Outer approximation with conic certificates for mixed-integer convex problems

A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K ∗ cuts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming computation Jg. 12; H. 2; S. 249 - 293
Hauptverfasser: Coey, Chris, Lubin, Miles, Vielma, Juan Pablo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Schlagworte:
ISSN:1867-2949, 1867-2957
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K ∗ cuts derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all subproblems are well-posed , the algorithm detects infeasibility or unboundedness or returns an optimal solution in finite time. Using properties of the conic certificates, we show that the K ∗ cuts imply certain practically-relevant guarantees about the quality of the polyhedral relaxations, and demonstrate how to maintain helpful guarantees when the LP solver uses a positive feasibility tolerance. We discuss how to disaggregate K ∗ cuts in order to tighten the polyhedral relaxations and thereby improve the speed of convergence, and propose fast heuristic methods of obtaining useful K ∗ cuts. Our new open source MI-conic solver Pajarito ( github.com/JuliaOpt/Pajarito.jl ) uses an external mixed-integer linear solver to manage the search tree and an external continuous conic solver for subproblems. Benchmarking on a library of mixed-integer second-order cone (MISOCP) problems, we find that Pajarito greatly outperforms Bonmin (the leading open source alternative) and is competitive with CPLEX’s specialized MISOCP algorithm. We demonstrate the robustness of Pajarito by solving diverse MI-conic problems involving mixtures of positive semidefinite, second-order, and exponential cones, and provide evidence for the practical value of our analyses and enhancements of K ∗ cuts.
AbstractList A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K∗cuts derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all subproblems are well-posed, the algorithm detects infeasibility or unboundedness or returns an optimal solution in finite time. Using properties of the conic certificates, we show that the K∗ cuts imply certain practically-relevant guarantees about the quality of the polyhedral relaxations, and demonstrate how to maintain helpful guarantees when the LP solver uses a positive feasibility tolerance. We discuss how to disaggregateK∗ cuts in order to tighten the polyhedral relaxations and thereby improve the speed of convergence, and propose fast heuristic methods of obtaining useful K∗ cuts. Our new open source MI-conic solver Pajarito (github.com/JuliaOpt/Pajarito.jl) uses an external mixed-integer linear solver to manage the search tree and an external continuous conic solver for subproblems. Benchmarking on a library of mixed-integer second-order cone (MISOCP) problems, we find that Pajarito greatly outperforms Bonmin (the leading open source alternative) and is competitive with CPLEX’s specialized MISOCP algorithm. We demonstrate the robustness of Pajarito by solving diverse MI-conic problems involving mixtures of positive semidefinite, second-order, and exponential cones, and provide evidence for the practical value of our analyses and enhancements of K∗ cuts.
A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K ∗ cuts derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all subproblems are well-posed , the algorithm detects infeasibility or unboundedness or returns an optimal solution in finite time. Using properties of the conic certificates, we show that the K ∗ cuts imply certain practically-relevant guarantees about the quality of the polyhedral relaxations, and demonstrate how to maintain helpful guarantees when the LP solver uses a positive feasibility tolerance. We discuss how to disaggregate K ∗ cuts in order to tighten the polyhedral relaxations and thereby improve the speed of convergence, and propose fast heuristic methods of obtaining useful K ∗ cuts. Our new open source MI-conic solver Pajarito ( github.com/JuliaOpt/Pajarito.jl ) uses an external mixed-integer linear solver to manage the search tree and an external continuous conic solver for subproblems. Benchmarking on a library of mixed-integer second-order cone (MISOCP) problems, we find that Pajarito greatly outperforms Bonmin (the leading open source alternative) and is competitive with CPLEX’s specialized MISOCP algorithm. We demonstrate the robustness of Pajarito by solving diverse MI-conic problems involving mixtures of positive semidefinite, second-order, and exponential cones, and provide evidence for the practical value of our analyses and enhancements of K ∗ cuts.
