An adaptive grey wolf optimization with differential evolution operator for solving the discount {0–1} knapsack problem
The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the grey wolf optimizer (GWO) can solve NP problems more effecti...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 37; číslo 27; s. 22369 - 22385 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the grey wolf optimizer (GWO) can solve NP problems more effectively than accurate algorithms. At the same time, the GWO has fewer parameters, faster calculations, and easier implementation than other intelligent algorithms. This paper introduces a method of adaptively updating the prey position of wolves and a differential evolution operator with a scaling factor that adaptively changes according to the number of iterations, and selects which operator to use for iteration by the value of the search agent parameter. Finally, it combines the improved greedy repair operator based on D {0–1} KP to form the adaptive grey wolf optimization with differential evolution operator (de-AGWO). The experimental results of the standard test function prove that the algorithm in this paper has a significant improvement in function optimization performance. And the experimental results of D {0–1} KP shows that the proposed algorithm yields superior solution outcomes, except for unrelated datasets, and exhibits significant advantages when solving strongly correlated datasets. Finally, it is verified that more than 80% of the iterations utilize the grey wolf evolution operator, highlighting that the core of the algorithm remains the GWO. |
|---|---|
| AbstractList | The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the grey wolf optimizer (GWO) can solve NP problems more effectively than accurate algorithms. At the same time, the GWO has fewer parameters, faster calculations, and easier implementation than other intelligent algorithms. This paper introduces a method of adaptively updating the prey position of wolves and a differential evolution operator with a scaling factor that adaptively changes according to the number of iterations, and selects which operator to use for iteration by the value of the search agent parameter. Finally, it combines the improved greedy repair operator based on D {0–1} KP to form the adaptive grey wolf optimization with differential evolution operator (de-AGWO). The experimental results of the standard test function prove that the algorithm in this paper has a significant improvement in function optimization performance. And the experimental results of D {0–1} KP shows that the proposed algorithm yields superior solution outcomes, except for unrelated datasets, and exhibits significant advantages when solving strongly correlated datasets. Finally, it is verified that more than 80% of the iterations utilize the grey wolf evolution operator, highlighting that the core of the algorithm remains the GWO. |
| Author | Xie, Liang Fang, Xi Wang, Zijian Gao, Fei Meng, Xianchen |
| Author_xml | – sequence: 1 givenname: Zijian surname: Wang fullname: Wang, Zijian organization: School of Science, Wuhan University of Technology – sequence: 2 givenname: Xi orcidid: 0000-0002-3783-2041 surname: Fang fullname: Fang, Xi email: fangxi@whut.edu.cn organization: School of Science, Wuhan University of Technology – sequence: 3 givenname: Fei surname: Gao fullname: Gao, Fei organization: School of Science, Wuhan University of Technology – sequence: 4 givenname: Liang surname: Xie fullname: Xie, Liang organization: School of Science, Wuhan University of Technology – sequence: 5 givenname: Xianchen surname: Meng fullname: Meng, Xianchen organization: School of Science, Wuhan University of Technology |
