8a4e9ef7d5e376ca18c0daafaadb7a83b1704464095cadaeb68ddbb3ab1b5df23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3783-2041
PQID 3248929853
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_3248929853
crossref_citationtrail_10_1007_s00521_023_09075_x
crossref_primary_10_1007_s00521_023_09075_x
springer_journals_10_1007_s00521_023_09075_x
PublicationCentury 2000
PublicationDate 20250900
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References H Zhu (9075_CR4) 2017; 10
D Dizdar (9075_CR14) 2011; 6
CL Camacho-Villalón (9075_CR26) 2022
9075_CR27
9075_CR25
9075_CR22
RG Babukarthik (9075_CR7) 2021; 96
T Jayabarathi (9075_CR20) 2016; 111
S Mirjalili (9075_CR3) 2014; 69
AK Azad (9075_CR6) 2014; 259
9075_CR19
A Rong (9075_CR15) 2012; 218
Z Michalewicz (9075_CR30) 1996; 4
K Luo (9075_CR24) 2019; 83
9075_CR1
H Kellerer (9075_CR5) 2004
9075_CR17
S Zhang (9075_CR21) 2016; 99
C Wu (9075_CR34) 2017; 37
LK Panwar (9075_CR23) 2018; 38
9075_CR12
YH Feng (9075_CR18) 2018; 6
9075_CR10
K Luo (9075_CR33) 2019; 77
VC Li (9075_CR8) 2005; 32
YC He (9075_CR16) 2016; 369
V Poirriez (9075_CR9) 2009; 6
A Syarif (9075_CR11) 2020; 13
Y-C He (9075_CR2) 2016; 39
9075_CR29
MH Alsuwaiyel (9075_CR28) 2009
AA Heidari (9075_CR32) 2017; 60
S Saremi (9075_CR31) 2015; 26
GY Lin (9075_CR13) 2008; 56
References_xml – volume: 37
  start-page: 1292
  issue: 5
  year: 2017
  ident: 9075_CR34
  publication-title: J Comput Appl (China)
– ident: 9075_CR10
  doi: 10.1016/j.eswa.2020.113310
– volume: 69
  start-page: 46
  year: 2014
  ident: 9075_CR3
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 38
  start-page: 251
  year: 2018
  ident: 9075_CR23
  publication-title: Evol Comput
  doi: 10.1016/j.swevo.2017.08.002
– volume: 6
  start-page: 157
  issue: 2
  year: 2011
  ident: 9075_CR14
  publication-title: Theor Econ
  doi: 10.3982/TE700
– volume: 6
  start-page: 110
  issue: 1
  year: 2009
  ident: 9075_CR9
  publication-title: Discret Optim
  doi: 10.1016/j.disopt.2008.09.004
– volume: 6
  start-page: 10708
  issue: 99
  year: 2018
  ident: 9075_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2809445
– volume: 218
  start-page: 6921
  issue: 12
  year: 2012
  ident: 9075_CR15
  publication-title: Appl Math Comput
– volume: 77
  start-page: 225
  year: 2019
  ident: 9075_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.01.025
– volume: 56
  start-page: 945
  issue: 4
  year: 2008
  ident: 9075_CR13
  publication-title: Oper Res
  doi: 10.1287/opre.1080.0555
– volume: 369
  start-page: 634
  year: 2016
  ident: 9075_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.07.037
– volume: 99
  start-page: 121
  year: 2016
  ident: 9075_CR21
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.05.015
– volume: 96
  start-page: 107399
  year: 2021
  ident: 9075_CR7
  publication-title: Comput Electric Eng
  doi: 10.1016/j.compeleceng.2021.107399
– volume: 32
  start-page: 825
  issue: 4
  year: 2005
  ident: 9075_CR8
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2003.08.021
– ident: 9075_CR17
  doi: 10.1007/s00521-017-2903-1
– volume: 83
  start-page: 105645
  year: 2019
  ident: 9075_CR24
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105645
– ident: 9075_CR22
– volume: 111
  start-page: 630
  year: 2016
  ident: 9075_CR20
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.105
– year: 2022
  ident: 9075_CR26
  publication-title: Int Trans Operat Res
  doi: 10.1111/itor.13176
– volume-title: Knapsack problems
  year: 2004
  ident: 9075_CR5
  doi: 10.1007/978-3-540-24777-7
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 9075_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1806-7
– ident: 9075_CR29
  doi: 10.1016/S0045-7825(01)00323-1
– ident: 9075_CR25
  doi: 10.1007/978-3-030-60376-2_10
– ident: 9075_CR19
  doi: 10.1016/j.knosys.2019.06.028
– volume: 60
  start-page: 115
  year: 2017
  ident: 9075_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.044
– volume: 13
  start-page: 455
  year: 2020
  ident: 9075_CR11
  publication-title: Int J Intell Eng Syst