Author Coey, Chris
Vielma, Juan Pablo
Lubin, Miles
Author_xml – sequence: 1
  givenname: Chris
  surname: Coey
  fullname: Coey, Chris
  email: coey@mit.edu
  organization: Operations Research Center, Massachusetts Institute of Technology
– sequence: 2
  givenname: Miles
  surname: Lubin
  fullname: Lubin, Miles
  organization: Operations Research Center, Massachusetts Institute of Technology
– sequence: 3
  givenname: Juan Pablo
  surname: Vielma
  fullname: Vielma, Juan Pablo
  organization: Sloan School of Management, Massachusetts Institute of Technology
BookMark eNp9kMtOAyEUhonRxFr7Aq5IXKNcZgZYmsZbUtONrgnDgNK0TAWq9e2lHaOJi7I5LP7vXL4zcBz6YAG4IPiKYMyvE6E1owhTjDAmXCB2BEZENBxRWfPj338lT8EkpQUuj1EumByBp_km2wj1eh37rV_p7PsAP31-g6YP3kBjY_bOG51tgq6PcOW3tkM-ZPtauBL6sFtY4HZpV-kcnDi9THbyU8fg5e72efqAZvP7x-nNDBlGZEZCdp20wkmjK-pa1pDOVayVhjrS2s4xLmsqpaPMESw0oZSJ2nBpXSdlhSkbg8uhbxn8vrEpq0W_iaGMVLTCvMEMN6ykxJAysU8pWqeMz_sLc9R-qQhWO39q8KeKP7X3p3Yo_YeuY7ETvw5DbIBSCYei52-rA9Q3cvuFCA
CitedBy_id crossref_primary_10_1007_s12532_025_00275_1
crossref_primary_10_1007_s10107_024_02059_2
crossref_primary_10_1109_TPWRS_2025_3527504
crossref_primary_10_1287_ijoo_2022_0079
crossref_primary_10_1145_3447387
crossref_primary_10_1007_s10589_024_00557_9
crossref_primary_10_1287_ijoc_2022_1202
crossref_primary_10_1109_TPWRS_2021_3056637
crossref_primary_10_1287_ijoc_2022_0022
crossref_primary_10_1016_j_ejco_2023_100074
crossref_primary_10_1007_s10898_022_01178_4
crossref_primary_10_1016_j_ejor_2025_07_016
crossref_primary_10_1016_j_jprocont_2025_103465
crossref_primary_10_3390_app11051972
crossref_primary_10_1287_opre_2021_2182
crossref_primary_10_1111_itor_13331
crossref_primary_10_1137_22M1488892
crossref_primary_10_1137_22M1507681
crossref_primary_10_1007_s11075_024_01947_0
crossref_primary_10_1109_TIT_2021_3118878
crossref_primary_10_1007_s10898_021_01048_5
crossref_primary_10_1016_j_ejor_2023_01_037
crossref_primary_10_1287_moor_2021_1146
crossref_primary_10_1007_s10107_022_01844_1
crossref_primary_10_1109_TWC_2023_3247802
crossref_primary_10_1016_j_epsr_2020_106683
crossref_primary_10_1109_TSG_2024_3384229
Cites_doi 10.1007/978-3-319-59250-3_32
10.1016/j.disopt.2006.10.011
10.1017/CBO9780511804441
10.1007/s10957-016-0892-3
10.1080/1055678031000148696
10.1017/S0962492913000032
10.1007/s12532-008-0001-1
10.1007/s12532-015-0092-4
10.1080/10556788.2017.1322081
10.1287/ijoc.2014.0623
10.1287/moor.26.2.193.10561
10.1007/978-3-319-33461-5_9
10.1137/141000671
10.1007/s101070100263
10.1007/s10107-018-1258-4
10.1137/1.9780898718829
10.1080/10556789908805765
10.1145/2950048
10.1007/s10107-017-1191-y
10.1016/0098-1354(92)80028-8
10.1137/15M1020575
10.1007/s12532-016-0113-y
10.1007/s10107-003-0387-5
10.23919/ECC.2013.6669541
10.1007/978-3-319-59776-8_17
10.1007/978-3-319-93031-2_27
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12532-020-00178-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1867-2957
EndPage 293
ExternalDocumentID 10_1007_s12532_020_00178_3
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-89dd9e8f9ca42fb361df43b9c2f1bedf3795299f23f108a122385c79efd994023
IEDL.DBID RSV
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517229100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-2949
IngestDate Thu Oct 02 16:36:56 EDT 2025
Sat Nov 29 06:19:08 EST 2025
Tue Nov 18 21:47:25 EST 2025
Fri Feb 21 02:33:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 90C25 Convex programming
90C26 Nonconvex programming, global optimization
90C11 Mixed integer programming
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-89dd9e8f9ca42fb361df43b9c2f1bedf3795299f23f108a122385c79efd994023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2407603063
PQPubID 2044128
PageCount 45
ParticipantIDs proquest_journals_2407603063
crossref_citationtrail_10_1007_s12532_020_00178_3
crossref_primary_10_1007_s12532_020_00178_3
springer_journals_10_1007_s12532_020_00178_3
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming computation
PublicationTitleAbbrev Math. Prog. Comp
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Achterberg (CR1) 2009; 1
O’Donoghue, Chu, Parikh, Boyd (CR32) 2016; 169
Borchers (CR9) 1999; 11
Belotti, Kirches, Leyffer, Linderoth, Luedtke, Mahajan (CR3) 2013; 22
CR19
Gally, Pfetsch, Ulbrich (CR17) 2018; 33
CR38
Vielma (CR39) 2018; 177
Kim, Kojima, Yamashita (CR22) 2003; 18
CR37
CR36
CR13
Lubin, Dunning (CR25) 2015; 27
CR34
CR31
Ben-Tal, Nemirovski (CR5) 2001; 26
Boyd, Vandenberghe (CR10) 2004
Dunning, Huchette, Lubin (CR15) 2017; 59
CR30
Friberg (CR16) 2016; 8
Bonami, Biegler, Conn, Cornuéjols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter (CR7) 2008; 5
CR2
Lubin, Yamangil, Bent, Vielma (CR29) 2018; 172
CR28
Lubin, Zadik, Vielma (CR27) 2017
Vielma, Dunning, Huchette, Lubin (CR40) 2017; 9
CR24
Drewes, Ulbrich (CR14) 2011
CR23
CR43
Gould, Scott (CR18) 2016
CR20
CR42
Dolan, Moré (CR12) 2002; 91
Lubin, Yamangil, Bent, Vielma (CR26) 2016
CR41
Diamond, Boyd (CR11) 2016; 17
Parrilo (CR33) 2003; 96
Quesada, Grossmann (CR35) 1992; 16
Günlük, Linderoth (CR21) 2011
Ben-Tal, Nemirovski (CR4) 2001
Bezanson, Edelman, Karpinski, Shah (CR6) 2017; 59
Bonami, Kilinç, Linderoth (CR8) 2011
P Bonami (178_CR7) 2008; 5
178_CR20
178_CR42
B Borchers (178_CR9) 1999; 11
178_CR43
178_CR41
178_CR24
B O’Donoghue (178_CR32) 2016; 169
ED Dolan (178_CR12) 2002; 91
178_CR23
Oktay Günlük (178_CR21) 2011
S Kim (178_CR22) 2003; 18
N Gould (178_CR18) 2016
J Bezanson (178_CR6) 2017; 59
A Ben-Tal (178_CR5) 2001; 26
S Boyd (178_CR10) 2004
T Gally (178_CR17) 2018; 33
Pierre Bonami (178_CR8) 2011
M Lubin (178_CR25) 2015; 27
178_CR37
178_CR2
PA Parrilo (178_CR33) 2003; 96
178_CR38
178_CR19
S Diamond (178_CR11) 2016; 17
178_CR31
Sarah Drewes (178_CR14) 2011
M Lubin (178_CR29) 2018; 172
P Belotti (178_CR3) 2013; 22
178_CR30
178_CR13
178_CR36
JP Vielma (178_CR39) 2018; 177
178_CR34
Miles Lubin (178_CR27) 2017
A Ben-Tal (178_CR4) 2001
I Quesada (178_CR35) 1992; 16
HA Friberg (178_CR16) 2016; 8
178_CR28
Miles Lubin (178_CR26) 2016
JP Vielma (178_CR40) 2017; 9
T Achterberg (178_CR1) 2009; 1
I Dunning (178_CR15) 2017; 59
References_xml – start-page: 392
  year: 2017
  end-page: 404
  ident: CR27
  article-title: Mixed-Integer Convex Representability
  publication-title: Integer Programming and Combinatorial Optimization
  doi: 10.1007/978-3-319-59250-3_32
– ident: CR43
– volume: 5
  start-page: 186
  issue: 2
  year: 2008
  end-page: 204
  ident: CR7
  article-title: An algorithmic framework for convex mixed integer nonlinear programs
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2006.10.011
– year: 2004
  ident: CR10
  publication-title: Convex Optimization
  doi: 10.1017/CBO9780511804441
– volume: 169
  start-page: 1042
  issue: 3
  year: 2016
  end-page: 1068
  ident: CR32
  article-title: Conic optimization via operator splitting and homogeneous self-dual embedding
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0892-3
– volume: 18
  start-page: 535
  issue: 5
  year: 2003
  end-page: 541
  ident: CR22
  article-title: Second order cone programming relaxation of a positive semidefinite constraint
  publication-title: Optim. Methods Softw.
  doi: 10.1080/1055678031000148696
– ident: CR2
– ident: CR37
– ident: CR30
– volume: 22
  start-page: 1
  year: 2013
  end-page: 131
  ident: CR3
  article-title: Mixed-integer nonlinear optimization
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000032
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  end-page: 41
  ident: CR1
  article-title: SCIP: solving constraint integer programs
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-008-0001-1
– volume: 8
  start-page: 191
  issue: 2
  year: 2016
  end-page: 214
  ident: CR16
  article-title: CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-015-0092-4
– start-page: 41
  year: 2011
  end-page: 59
  ident: CR14
  article-title: Subgradient Based Outer Approximation for Mixed Integer Second Order Cone Programming
  publication-title: Mixed Integer Nonlinear Programming
– volume: 33
  start-page: 594
  issue: 3
  year: 2018
  end-page: 632
  ident: CR17
  article-title: A framework for solving mixed-integer semidefinite programs
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1322081
– volume: 27
  start-page: 238
  issue: 2
  year: 2015
  end-page: 248
  ident: CR25
  article-title: Computing in operations research using Julia
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2014.0623
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  end-page: 5
  ident: CR11
  article-title: CVXPY: a python-embedded modeling language for convex optimization
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 193
  issue: 2
  year: 2001
  end-page: 205
  ident: CR5
  article-title: On polyhedral approximations of the second-order cone
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.2.193.10561
– ident: CR42
– ident: CR23
– start-page: 102
  year: 2016
  end-page: 113
  ident: CR26
  article-title: Extended Formulations in Mixed-Integer Convex Programming
  publication-title: Integer Programming and Combinatorial Optimization
  doi: 10.1007/978-3-319-33461-5_9
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  end-page: 98
  ident: CR6
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– ident: CR19
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  end-page: 213
  ident: CR12
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 177
  start-page: 21
  year: 2018
  end-page: 53
  ident: CR39
  article-title: Small and strong formulations for unions of convex sets from the Cayley embedding
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1258-4
– year: 2001
  ident: CR4
  publication-title: Lectures on Modern Convex Optimization
  doi: 10.1137/1.9780898718829
– volume: 11
  start-page: 613
  issue: 1–4
  year: 1999
  end-page: 623
  ident: CR9
  article-title: CSDP, AC library for semidefinite programming
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805765
– year: 2016
  ident: CR18
  article-title: A note on performance profiles for benchmarking software
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2950048
– volume: 172
  start-page: 139
  year: 2018
  end-page: 168
  ident: CR29
  article-title: Polyhedral approximation in mixed-integer convex optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1191-y
– ident: CR38
– volume: 16
  start-page: 937
  issue: 10
  year: 1992
  end-page: 947
  ident: CR35
  article-title: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80028-8
– ident: CR31
– ident: CR13
– start-page: 61
  year: 2011
  end-page: 89
  ident: CR21
  article-title: Perspective Reformulation and Applications
  publication-title: Mixed Integer Nonlinear Programming
– volume: 59
  start-page: 295
  issue: 2
  year: 2017
  end-page: 320
  ident: CR15
  article-title: JuMP: a modeling language for mathematical optimization
  publication-title: SIAM Rev.
  doi: 10.1137/15M1020575
– ident: CR34
– ident: CR36
– start-page: 1
  year: 2011
  end-page: 39
  ident: CR8
  article-title: Algorithms and Software for Convex Mixed Integer Nonlinear Programs
  publication-title: Mixed Integer Nonlinear Programming
– volume: 9
  start-page: 369
  issue: 3
  year: 2017
  end-page: 418
  ident: CR40
  article-title: Extended formulations in mixed integer conic quadratic programming.
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-016-0113-y
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 96
  start-page: 293
  issue: 2
  year: 2003
  end-page: 320
  ident: CR33
  article-title: Semidefinite programming relaxations for semialgebraic problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0387-5
– start-page: 41
  volume-title: Mixed Integer Nonlinear Programming
  year: 2011
  ident: 178_CR14
– ident: 178_CR34
– ident: 178_CR30
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 178_CR1
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-008-0001-1
– volume-title: Lectures on Modern Convex Optimization
  year: 2001
  ident: 178_CR4
  doi: 10.1137/1.9780898718829
– ident: 178_CR24
– volume: 9
  start-page: 369
  issue: 3
  year: 2017
  ident: 178_CR40
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-016-0113-y
– volume: 27
  start-page: 238
  issue: 2
  year: 2015
  ident: 178_CR25
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2014.0623
– volume: 169
  start-page: 1042
  issue: 3
  year: 2016
  ident: 178_CR32
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0892-3
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 178_CR12
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  ident: 178_CR11
  publication-title: J. Mach. Learn. Res.
– ident: 178_CR28
  doi: 10.1007/978-3-319-59250-3_32
– ident: 178_CR13
  doi: 10.23919/ECC.2013.6669541
– ident: 178_CR43
– ident: 178_CR19
– volume: 5
  start-page: 186
  issue: 2
  year: 2008
  ident: 178_CR7
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2006.10.011
– volume: 172
  start-page: 139
  year: 2018
  ident: 178_CR29
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1191-y
– volume: 177
  start-page: 21
  year: 2018
  ident: 178_CR39
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1258-4
– volume: 33
  start-page: 594
  issue: 3
  year: 2018
  ident: 178_CR17
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1322081
– ident: 178_CR20
– ident: 178_CR41
– volume: 8
  start-page: 191
  issue: 2
  year: 2016
  ident: 178_CR16
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-015-0092-4
– volume: 96
  start-page: 293
  issue: 2
  year: 2003
  ident: 178_CR33
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0387-5
– ident: 178_CR36
– start-page: 1
  volume-title: Mixed Integer Nonlinear Programming
  year: 2011
  ident: 178_CR8
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 178_CR6
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– ident: 178_CR38
– volume: 22
  start-page: 1
  year: 2013
  ident: 178_CR3
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000032
– volume: 26
  start-page: 193
  issue: 2
  year: 2001
  ident: 178_CR5
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.2.193.10561
– start-page: 392
  volume-title: Integer Programming and Combinatorial Optimization
  year: 2017
  ident: 178_CR27
  doi: 10.1007/978-3-319-59250-3_32
– volume-title: Convex Optimization
  year: 2004
  ident: 178_CR10
  doi: 10.1017/CBO9780511804441
– ident: 178_CR31
– volume: 59
  start-page: 295
  issue: 2
  year: 2017
  ident: 178_CR15
  publication-title: SIAM Rev.
  doi: 10.1137/15M1020575
– volume: 16
  start-page: 937
  issue: 10
  year: 1992
  ident: 178_CR35
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80028-8
– volume: 11
  start-page: 613
  issue: 1–4
  year: 1999
  ident: 178_CR9
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805765
– year: 2016
  ident: 178_CR18
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2950048
– ident: 178_CR42
  doi: 10.1007/978-3-319-59776-8_17
– ident: 178_CR23
  doi: 10.1007/978-3-319-93031-2_27
– start-page: 61
  volume-title: Mixed Integer Nonlinear Programming
  year: 2011
  ident: 178_CR21
– start-page: 102
  volume-title: Integer Programming and Combinatorial Optimization
  year: 2016
  ident: 178_CR26
  doi: 10.1007/978-3-319-33461-5_9
– ident: 178_CR2
– volume: 18
  start-page: 535
  issue: 5
  year: 2003
  ident: 178_CR22
  publication-title: Optim. Methods Softw.
