Optimality conditions and duality in terms of convexificators for multiobjective bilevel programming problem with equilibrium constraints

This paper is devoted to the investigation of a nonsmooth multiobjective bilevel programming problem with equilibrium constraints (( MBPP ) for short) in terms of convexificators in finite-dimensional spaces. We present necessary optimality conditions for the local weak efficient solution to such pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational & applied mathematics Ročník 40; číslo 2
Hlavní autori: Van Su, Tran, Hang, Dinh Dieu, Dieu, Nguyen Cong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.03.2021
Springer Nature B.V
Predmet:
ISSN:2238-3603, 1807-0302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper is devoted to the investigation of a nonsmooth multiobjective bilevel programming problem with equilibrium constraints (( MBPP ) for short) in terms of convexificators in finite-dimensional spaces. We present necessary optimality conditions for the local weak efficient solution to such problem. Under the Mangasarian–Fromovitz and generalized standard Abadie type constraint qualification in the sense of convexificators, we establish as an application the Wolfe and Mond-Weir type dual problem for the problem ( MBPP ). Besides, we provide strong and weak duality theorems for the original problem and its Wolfe and Mond–Weir type dual problem under suitable assumptions on the ∂ ∗ -convexity and the upper semi-regularity of objective and constraint functions. Illustrative examples are also proposed to demonstrate the main results of the paper.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-021-01431-8