– ident: 9075_CR12
  doi: 10.1109/SIS.2007.368045
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 9075_CR30
  publication-title: Evol Comput
  doi: 10.1162/evco.1996.4.1.1
– volume: 259
  start-page: 897
  issue: 4
  year: 2014
  ident: 9075_CR6
  publication-title: J Comput Appl Mathematics
  doi: 10.1016/j.cam.2013.09.052
– ident: 9075_CR1
– ident: 9075_CR27
  doi: 10.1109/CEC.2010.5586543
– volume-title: Algorithms design techniques and analysis
  year: 2009
  ident: 9075_CR28
– volume: 10
  start-page: 219
  issue: 4
  year: 2017
  ident: 9075_CR4
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2017.087924
– volume: 39
  start-page: 2614
  issue: 12
  year: 2016
  ident: 9075_CR2
  publication-title: Chinese J Comput
SSID ssj0004685
Score 2.4022343
Snippet The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22369
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Discounts
Dynamic programming
Evolutionary computation
Image Processing and Computer Vision
Knapsack problem
Mathematical models
Operators (mathematics)
Optimization
Parameters
Probability and Statistics in Computer Science
S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Scaling factors
Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Title An adaptive grey wolf optimization with differential evolution operator for solving the discount {0–1} knapsack problem
URI https://link.springer.com/article/10.1007/s00521-023-09075-x
https://www.proquest.com/docview/3248929853
Volume 37
WOSCitedRecordID wos001077141300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iHrz4FqtV5uBNF3a7TZM9FrF4EBFfeFsm2SyIdVu69VFE8D_4D_0lTmK2PlBBr7tJCMnM5JuZTD7GtrQKheIogtxEMiBNjIJExSbgqGUidUOgq3o_PxCHh_LiIjnyRWFlddu9Skk6Sz0udrMRTHJ9G7GNLQgeEHKcouNOWsKG45PzD9WQjoiT_BZ7p6cZ-1KZ78f4fBy9Y8wvaVF32nTm_jfPeTbr0SW038RhgU2YYpHNVcwN4BV5iY3aBWCGfWvrgDzuEdz1ujn06MO1L8wEG6GFij-F7EAXzK2XU2poXHoeCPICSa-NSgBBSbBFvpZ9Ah7Cl6fn6BGuCuyXqK_AM9css7PO3unufuBJGAJN2jkMJDZNYnKRcUO2SGMkdZgh5oiZEihjFQmbEyY3kWuauFEtmWVKxagixbO8Ea-wyaJXmFUGoeZJS6qInGJNOBGRsGAzaXIRKs1lbmosqvYi1f6FckuU0U3Hbyu7tU1pbVO3tul9jW2P-_Tf3uf4tXW92uLU62qZEqSUBBIJt9TYTrWl779_Hm3tb83X2UzDkge7C2p1Njkc3JgNNq1vh5flYNPJ8CuhIfAY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEA6igufF9XZwvc6Db1pot41JHxdRFNfl4A3fyiRN4eDaXdz1hgj-B_-hv8RJTNcLKpzz2qahJDOTb2Yy8zG2plUoFEcRFCaSAWliFKQqNgFHLVOpGwJd1ftpS7Tb8uws_eOLwvrVbfcqJeks9bDYzUYwyfVtxDa2IHhAyHEsoRPLdsw_PDp9Vw3piDjJb7F3epLYl8p8PcfH4-gNY35Ki7rTZqf2f_85xSY9uoTmqzhMsxFTzrBaxdwAXpFn2V2zBMyxZ20dkMd9BzfdTgFdenDhCzPBRmih4k8hO9ABc-3llAYal54HgrxA0mujEkBQEmyRr2WfgPvw-fEpeoDzEnt91OfgmWvm2MnO9vHWbuBJGAJN2jkIJCYmNYXIuSFbpDGSOswRC8RcCZSxioTNCZObyDX9uFGbMs-VilFFiudFI_7NRstuaeYZhJqnm1JF5BRrwomIhAWTNOEiVJrLwtRZVO1Fpn2HckuU0cmGvZXd2ma0tplb2-y2ztaH3_Re-3P8OHqp2uLM62o_I0gpCSQSbqmzjWpL315_P9vCvw1fZRO7xwetrLXX3l9kvxqWSNhdVltio4PLK7PMxvX14G__csXJ8wvp3_L8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFA6yivTFe-m2Xs6Db-2wc4vJPIq6KC6L0FZ8G04yGRC3s4s7WkUK_of-w_4ST7KZXVtaQfo6kwlDck7ynct3DmO7WoVCcRRBaSIZkCZGQaYSE3DUMpM6FuhY7-c90e_Li4vs7BmL32W7NyHJCafBVmmq6s6oKDtT4pv1ZpIZHCfWzyB4QChyPrWJ9NZe_3z-jBnpmnKSDWPze9LE02b-PsfvV9MMb_4RInU3T3f5__95hS151An7EzFZZXOmWmPLTUcH8Aq-zu73K8ACR_YMBLLE7-H7cFDCkB5884RNsJ5baPqq0PkwAHPr5ZcGGhe2B4LCQFJtvRVAEBMs-dd2pYCH8Nfjz-gHXFU4GqO-At_RZoN97R59OTgOfHOGQJPW1oHE1GSmFAU3dEZpjKQOC8QSsVACZaIiYWPFZD5yTT9u1J4sCqUSVJHiRRknb1mrGlbmHYNQ82xPqoiMZU34EZEwYpqlXIRKc1maNouafcm1r1xuG2gM8mnNZbe2Oa1t7tY2v2uzj9NvRpO6HS-O3my2O_c6PM4JakoCj4Rn2uxTs72z1_-e7f3rhu-wxbPDbt476Z9-YG9i21_Y5bBtslZ9fWO22IK-rS_H19tOtJ8Aw4f74A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+grey+wolf+optimization+with+differential+evolution+operator+for+solving+the+discount+%7B0%E2%80%931%7D+knapsack+problem&rft.jtitle=Neural+computing+%26+applications&rft.au=Wang%2C+Zijian&rft.au=Fang%2C+Xi&rft.au=Gao%2C+Fei&rft.au=Xie%2C+Liang&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22369&rft.epage=22385&rft_id=info:doi/10.1007%2Fs00521-023-09075-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_09075_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon