Outer approximation with conic certificates for mixed-integer convex problems
A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K ∗ cuts...
Saved in:
| Published in: | Mathematical programming computation Vol. 12; no. 2; pp. 249 - 293 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1867-2949, 1867-2957 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!