  doi: 10.1080/1055678031000148696
– ident: 178_CR37
SSID ssj0000327839
Score 2.3897424
Snippet A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 249
SubjectTerms Algorithms
Approximation
Certificates
Cones
Full Length Paper
Heuristic methods
Integers
Mathematical analysis
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Optimization
Theory of Computation
Well posed problems
Title Outer approximation with conic certificates for mixed-integer convex problems
URI https://link.springer.com/article/10.1007/s12532-020-00178-3
https://www.proquest.com/docview/2407603063
Volume 12
WOSCitedRecordID wos000517229100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: RSV
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoM3DTSZfeUoYvGgVXzR27J5QUGrdKv055tJd1sVFfS45MEyk915ZOb7CDlUgCxTJmGpLBIWpZYzpTLHNLRVDGmhnQro-hdpt5v1evK6agor62r3-koy_KlnzW4iBsEw3Amc8gzmyYI3dxkSNtzcPkwzK21A9gj0exGsjQkZyapb5vttPlukmZv55WY0GJzO6v9edY2sVA4mPZmciHUyZwcbZPkD7KB_upxitZab5PIKWR1oABcf9yedjBTTs1QjbC7VWHntQqtcSb2LS5_6Y2tYwJnw60LZ-phWxDTlFrnvnN2dnrOKZMGrg8sRy6Qx0mZO6iISTkHCjYtASS0cV9Y4SGXsTZYT4Hg7K7h3J7JYp9I6I6UPPmGbNAbPA7tDqFGR4NoZL3WIkiJWCRgAXkQpgugp2yS8FnSuKwRyJMJ4zGfYySi43AsuD4LLoUmOpmteJvgbv85u1frLq2-xzDFmTTA08sPHtb5mwz_vtvu36XtkSQSVY4qmRRqj4avdJ4v6bdQvhwfhjL4D4uDflg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aBfXgW6xWzcGbBpqdfeUoYqnYVtEqvYXNCwpapVulP98k3W1VVNDjkgfLTHbnkZnvQ-hYgGOZUjFJWBaTMNGUCJEaIqEuIkgyaYRH128lnU7a67GboiksL6vdyytJ_6eeNbsFEQTEhTueU57APFoIrcVyiPm3dw_TzEodHHuE83sdWBsJWMiKbpnvt_lskWZu5pebUW9wGmv_e9V1tFo4mPhsciI20JwebKKVD7CD9qk9xWrNt1D72rE6YA8uPu5POhmxS89i6WBzsXSV18a3yuXYurj4qT_WinicCbvOl62PcUFMk2-j-8ZF97xJCpIFqw7KRiRlSjGdGiazMDACYqpMCILJwFChlYGERdZkmQAMracZte5EGsmEaaMYs8En7KDK4HmgdxFWwqpDGmWlDmGcRSIGBUCzMHEgekJXES0FzWWBQO6IMB75DDvZCY5bwXEvOA5VdDJd8zLB3_h1dq3UHy--xZy7mDV2oZEdPi31NRv-ebe9v00_QkvNbrvFW5edq320HHj1u3RNDVVGw1d9gBbl26ifDw_9eX0HZqbieg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB60iujBXaxWnYM3HWwy2eYoalFsa8GF3kJmg4LG0kTpz3feJGmrqCAewyyE92Z4y7z3fQgdcwosUzIgIUsC4oXKIZxHmgja5D4NE6G5Rddvh91u1O-z3kwXv612r54ki54GQGlK87Oh1GfTxjfXpy6B0MfyyxM6jxY8KKSHeP3-aZJlaVJgkgAfGIDbiMs8VnbOfL_NZ-s0dTm_vJJa49Na-_9vr6PV0vHE58VJ2UBzKt1EKzNwhOarM8FwzbZQ5w7YHrAFHR8Pig5HDGlbLABOFwuoyNa2hS7DxvXFL4OxksTiT5h1tpx9jEvCmmwbPbauHi6uSUm-YNTksJxETEqmIs1E4rma08CR2qOcCVc7XElNQ-YbU6Zdqo3cE8e4GZEvQqa0ZMwEpXQH1dLXVO0iLLnnOkJLowHqBYnPAyopdRIvBHA9rurIqYQeixKZHAgynuMppjIILjaCi63gYlpHJ5M1wwKX49fZjUqXcXlHsxhi2QBCJjN8WuluOvzzbnt_m36ElnqXrbh9073dR8uu1T5kcRqolo_e1AFaFO_5IBsd2qP7ASzo614
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outer+approximation+with+conic+certificates+for+mixed-integer+convex+problems&rft.jtitle=Mathematical+programming+computation&rft.au=Coey%2C+Chris&rft.au=Lubin%2C+Miles&rft.au=Vielma%2C+Juan+Pablo&rft.date=2020-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=12&rft.issue=2&rft.spage=249&rft.epage=293&rft_id=info:doi/10.1007%2Fs12532-020-00178-3&rft.externalDocID=10_1007_s12532_020_00178_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon