Accurate solutions of structured generalized Kronecker product linear systems

In this paper, we consider the generalized Kronecker product (GKP) linear system associated with a class of consecutive-rank-descending (CRD) matrices arising from bivariate interpolation problems. Relying on the sign sequences of CRD matrices, we show that the associated GKP linear system is accura...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 87; no. 2; pp. 797 - 818
Main Authors: Yang, Zhao, Huang, Rong, Zhu, Wei, Liu, Jianzhou
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2021
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider the generalized Kronecker product (GKP) linear system associated with a class of consecutive-rank-descending (CRD) matrices arising from bivariate interpolation problems. Relying on the sign sequences of CRD matrices, we show that the associated GKP linear system is accurately solved with an “ideal” componentwise forward error. In particular, a pleasantly small componentwise relative forward error is provided to illustrate that each component of the solution is computed to high relative accuracy. We then present the sign sequences of generalized Vandermonde matrices to show that the associated GKP linear system is accurately solved with the desired componentwise forward errors. Numerical experiments are performed to confirm the high relative accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-020-00988-5