| BookMark | eNp9kM1q3DAQx0VJoZu0L9CToGc3I0u25WMI_QgEemnPYmyPNkq8kitpN9mUQt-hb9gnqbpbKPSQwzAw8__Nx_-UnfjgibHXAt4KgO48ATS1qKCWFfTQNdXDM7YSSspKQqNP2Ap6Vdqtki_YaUq3AKBa3azY_sJznHDJbkd8HWnP78NseSiFjXvE7ILn9y7f8MlZS5F8djhz2oV5e-iFhSLmELktkcK8c37N8w0VfRrD1mf-DX79-Cm-8zuPS8Lxji8xDDNtXrLnFudEr_7mM_bl_bvPlx-r608fri4vrqtRij5XGhX1ZLupIdm1Iwo9woRoEaehQy0H0YFSrYK-GcsjNLR6moZB4iCGZrK1PGNvjnPL3q9bStnchm30ZaWRtdJ93etGFpU-qsYYUopkzejy4f0c0c1GgPljtDkabYrR5mC0eSho_R-6RLfBuH8akkcoFbFfU_x31RPUbyLSmHM |
| CitedBy_id | crossref_primary_10_3390_biomimetics10040228 crossref_primary_10_1007_s40314_025_03279_8 |
| Cites_doi | 10.1016/j.eswa.2020.113310 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2017.08.002 10.3982/TE700 10.1016/j.disopt.2008.09.004 10.1109/ACCESS.2018.2809445 10.1016/j.asoc.2019.01.025 10.1287/opre.1080.0555 10.1016/j.ins.2016.07.037 10.1016/j.advengsoft.2016.05.015 10.1016/j.compeleceng.2021.107399 10.1016/j.cor.2003.08.021 10.1007/s00521-017-2903-1 10.1016/j.asoc.2019.105645 10.1016/j.energy.2016.05.105 10.1111/itor.13176 10.1007/978-3-540-24777-7 10.1007/s00521-014-1806-7 10.1016/S0045-7825(01)00323-1 10.1007/978-3-030-60376-2_10 10.1016/j.knosys.2019.06.028 10.1016/j.asoc.2017.06.044 10.1109/SIS.2007.368045 10.1162/evco.1996.4.1.1 10.1016/j.cam.2013.09.052 10.1109/CEC.2010.5586543 10.1504/IJBIC.2017.087924 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-023-09075-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 22385 |
| ExternalDocumentID | 10_1007_s00521_023_09075_x |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 PUEGO QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c319t-8a4e9ef7d5e376ca18c0daafaadb7a83b1704464095cadaeb68ddbb3ab1b5df23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077141300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 08:31:59 EST 2025 Sat Nov 29 07:33:50 EST 2025 Tue Nov 18 22:26:13 EST 2025 Tue Sep 09 01:10:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Keywords | D {0–1} NP-hard Grey wolf optimizer KP Greedy repair operator Differential evolution operator |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-8a4e9ef7d5e376ca18c0daafaadb7a83b1704464095cadaeb68ddbb3ab1b5df23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3783-2041 |
| PQID | 3248929853 |
| PQPubID | 2043988 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3248929853 crossref_citationtrail_10_1007_s00521_023_09075_x crossref_primary_10_1007_s00521_023_09075_x springer_journals_10_1007_s00521_023_09075_x |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | H Zhu (9075_CR4) 2017; 10 D Dizdar (9075_CR14) 2011; 6 CL Camacho-Villalón (9075_CR26) 2022 9075_CR27 9075_CR25 9075_CR22 RG Babukarthik (9075_CR7) 2021; 96 T Jayabarathi (9075_CR20) 2016; 111 S Mirjalili (9075_CR3) 2014; 69 AK Azad (9075_CR6) 2014; 259 9075_CR19 A Rong (9075_CR15) 2012; 218 Z Michalewicz (9075_CR30) 1996; 4 K Luo (9075_CR24) 2019; 83 9075_CR1 H Kellerer (9075_CR5) 2004 9075_CR17 S Zhang (9075_CR21) 2016; 99 C Wu (9075_CR34) 2017; 37 LK Panwar (9075_CR23) 2018; 38 9075_CR12 YH Feng (9075_CR18) 2018; 6 9075_CR10 K Luo (9075_CR33) 2019; 77 VC Li (9075_CR8) 2005; 32 YC He (9075_CR16) 2016; 369 V Poirriez (9075_CR9) 2009; 6 A Syarif (9075_CR11) 2020; 13 Y-C He (9075_CR2) 2016; 39 9075_CR29 MH Alsuwaiyel (9075_CR28) 2009 AA Heidari (9075_CR32) 2017; 60 S Saremi (9075_CR31) 2015; 26 GY Lin (9075_CR13) 2008; 56 |
| References_xml | – volume: 37 start-page: 1292 issue: 5 year: 2017 ident: 9075_CR34 publication-title: J Comput Appl (China) – ident: 9075_CR10 doi: 10.1016/j.eswa.2020.113310 – volume: 69 start-page: 46 year: 2014 ident: 9075_CR3 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 38 start-page: 251 year: 2018 ident: 9075_CR23 publication-title: Evol Comput doi: 10.1016/j.swevo.2017.08.002 – volume: 6 start-page: 157 issue: 2 year: 2011 ident: 9075_CR14 publication-title: Theor Econ doi: 10.3982/TE700 – volume: 6 start-page: 110 issue: 1 year: 2009 ident: 9075_CR9 publication-title: Discret Optim doi: 10.1016/j.disopt.2008.09.004 – volume: 6 start-page: 10708 issue: 99 year: 2018 ident: 9075_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809445 – volume: 218 start-page: 6921 issue: 12 year: 2012 ident: 9075_CR15 publication-title: Appl Math Comput – volume: 77 start-page: 225 year: 2019 ident: 9075_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.01.025 – volume: 56 start-page: 945 issue: 4 year: 2008 ident: 9075_CR13 publication-title: Oper Res doi: 10.1287/opre.1080.0555 – volume: 369 start-page: 634 year: 2016 ident: 9075_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2016.07.037 – volume: 99 start-page: 121 year: 2016 ident: 9075_CR21 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.05.015 – volume: 96 start-page: 107399 year: 2021 ident: 9075_CR7 publication-title: Comput Electric Eng doi: 10.1016/j.compeleceng.2021.107399 – volume: 32 start-page: 825 issue: 4 year: 2005 ident: 9075_CR8 publication-title: Comput Oper Res doi: 10.1016/j.cor.2003.08.021 – ident: 9075_CR17 doi: 10.1007/s00521-017-2903-1 – volume: 83 start-page: 105645 year: 2019 ident: 9075_CR24 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105645 – ident: 9075_CR22 – volume: 111 start-page: 630 year: 2016 ident: 9075_CR20 publication-title: Energy doi: 10.1016/j.energy.2016.05.105 – year: 2022 ident: 9075_CR26 publication-title: Int Trans Operat Res doi: 10.1111/itor.13176 – volume-title: Knapsack problems year: 2004 ident: 9075_CR5 doi: 10.1007/978-3-540-24777-7 – volume: 26 start-page: 1257 issue: 5 year: 2015 ident: 9075_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1806-7 – ident: 9075_CR29 doi: 10.1016/S0045-7825(01)00323-1 – ident: 9075_CR25 doi: 10.1007/978-3-030-60376-2_10 – ident: 9075_CR19 doi: 10.1016/j.knosys.2019.06.028 – volume: 60 start-page: 115 year: 2017 ident: 9075_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.044 – volume: 13 start-page: 455 year: 2020 ident: 9075_CR11 publication-title: Int J Intell Eng Syst – ident: 9075_CR12 doi: 10.1109/SIS.2007.368045 – volume: 4 start-page: 1 issue: 1 year: 1996 ident: 9075_CR30 publication-title: Evol Comput doi: 10.1162/evco.1996.4.1.1 – volume: 259 start-page: 897 issue: 4 year: 2014 ident: 9075_CR6 publication-title: J Comput Appl Mathematics doi: 10.1016/j.cam.2013.09.052 – ident: 9075_CR1 – ident: 9075_CR27 doi: 10.1109/CEC.2010.5586543 – volume-title: Algorithms design techniques and analysis year: 2009 ident: 9075_CR28 – volume: 10 start-page: 219 issue: 4 year: 2017 ident: 9075_CR4 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2017.087924 – volume: 39 start-page: 2614 issue: 12 year: 2016 ident: 9075_CR2 publication-title: Chinese J Comput |
| SSID | ssj0004685 |
| Score | 2.4022343 |
| Snippet | The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem and also a binary optimization problem. As... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22369 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Discounts Dynamic programming Evolutionary computation Image Processing and Computer Vision Knapsack problem Mathematical models Operators (mathematics) Optimization Parameters Probability and Statistics in Computer Science S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications Scaling factors Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications |
| Title | An adaptive grey wolf optimization with differential evolution operator for solving the discount {0–1} knapsack problem |
| URI | https://link.springer.com/article/10.1007/s00521-023-09075-x https://www.proquest.com/docview/3248929853 |
| Volume | 37 |
| WOSCitedRecordID | wos001077141300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iHrz4FqtV5uBNF3a7TZM9FrF4EBFfeFsm2SyIdVu69VFE8D_4D_0lTmK2PlBBr7tJCMnM5JuZTD7GtrQKheIogtxEMiBNjIJExSbgqGUidUOgq3o_PxCHh_LiIjnyRWFlddu9Skk6Sz0udrMRTHJ9G7GNLQgeEHKcouNOWsKG45PzD9WQjoiT_BZ7p6cZ-1KZ78f4fBy9Y8wvaVF32nTm_jfPeTbr0SW038RhgU2YYpHNVcwN4BV5iY3aBWCGfWvrgDzuEdz1ujn06MO1L8wEG6GFij-F7EAXzK2XU2poXHoeCPICSa-NSgBBSbBFvpZ9Ah7Cl6fn6BGuCuyXqK_AM9css7PO3unufuBJGAJN2jkMJDZNYnKRcUO2SGMkdZgh5oiZEihjFQmbEyY3kWuauFEtmWVKxagixbO8Ea-wyaJXmFUGoeZJS6qInGJNOBGRsGAzaXIRKs1lbmosqvYi1f6FckuU0U3Hbyu7tU1pbVO3tul9jW2P-_Tf3uf4tXW92uLU62qZEqSUBBIJt9TYTrWl779_Hm3tb83X2UzDkge7C2p1Njkc3JgNNq1vh5flYNPJ8CuhIfAY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEA6igufF9XZwvc6Db1pot41JHxdRFNfl4A3fyiRN4eDaXdz1hgj-B_-hv8RJTNcLKpzz2qahJDOTb2Yy8zG2plUoFEcRFCaSAWliFKQqNgFHLVOpGwJd1ftpS7Tb8uws_eOLwvrVbfcqJeks9bDYzUYwyfVtxDa2IHhAyHEsoRPLdsw_PDp9Vw3piDjJb7F3epLYl8p8PcfH4-gNY35Ki7rTZqf2f_85xSY9uoTmqzhMsxFTzrBaxdwAXpFn2V2zBMyxZ20dkMd9BzfdTgFdenDhCzPBRmih4k8hO9ABc-3llAYal54HgrxA0mujEkBQEmyRr2WfgPvw-fEpeoDzEnt91OfgmWvm2MnO9vHWbuBJGAJN2jkIJCYmNYXIuSFbpDGSOswRC8RcCZSxioTNCZObyDX9uFGbMs-VilFFiudFI_7NRstuaeYZhJqnm1JF5BRrwomIhAWTNOEiVJrLwtRZVO1Fpn2HckuU0cmGvZXd2ma0tplb2-y2ztaH3_Re-3P8OHqp2uLM62o_I0gpCSQSbqmzjWpL315_P9vCvw1fZRO7xwetrLXX3l9kvxqWSNhdVltio4PLK7PMxvX14G__csXJ8wvp3_L8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFA6yivTFe-m2Xs6Db-2wc4vJPIq6KC6L0FZ8G04yGRC3s4s7WkUK_of-w_4ST7KZXVtaQfo6kwlDck7ynct3DmO7WoVCcRRBaSIZkCZGQaYSE3DUMpM6FuhY7-c90e_Li4vs7BmL32W7NyHJCafBVmmq6s6oKDtT4pv1ZpIZHCfWzyB4QChyPrWJ9NZe_3z-jBnpmnKSDWPze9LE02b-PsfvV9MMb_4RInU3T3f5__95hS151An7EzFZZXOmWmPLTUcH8Aq-zu73K8ACR_YMBLLE7-H7cFDCkB5884RNsJ5baPqq0PkwAHPr5ZcGGhe2B4LCQFJtvRVAEBMs-dd2pYCH8Nfjz-gHXFU4GqO-At_RZoN97R59OTgOfHOGQJPW1oHE1GSmFAU3dEZpjKQOC8QSsVACZaIiYWPFZD5yTT9u1J4sCqUSVJHiRRknb1mrGlbmHYNQ82xPqoiMZU34EZEwYpqlXIRKc1maNouafcm1r1xuG2gM8mnNZbe2Oa1t7tY2v2uzj9NvRpO6HS-O3my2O_c6PM4JakoCj4Rn2uxTs72z1_-e7f3rhu-wxbPDbt476Z9-YG9i21_Y5bBtslZ9fWO22IK-rS_H19tOtJ8Aw4f74A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+grey+wolf+optimization+with+differential+evolution+operator+for+solving+the+discount+%7B0%E2%80%931%7D+knapsack+problem&rft.jtitle=Neural+computing+%26+applications&rft.au=Wang%2C+Zijian&rft.au=Fang%2C+Xi&rft.au=Gao%2C+Fei&rft.au=Xie%2C+Liang&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22369&rft.epage=22385&rft_id=info:doi/10.1007%2Fs00521-023-09075-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_09075_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |