Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay
This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned aerial vehicle (UAV), which allows the quadrotor UAV to track a presupposed trajectory despite the simultaneous existence of model uncertainti...
Uložené v:
| Vydané v: | Nonlinear dynamics Ročník 107; číslo 3; s. 2363 - 2390 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.02.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned aerial vehicle (UAV), which allows the quadrotor UAV to track a presupposed trajectory despite the simultaneous existence of model uncertainties, external disturbances, actuator faults, and input delay. First of all, the combination of Pade approximation and an intermediate variable is employed to reduce the complexity of studying the quadrotor system with input delay. Secondly, the fixed-time disturbance observer is proposed to eliminate the effects of the composite disturbances without requiring some serious assumptions. Subsequently, the new nonsingular fixed-time sliding mode manifold and the auxiliary system are developed to overcome the singular problem without any piecewise continuous functions. In the sense of the Lyapunov theorem, it is proved that the tracking errors of the closed-loop system converge to the origin within a fixed time regardless of the initial conditions. Eventually, extensive comparative simulations are performed to manifest the feasibility and validity of the proposed control strategy in terms of disturbance rejection, fault-tolerance, chattering elimination, and singularity-free. |
|---|---|
| AbstractList | This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned aerial vehicle (UAV), which allows the quadrotor UAV to track a presupposed trajectory despite the simultaneous existence of model uncertainties, external disturbances, actuator faults, and input delay. First of all, the combination of Pade approximation and an intermediate variable is employed to reduce the complexity of studying the quadrotor system with input delay. Secondly, the fixed-time disturbance observer is proposed to eliminate the effects of the composite disturbances without requiring some serious assumptions. Subsequently, the new nonsingular fixed-time sliding mode manifold and the auxiliary system are developed to overcome the singular problem without any piecewise continuous functions. In the sense of the Lyapunov theorem, it is proved that the tracking errors of the closed-loop system converge to the origin within a fixed time regardless of the initial conditions. Eventually, extensive comparative simulations are performed to manifest the feasibility and validity of the proposed control strategy in terms of disturbance rejection, fault-tolerance, chattering elimination, and singularity-free. |
| Author | Liu, Kang Wang, Rujing Sun, Guowei Zheng, Shijian Dong, Shifeng |
| Author_xml | – sequence: 1 givenname: Kang orcidid: 0000-0003-2881-5095 surname: Liu fullname: Liu, Kang email: xinxilk@mail.ustc.edu.cn organization: Institute of Intelligent Machines, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 2 givenname: Rujing surname: Wang fullname: Wang, Rujing email: rjwang@iim.ac.cn organization: Institute of Intelligent Machines, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Department of Automation, University of Science and Technology of China, Institutes of Physical Science and Information Technology, Anhui University – sequence: 3 givenname: Shijian surname: Zheng fullname: Zheng, Shijian organization: Department of Control Science and Engineering, School of Information Engineering, Southwest University of Science and Technology – sequence: 4 givenname: Shifeng surname: Dong fullname: Dong, Shifeng organization: Institute of Intelligent Machines, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 5 givenname: Guowei surname: Sun fullname: Sun, Guowei organization: Department of Electronic Engineering, School of Information Science and Engineering, Fudan University |
| BookMark | eNp9kM9rFTEQgINU8LX6D3gKeI5Okt2X7LEUa4WCFyu9hckmW_LcJq_5IfbUf908n1Dw0MMwzDDfzPCdkpOYoifkPYePHEB9KpyD4gxEDwUaGLwiGz4qycR2uj0hG5jEwGCC2zfktJQdAEgBekOeLsNv71gN9566UGrLFuPsabLF518-M4vFO5qTbaXSBdtaWU2rzxgrrRnnnyHe0TnFmtNKl5Rp63iuGCJ9aOhyqr13c_6DlmZ3fu5QoiHuW6XOr_j4lrxecC3-3b98Rm4uP3-_uGLX3758vTi_ZrPkU2VaO7RWccHBWz-ikwOXIBC9QKWk1crpxQoxKwcjwDCOAnspxdYNk9dbeUY-HPfuc3povlSzSy3HftKIrdADDFxAnxLHqTmnUrJfzD6He8yPhoM5iDZH0aaLNn9FmwOk_4PmULGGgxMM68uoPKKl34l3Pj9_9QL1B-K4lrM |
| CitedBy_id | crossref_primary_10_1109_TAES_2023_3308552 crossref_primary_10_1016_j_ast_2025_110868 crossref_primary_10_1016_j_ijhydene_2023_11_264 crossref_primary_10_1016_j_jfranklin_2024_106833 crossref_primary_10_1109_TIE_2023_3277090 crossref_primary_10_1002_acs_3925 crossref_primary_10_1007_s10489_025_06655_3 crossref_primary_10_1016_j_ast_2024_109596 crossref_primary_10_1007_s11071_025_11021_6 crossref_primary_10_1016_j_isatra_2024_02_012 crossref_primary_10_3390_act13060217 crossref_primary_10_1007_s11071_024_09691_9 crossref_primary_10_3390_pr12112431 crossref_primary_10_1016_j_ast_2023_108668 crossref_primary_10_1016_j_conengprac_2025_106526 crossref_primary_10_1109_TSMC_2025_3539707 crossref_primary_10_3390_math11040994 crossref_primary_10_1109_TFUZZ_2024_3486750 crossref_primary_10_1016_j_jfranklin_2023_11_020 crossref_primary_10_1108_AEAT_04_2024_0121 crossref_primary_10_3390_drones9040232 crossref_primary_10_1002_eng2_70215 crossref_primary_10_3390_aerospace10060537 crossref_primary_10_1371_journal_pone_0300305 crossref_primary_10_1007_s11071_025_11485_6 crossref_primary_10_3390_s22145082 crossref_primary_10_1016_j_ast_2024_109426 crossref_primary_10_3390_app13010670 crossref_primary_10_1007_s11071_024_10029_8 crossref_primary_10_1080_00207721_2023_2178863 crossref_primary_10_1177_01423312241264070 crossref_primary_10_1007_s11071_024_10791_9 crossref_primary_10_1177_10775463241247258 crossref_primary_10_3390_drones7070420 crossref_primary_10_1177_10775463251329834 crossref_primary_10_1016_j_ast_2022_107848 crossref_primary_10_3390_drones7110665 crossref_primary_10_1016_j_dt_2024_04_009 crossref_primary_10_1016_j_ast_2025_110792 crossref_primary_10_3390_drones7080496 crossref_primary_10_1007_s11071_025_11201_4 crossref_primary_10_1016_j_ast_2025_110079 crossref_primary_10_3390_drones7080495 crossref_primary_10_1016_j_ast_2024_109138 crossref_primary_10_1016_j_jfranklin_2024_107506 crossref_primary_10_3390_drones8010025 crossref_primary_10_3390_electronics12214415 crossref_primary_10_1002_asjc_3350 crossref_primary_10_1016_j_ast_2024_109019 crossref_primary_10_1109_TVT_2025_3554972 crossref_primary_10_1109_TCSII_2022_3167532 crossref_primary_10_3390_machines10070551 crossref_primary_10_1002_rnc_7932 crossref_primary_10_1049_cth2_70031 crossref_primary_10_1007_s11071_024_09504_z crossref_primary_10_1016_j_isatra_2024_12_003 crossref_primary_10_1109_ACCESS_2023_3345250 crossref_primary_10_3390_drones7070474 crossref_primary_10_1016_j_ast_2024_108968 crossref_primary_10_1080_00207721_2024_2429802 crossref_primary_10_1016_j_neucom_2023_127037 crossref_primary_10_3390_pr11123267 crossref_primary_10_3390_app15116352 crossref_primary_10_1016_j_ast_2025_110042 crossref_primary_10_3390_act12070265 crossref_primary_10_1177_01423312231161140 crossref_primary_10_1038_s41598_025_98443_9 crossref_primary_10_3390_pr11113095 crossref_primary_10_1016_j_ast_2025_110616 crossref_primary_10_1109_TCSII_2022_3172417 crossref_primary_10_1016_j_jfranklin_2025_107515 crossref_primary_10_3390_aerospace10090747 crossref_primary_10_3390_machines11070672 crossref_primary_10_1109_ACCESS_2025_3559180 crossref_primary_10_1007_s10489_025_06784_9 crossref_primary_10_1007_s11071_025_11596_0 crossref_primary_10_1007_s44245_024_00036_9 crossref_primary_10_3390_math11092193 crossref_primary_10_1002_rnc_7571 crossref_primary_10_1016_j_ejcon_2023_100879 crossref_primary_10_3390_math11040991 crossref_primary_10_1007_s11071_024_10826_1 crossref_primary_10_1109_TCSII_2023_3331825 crossref_primary_10_1016_j_automatica_2025_112540 crossref_primary_10_1017_aer_2024_19 crossref_primary_10_1088_1361_6501_ad4627 crossref_primary_10_1177_14644193241229558 crossref_primary_10_1109_TIV_2023_3333888 |
| Cites_doi | 10.3390/math9101128 10.1109/TAES.2018.2832998 10.1109/TCSII.2021.3069967 10.1109/JAS.2019.1911807 10.1109/TIE.2011.2107719 10.1016/j.automatica.2020.109274 10.1049/iet-cta.2014.0202 10.1109/TCST.2018.2812758 10.1109/TCYB.2020.3034146 10.1109/ACC.2014.6859271 10.2514/1.G005465 10.1016/j.isatra.2020.11.008 10.1177/0954406219849445 10.1109/TSMC.2019.2930995 10.1109/TAES.2020.2988836 10.1109/TCSI.2021.3091533 10.1109/TNNLS.2018.2876130 10.1109/TCSII.2021.3084240 10.1109/TAES.2021.3053109 10.1016/j.ast.2020.106314 10.1007/s40815-017-0388-9 10.1002/rnc.5653 10.1007/s11071-020-05674-8 10.1109/TFUZZ.2020.2989265 10.1007/s12555-019-0262-7 10.1109/TIE.2019.2937065 10.1002/rnc.5774 10.1016/j.automatica.2017.01.007 10.1016/j.ast.2020.105968 10.1007/s12555-020-0043-3 10.1109/TFUZZ.2020.2965884 10.1109/TTE.2020.3027367 10.1016/j.automatica.2015.01.021 10.3390/math9111229 10.1016/j.isatra.2021.04.046 10.1109/TSMC.2020.3010678 10.1109/TCYB.2020.3024672 10.1007/s12555-018-0849-4 10.1109/JSYST.2021.3078826 10.1109/TAC.2011.2179869 10.1016/j.jfranklin.2019.05.018 10.1016/j.ast.2021.106790 10.1007/s11071-018-4711-2 10.1002/rnc.4662 10.1109/TCST.2018.2868038 10.1109/TNNLS.2019.2927887 10.1109/ACCESS.2021.3056037 10.1016/j.conengprac.2021.104861 10.1109/TCYB.2018.2799683 10.1109/TIE.2020.3001800 10.1007/s11071-020-06050-2 10.1007/s11071-021-06776-7 10.1002/rnc.5760 10.1109/TMECH.2021.3086527 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11071-021-07080-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 2390 |
| ExternalDocumentID | 10_1007_s11071_021_07080_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31671586 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-88dabb71210ebe5ad341302aae2a773b87d8fb22c7d05004552ab22326d49e863 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744456800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-090X |
| IngestDate | Wed Nov 05 09:32:33 EST 2025 Sat Nov 29 03:06:31 EST 2025 Tue Nov 18 21:45:48 EST 2025 Fri Feb 21 02:47:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Quadrotor UAV Disturbance observer Fixed-time stability Nonsingular fixed-time sliding mode control Fault-tolerant control |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-88dabb71210ebe5ad341302aae2a773b87d8fb22c7d05004552ab22326d49e863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2881-5095 |
| PQID | 2628404120 |
| PQPubID | 2043746 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2628404120 crossref_primary_10_1007_s11071_021_07080_0 crossref_citationtrail_10_1007_s11071_021_07080_0 springer_journals_10_1007_s11071_021_07080_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
| PublicationTitle | Nonlinear dynamics |
| PublicationTitleAbbrev | Nonlinear Dyn |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | EsmaeilzadehSMGolestaniMMobayenSChattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraftInt. J. Control Autom. Syst.20211927677761455.93099 Chen, L., Liu, Z., Gao, H., Wang, G.: “Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2021.04.046, (2021) Wang, Y., Zhang, J., Zhang, H., Xie, X.: “Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients,” IEEE Trans. Cybern., early access, https://doi.org/10.1109/TCYB.2020.3034146, (2020) LiuXZhangMRogersEWangYYaoFTerminal sliding mode-based tracking control with error transformation for underwater vehiclesInt. J. Robust Nonlin. Control20213115718672064335290 WangNTongSLiYObserver-based adaptive fuzzy control of nonlinear non-strict feedback system with input delayInt. J. Fuzzy Syst.20182012362453782132 ZuoZNonsingular fixed-time consensus tracking for second-order multi-agent networksAutomatica20155430530933245351318.93010 YuZZhangYJiangBSuC-YFuJJinYChaiTFractional order PID-based adaptive fault-tolerant cooperative control of networked unmanned aerial vehicles against actuator faults and wind effects with hardware-in-the-loop experimental validationControl. Eng. Pract.2021114104861 KeighobadiJFatehMMXuBAdaptive fuzzy voltage-based backstepping tracking control for uncertain robotic manipulators subject to partial state constraints and input delayNonlinear Dyn.202010026092634 Liu, K., Wang, R.: “Antisaturation command filtered backstepping control based disturbance rejection for a quadarotor UAV,” IEEE Trans. Circuits Syst. II: Express Briefs, to be published, https://doi.org/10.1109/TCSII.2021.3069967 LiangXWangQHuCDongCFixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faultsAerosp. Sci. Technol.2020107106314 YangHJiangYYinSAdaptive fuzzy fault tolerant control for Markov jump systems with additive and multiplicative actuator faultsIEEE Trans. Fuzzy Syst.2021294772785 Guerrero-Sánchez, M.E., Hernández-González, O., Valencia-Palomo, G., Mercado-Ravell, D.A. , López-Estrada, F.R., Hoyo-Montaño, J.A.: “Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load,” Nonlinear Dyn., early access, https://doi.org/10.1007/s11071-021-06776-7, (Aug. 2021) LiuKWangXWangRSunGWangXAntisaturation finite-time attitude tracking control based observer for a quadrotorIEEE Trans. Circuits Syst. II, Exp. Briefs202168620472051 LiDLiuYTongSPhilip ChenCLLiDNeural networks-based adaptive control for nonlinear state constrained systems with input delayIEEE Trans. Cybern.201949412491258 VaseghiBMobayenSEsmaeilzadehSMFekihAFast reaching finite time synchronization approach for chaotic systems with application in medical image encryptionIEEE Access202192591125925 Yu, Z., Zhang, Y., Jiang, B., Fu, J., Jin, Y., Chai, T.: “Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs,” IEEE Trans. Syst., Man, Cybern., Syst., early access, https://doi.org/10.1109/TSMC.2020.3010678, (2020) Liu, K., Gao, H., Ji, H., Hao, Z.: Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. Int. J. Control Autom. Syst. 18(5), 1288–1298 (2020) HuangYJiaYAdaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around missionIEEE Trans. Control Syst. Technol.201927417961804 Tripathi, V.K., Yogi, S.C., Kamath, A.K., Behera, L., Verma, N.K., Nahavandi, S.: “A disturbance observer-based intelligent finite-time sliding mode flight controller design for an autonomous quadrotor,” IEEE Syst. J., early access, https://doi.org/10.1109/JSYST.2021.3078826, (2021) Xu, D., Ding, B., Jiang, B., Yang, W., Yang, W., Shi, P.: “Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer,” IEEE/ASME Trans. Mechatronics, early access, https://doi.org/10.1109/TMECH.2021.3086527, (2021) MaDXiaYShenGJiangHHaoCPractical fixed-time disturbance rejection control for quadrotor attitude trackingIEEE Trans. Ind. Electron.202168872747283 LabbadiMCherkaouiMAdaptive fractional-order nonsingular fast terminal sliding mode-based robust tracking control of quadrotor UAV with gaussian random disturbances and uncertaintiesIEEE Trans. Aerosp. Electron. Syst.202157422652277 TangPLinDZhengDFanSYeJObserver based finite-time fault tolerant quadrotor attitude control with actuator faultsAerosp. Sci. Technol.2020104105968 ZhouJChengYDuHWuDZhuMLinXAdaptive finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturationJ. Frankl. Inst.202035711153111701450.93039 SobhanipourHAfzalianAAActive fault tolerant control for switched positive linear systemsInt. J. Robust Nonlin. Control201929144971498439943651426.93066 Fekih, A.: “Fault diagnosis and fault tolerant control design for aerospace systems: a bibliographical review,” in Proc. Amer. Control Conf. (ACC), pp. 1286–1291, (2014) ZhuZXiaYFuMAdaptive sliding mode control for attitude stabilization with actuator saturationIEEE Trans. Ind. Electron.201158148984907 ZhaoKMaDXiaYComposite disturbance rejection attitude control for quadrotor with unknown disturbanceIEEE Trans. Ind. Electron.202067868946903 Cui, G., Yang, W., Yu, J., Li, Z., Tao, C.: “Fixed-time prescribed performance adaptive trajectory tracking control for QUAV”, IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, https://doi.org/10.1109/TCSII.2021.3084240, (2021) Liu, K.,Wang, Y., Ji, H.,Wang, S.: “Adaptive saturated tracking control for spacecraft proximityoperations via integral terminal sliding mode technique,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5774, (Sept. 2021) JainAKBhasinSTracking control of uncertain nonlinear systems with unknown constant input delayIEEE/CAA J. Autom. Sinica2020724204254086646 LiuKWangRWangXWangXAnti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbancesAerosp. Sci. Technol.2021115106790 YaoXZhangLZhengWXUncertain disturbance rejection and attenuation for semi-Markov jump systems with application to 2-degree-freedom robot armIEEE Trans. Circuits Syst. I, Reg. Papers202168938363845 YangXWangYYangJWangTFault-tolerant control based on fixed-time observer for a 3-DOF helicopter systemInt. J. Control Autom. Syst.2020181229933000 SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solutionIEEE Trans. Neural Netw. Learn. Syst.2019307197519833978158 YuZQuYZhangYDistributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturationIEEE Trans. Control Syst. Technol.201927624172429 DingBXuDJiangBShiPYangWDisturbance-observer-based terminal sliding mode control for linear traction system with prescribed performanceIEEE Trans. Transp. Electrific.202172649658 SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor uavs: a more affordable solutionIEEE Trans. Control Netw. Syst.2019307197519833978158 RahmaniRMobayenSFekihARoJ-SRobust passivity cascade technique-based control using RBFN approximators for the stabilization of a cart inverted pendulumMathematics20219111229 Liu, K., Ji, H., Zhang, Y.: “Extended state observer based adaptive sliding mode tracking control of wheeled mobile robot with input saturation and uncertainties,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 233(15): 5460–5476, (2019) Sharma, M., Kar, I.: “Control of a quadrotor with network induced time delay,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2020.11.008, (May 2021) YuZLiuZZhangYQuYSuC-YDistributed finite-time fault-tolerant containment control for multiple unmanned aerial vehiclesIEEE Trans. Neural Netw. Learn. Syst.2020316207720904112520 ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamicsNonlinear Dyn.202010225832596 NguyenCMTanCPTrinhHSliding mode observer for estimating states and faults of linear time-delay systems with outputs subject to delaysAutomatica202112410927441930011461.93072 SunRShanAZhangXWuJJiaQQuantized fault-tolerant control for attitude stabilization with fixed-time disturbance observerJ. Guid. Control. Dyn.2021442449455 ZhangQHeDDisturbance-observer-based adaptive fuzzy control for strict-feedback switched nonlinear systems with input delayIEEE Trans. Fuzzy Syst.202129719421952 PolyakovANonlinear feedback design for fixed-time stabilization of linear control systemsIEEE Trans. Automat. Control20125782106211029571841369.93128 Zhao, J., Ding, X., Jiang, B., Jiang, G., Xie, F.: “A novel control strategy for quadrotors with variable mass and external disturbance,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5760, (Sept. 2021) SilvaALSantosDAFast nonsingular terminal sliding mode flight control for multirotor aerial vehiclesIEEE Trans. Aerosp. Electron. Syst.202056642884299 KaramiHMobayenSLashkariMBayatFChangALMI-observer-based stabilizer for chaotic systems in the existence of a nonlinear function and perturbationMathematics20219101128 ZhaoZWangXYaoPXuJYuJFuzzy health degree-based dynamic performance evaluation of quadrotors in the presence of actuator and sensor faultsNonlinear Dyn.20199524772490 TianBZuoZYanXWangHA fixed-time output feedback control scheme for double integrator systemsAutomatica201780172436380521370.93202 ZuoZNon-singular fixed-time terminal sliding mode control of non-linear systemsIET Control Theory Appl.2015945455523328478 ChenQXieSSunMHeXAdaptive nonsingular fixed-time attitude stabilization of uncertain spacecraftIEEE Trans. Aerosp. Electron. Syst.201854629372950 ChenQXieSHeXNeural-network-based adaptive singularity-free fixed-time attitude tracking control f R Rahmani (7080_CR7) 2021; 9 Z Yu (7080_CR28) 2019; 27 A Polyakov (7080_CR13) 2012; 57 P Tang (7080_CR45) 2020; 104 H Karami (7080_CR9) 2021; 9 Y Song (7080_CR11) 2019; 30 SM Esmaeilzadeh (7080_CR34) 2021; 19 X Liu (7080_CR55) 2021; 31 7080_CR39 7080_CR8 Z Zhao (7080_CR32) 2019; 95 7080_CR6 7080_CR5 Z Zuo (7080_CR22) 2015; 9 Y Song (7080_CR33) 2019; 30 7080_CR4 7080_CR3 7080_CR1 Q Chen (7080_CR24) 2021; 51 X Yao (7080_CR10) 2021; 68 B Vaseghi (7080_CR14) 2021; 9 Y Huang (7080_CR16) 2019; 27 7080_CR49 Z Yu (7080_CR31) 2021; 114 7080_CR12 B Ding (7080_CR46) 2021; 7 7080_CR50 H Sobhanipour (7080_CR27) 2019; 29 AK Jain (7080_CR41) 2020; 7 D Ma (7080_CR19) 2021; 68 K Zhao (7080_CR47) 2020; 67 K Liu (7080_CR56) 2021; 68 M Labbadi (7080_CR54) 2021; 57 Z Zuo (7080_CR53) 2015; 54 AL Silva (7080_CR2) 2020; 56 Q Chen (7080_CR23) 2018; 54 7080_CR15 R Sun (7080_CR20) 2021; 44 Z Zhu (7080_CR57) 2011; 58 7080_CR17 Z Yu (7080_CR29) 2020; 31 H Yang (7080_CR51) 2021; 29 X Liang (7080_CR18) 2020; 107 K Liu (7080_CR52) 2021; 115 Q Zhang (7080_CR35) 2021; 29 Z Zhao (7080_CR48) 2020; 102 B Tian (7080_CR21) 2017; 80 CM Nguyen (7080_CR42) 2021; 124 P Tang (7080_CR43) 2020; 104 7080_CR25 7080_CR26 J Keighobadi (7080_CR40) 2020; 100 N Wang (7080_CR37) 2018; 20 7080_CR30 J Zhou (7080_CR44) 2020; 357 D Li (7080_CR36) 2019; 49 X Yang (7080_CR38) 2020; 18 |
| References_xml | – reference: KeighobadiJFatehMMXuBAdaptive fuzzy voltage-based backstepping tracking control for uncertain robotic manipulators subject to partial state constraints and input delayNonlinear Dyn.202010026092634 – reference: PolyakovANonlinear feedback design for fixed-time stabilization of linear control systemsIEEE Trans. Automat. Control20125782106211029571841369.93128 – reference: RahmaniRMobayenSFekihARoJ-SRobust passivity cascade technique-based control using RBFN approximators for the stabilization of a cart inverted pendulumMathematics20219111229 – reference: KaramiHMobayenSLashkariMBayatFChangALMI-observer-based stabilizer for chaotic systems in the existence of a nonlinear function and perturbationMathematics20219101128 – reference: Liu, K.,Wang, Y., Ji, H.,Wang, S.: “Adaptive saturated tracking control for spacecraft proximityoperations via integral terminal sliding mode technique,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5774, (Sept. 2021) – reference: YuZZhangYJiangBSuC-YFuJJinYChaiTFractional order PID-based adaptive fault-tolerant cooperative control of networked unmanned aerial vehicles against actuator faults and wind effects with hardware-in-the-loop experimental validationControl. Eng. Pract.2021114104861 – reference: LiangXWangQHuCDongCFixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faultsAerosp. Sci. Technol.2020107106314 – reference: ZuoZNon-singular fixed-time terminal sliding mode control of non-linear systemsIET Control Theory Appl.2015945455523328478 – reference: MaDXiaYShenGJiangHHaoCPractical fixed-time disturbance rejection control for quadrotor attitude trackingIEEE Trans. Ind. Electron.202168872747283 – reference: TangPLinDZhengDFanSYeJObserver based finite-time fault tolerant quadrotor attitude control with actuator faultsAerosp. Sci. Technol.2020104105968 – reference: Chen, L., Liu, Z., Gao, H., Wang, G.: “Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2021.04.046, (2021) – reference: TangPLinDZhengDFanSYeJBack-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refuelingAerosp. Sci. Technol.2020104105968 – reference: SunRShanAZhangXWuJJiaQQuantized fault-tolerant control for attitude stabilization with fixed-time disturbance observerJ. Guid. Control. Dyn.2021442449455 – reference: ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamicsNonlinear Dyn.202010225832596 – reference: LabbadiMCherkaouiMAdaptive fractional-order nonsingular fast terminal sliding mode-based robust tracking control of quadrotor UAV with gaussian random disturbances and uncertaintiesIEEE Trans. Aerosp. Electron. Syst.202157422652277 – reference: YangHJiangYYinSAdaptive fuzzy fault tolerant control for Markov jump systems with additive and multiplicative actuator faultsIEEE Trans. Fuzzy Syst.2021294772785 – reference: Long, Y., Park, J.H., Ye, D.: “Asynchronous fault detection and isolation for Markov jump systems with actuator failures under networked environment,” IEEE Trans. Syst., Man, Cybern., Syst., 51(6), 3477–3887, (2021) – reference: ZhaoKMaDXiaYComposite disturbance rejection attitude control for quadrotor with unknown disturbanceIEEE Trans. Ind. Electron.202067868946903 – reference: ChenQXieSSunMHeXAdaptive nonsingular fixed-time attitude stabilization of uncertain spacecraftIEEE Trans. Aerosp. Electron. Syst.201854629372950 – reference: JainAKBhasinSTracking control of uncertain nonlinear systems with unknown constant input delayIEEE/CAA J. Autom. Sinica2020724204254086646 – reference: LiDLiuYTongSPhilip ChenCLLiDNeural networks-based adaptive control for nonlinear state constrained systems with input delayIEEE Trans. Cybern.201949412491258 – reference: Cui, G., Yang, W., Yu, J., Li, Z., Tao, C.: “Fixed-time prescribed performance adaptive trajectory tracking control for QUAV”, IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, https://doi.org/10.1109/TCSII.2021.3084240, (2021) – reference: Tripathi, V.K., Yogi, S.C., Kamath, A.K., Behera, L., Verma, N.K., Nahavandi, S.: “A disturbance observer-based intelligent finite-time sliding mode flight controller design for an autonomous quadrotor,” IEEE Syst. J., early access, https://doi.org/10.1109/JSYST.2021.3078826, (2021) – reference: Liu, K., Ji, H., Zhang, Y.: “Extended state observer based adaptive sliding mode tracking control of wheeled mobile robot with input saturation and uncertainties,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 233(15): 5460–5476, (2019) – reference: Fekih, A.: “Fault diagnosis and fault tolerant control design for aerospace systems: a bibliographical review,” in Proc. Amer. Control Conf. (ACC), pp. 1286–1291, (2014) – reference: Wang, Y., Zhang, J., Zhang, H., Xie, X.: “Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients,” IEEE Trans. Cybern., early access, https://doi.org/10.1109/TCYB.2020.3034146, (2020) – reference: Yu, Z., Zhang, Y., Jiang, B., Fu, J., Jin, Y., Chai, T.: “Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs,” IEEE Trans. Syst., Man, Cybern., Syst., early access, https://doi.org/10.1109/TSMC.2020.3010678, (2020) – reference: LiuKWangXWangRSunGWangXAntisaturation finite-time attitude tracking control based observer for a quadrotorIEEE Trans. Circuits Syst. II, Exp. Briefs202168620472051 – reference: ZhangQHeDDisturbance-observer-based adaptive fuzzy control for strict-feedback switched nonlinear systems with input delayIEEE Trans. Fuzzy Syst.202129719421952 – reference: LiuKWangRWangXWangXAnti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbancesAerosp. Sci. Technol.2021115106790 – reference: Sharma, M., Kar, I.: “Control of a quadrotor with network induced time delay,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2020.11.008, (May 2021) – reference: HuangYJiaYAdaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around missionIEEE Trans. Control Syst. Technol.201927417961804 – reference: SilvaALSantosDAFast nonsingular terminal sliding mode flight control for multirotor aerial vehiclesIEEE Trans. Aerosp. Electron. Syst.202056642884299 – reference: SobhanipourHAfzalianAAActive fault tolerant control for switched positive linear systemsInt. J. Robust Nonlin. Control201929144971498439943651426.93066 – reference: Liu, K., Gao, H., Ji, H., Hao, Z.: Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. Int. J. Control Autom. Syst. 18(5), 1288–1298 (2020) – reference: ZhuZXiaYFuMAdaptive sliding mode control for attitude stabilization with actuator saturationIEEE Trans. Ind. Electron.201158148984907 – reference: EsmaeilzadehSMGolestaniMMobayenSChattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraftInt. J. Control Autom. Syst.20211927677761455.93099 – reference: Zhao, J., Ding, X., Jiang, B., Jiang, G., Xie, F.: “A novel control strategy for quadrotors with variable mass and external disturbance,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5760, (Sept. 2021) – reference: DingBXuDJiangBShiPYangWDisturbance-observer-based terminal sliding mode control for linear traction system with prescribed performanceIEEE Trans. Transp. Electrific.202172649658 – reference: YangXWangYYangJWangTFault-tolerant control based on fixed-time observer for a 3-DOF helicopter systemInt. J. Control Autom. Syst.2020181229933000 – reference: WangNTongSLiYObserver-based adaptive fuzzy control of nonlinear non-strict feedback system with input delayInt. J. Fuzzy Syst.20182012362453782132 – reference: YaoXZhangLZhengWXUncertain disturbance rejection and attenuation for semi-Markov jump systems with application to 2-degree-freedom robot armIEEE Trans. Circuits Syst. I, Reg. Papers202168938363845 – reference: LiuXZhangMRogersEWangYYaoFTerminal sliding mode-based tracking control with error transformation for underwater vehiclesInt. J. Robust Nonlin. Control20213115718672064335290 – reference: Guerrero-Sánchez, M.E., Hernández-González, O., Valencia-Palomo, G., Mercado-Ravell, D.A. , López-Estrada, F.R., Hoyo-Montaño, J.A.: “Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load,” Nonlinear Dyn., early access, https://doi.org/10.1007/s11071-021-06776-7, (Aug. 2021) – reference: SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor uavs: a more affordable solutionIEEE Trans. Control Netw. Syst.2019307197519833978158 – reference: NguyenCMTanCPTrinhHSliding mode observer for estimating states and faults of linear time-delay systems with outputs subject to delaysAutomatica202112410927441930011461.93072 – reference: ChenQXieSHeXNeural-network-based adaptive singularity-free fixed-time attitude tracking control for spacecraftsIEEE Trans. Cybern.202151105032505 – reference: ZuoZNonsingular fixed-time consensus tracking for second-order multi-agent networksAutomatica20155430530933245351318.93010 – reference: VaseghiBMobayenSEsmaeilzadehSMFekihAFast reaching finite time synchronization approach for chaotic systems with application in medical image encryptionIEEE Access202192591125925 – reference: Xu, D., Ding, B., Jiang, B., Yang, W., Yang, W., Shi, P.: “Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer,” IEEE/ASME Trans. Mechatronics, early access, https://doi.org/10.1109/TMECH.2021.3086527, (2021) – reference: YuZQuYZhangYDistributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturationIEEE Trans. Control Syst. Technol.201927624172429 – reference: YuZLiuZZhangYQuYSuC-YDistributed finite-time fault-tolerant containment control for multiple unmanned aerial vehiclesIEEE Trans. Neural Netw. Learn. Syst.2020316207720904112520 – reference: SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solutionIEEE Trans. Neural Netw. Learn. Syst.2019307197519833978158 – reference: ZhaoZWangXYaoPXuJYuJFuzzy health degree-based dynamic performance evaluation of quadrotors in the presence of actuator and sensor faultsNonlinear Dyn.20199524772490 – reference: TianBZuoZYanXWangHA fixed-time output feedback control scheme for double integrator systemsAutomatica201780172436380521370.93202 – reference: Liu, K., Wang, R.: “Antisaturation command filtered backstepping control based disturbance rejection for a quadarotor UAV,” IEEE Trans. Circuits Syst. II: Express Briefs, to be published, https://doi.org/10.1109/TCSII.2021.3069967 – reference: ZhouJChengYDuHWuDZhuMLinXAdaptive finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturationJ. Frankl. Inst.202035711153111701450.93039 – volume: 9 start-page: 1128 issue: 10 year: 2021 ident: 7080_CR9 publication-title: Mathematics doi: 10.3390/math9101128 – volume: 54 start-page: 2937 issue: 6 year: 2018 ident: 7080_CR23 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2832998 – ident: 7080_CR3 doi: 10.1109/TCSII.2021.3069967 – volume: 7 start-page: 420 issue: 2 year: 2020 ident: 7080_CR41 publication-title: IEEE/CAA J. Autom. Sinica doi: 10.1109/JAS.2019.1911807 – volume: 58 start-page: 4898 issue: 1 year: 2011 ident: 7080_CR57 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2107719 – volume: 124 start-page: 109274 year: 2021 ident: 7080_CR42 publication-title: Automatica doi: 10.1016/j.automatica.2020.109274 – volume: 9 start-page: 545 issue: 4 year: 2015 ident: 7080_CR22 publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2014.0202 – volume: 27 start-page: 1796 issue: 4 year: 2019 ident: 7080_CR16 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2018.2812758 – ident: 7080_CR39 doi: 10.1109/TCYB.2020.3034146 – ident: 7080_CR25 doi: 10.1109/ACC.2014.6859271 – volume: 44 start-page: 449 issue: 2 year: 2021 ident: 7080_CR20 publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.G005465 – ident: 7080_CR4 doi: 10.1016/j.isatra.2020.11.008 – ident: 7080_CR8 doi: 10.1177/0954406219849445 – ident: 7080_CR26 doi: 10.1109/TSMC.2019.2930995 – volume: 56 start-page: 4288 issue: 6 year: 2020 ident: 7080_CR2 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2020.2988836 – volume: 68 start-page: 3836 issue: 9 year: 2021 ident: 7080_CR10 publication-title: IEEE Trans. Circuits Syst. I, Reg. Papers doi: 10.1109/TCSI.2021.3091533 – volume: 30 start-page: 1975 issue: 7 year: 2019 ident: 7080_CR33 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876130 – volume: 30 start-page: 1975 issue: 7 year: 2019 ident: 7080_CR11 publication-title: IEEE Trans. Control Netw. Syst. – ident: 7080_CR17 doi: 10.1109/TCSII.2021.3084240 – volume: 57 start-page: 2265 issue: 4 year: 2021 ident: 7080_CR54 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3053109 – volume: 107 start-page: 106314 year: 2020 ident: 7080_CR18 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106314 – volume: 20 start-page: 236 issue: 1 year: 2018 ident: 7080_CR37 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0388-9 – volume: 31 start-page: 7186 issue: 15 year: 2021 ident: 7080_CR55 publication-title: Int. J. Robust Nonlin. Control doi: 10.1002/rnc.5653 – volume: 100 start-page: 2609 year: 2020 ident: 7080_CR40 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05674-8 – volume: 29 start-page: 1942 issue: 7 year: 2021 ident: 7080_CR35 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2989265 – ident: 7080_CR15 doi: 10.1007/s12555-019-0262-7 – volume: 67 start-page: 6894 issue: 8 year: 2020 ident: 7080_CR47 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2937065 – ident: 7080_CR12 doi: 10.1002/rnc.5774 – volume: 80 start-page: 17 year: 2017 ident: 7080_CR21 publication-title: Automatica doi: 10.1016/j.automatica.2017.01.007 – volume: 104 start-page: 105968 year: 2020 ident: 7080_CR43 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105968 – volume: 19 start-page: 767 issue: 2 year: 2021 ident: 7080_CR34 publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-020-0043-3 – volume: 29 start-page: 772 issue: 4 year: 2021 ident: 7080_CR51 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2965884 – volume: 7 start-page: 649 issue: 2 year: 2021 ident: 7080_CR46 publication-title: IEEE Trans. Transp. Electrific. doi: 10.1109/TTE.2020.3027367 – volume: 54 start-page: 305 year: 2015 ident: 7080_CR53 publication-title: Automatica doi: 10.1016/j.automatica.2015.01.021 – volume: 9 start-page: 1229 issue: 11 year: 2021 ident: 7080_CR7 publication-title: Mathematics doi: 10.3390/math9111229 – ident: 7080_CR6 doi: 10.1016/j.isatra.2021.04.046 – ident: 7080_CR30 doi: 10.1109/TSMC.2020.3010678 – volume: 68 start-page: 2047 issue: 6 year: 2021 ident: 7080_CR56 publication-title: IEEE Trans. Circuits Syst. II, Exp. Briefs – volume: 51 start-page: 5032 issue: 10 year: 2021 ident: 7080_CR24 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3024672 – volume: 18 start-page: 2993 issue: 12 year: 2020 ident: 7080_CR38 publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-018-0849-4 – ident: 7080_CR50 doi: 10.1109/JSYST.2021.3078826 – volume: 57 start-page: 2106 issue: 8 year: 2012 ident: 7080_CR13 publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2179869 – volume: 357 start-page: 11153 year: 2020 ident: 7080_CR44 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.05.018 – volume: 115 start-page: 106790 year: 2021 ident: 7080_CR52 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106790 – volume: 95 start-page: 2477 year: 2019 ident: 7080_CR32 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4711-2 – volume: 29 start-page: 4971 issue: 14 year: 2019 ident: 7080_CR27 publication-title: Int. J. Robust Nonlin. Control doi: 10.1002/rnc.4662 – volume: 27 start-page: 2417 issue: 6 year: 2019 ident: 7080_CR28 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2018.2868038 – volume: 31 start-page: 2077 issue: 6 year: 2020 ident: 7080_CR29 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2927887 – volume: 9 start-page: 25911 year: 2021 ident: 7080_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056037 – volume: 114 start-page: 104861 year: 2021 ident: 7080_CR31 publication-title: Control. Eng. Pract. doi: 10.1016/j.conengprac.2021.104861 – volume: 104 start-page: 105968 year: 2020 ident: 7080_CR45 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105968 – volume: 49 start-page: 1249 issue: 4 year: 2019 ident: 7080_CR36 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2799683 – volume: 68 start-page: 7274 issue: 8 year: 2021 ident: 7080_CR19 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3001800 – volume: 102 start-page: 2583 year: 2020 ident: 7080_CR48 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06050-2 – ident: 7080_CR1 doi: 10.1007/s11071-021-06776-7 – ident: 7080_CR5 doi: 10.1002/rnc.5760 – ident: 7080_CR49 doi: 10.1109/TMECH.2021.3086527 |
| SSID | ssj0003208 |
| Score | 2.5990999 |
| Snippet | This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2363 |
| SubjectTerms | Actuators Automotive Engineering Classical Mechanics Continuity (mathematics) Control Delay Disturbance observers Dynamical Systems Engineering Fault tolerance Feedback control Initial conditions Mechanical Engineering Original Paper Pade approximation Robust control Sliding mode control Tracking control Tracking errors Unmanned aerial vehicles Unmanned helicopters Vibration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VwIEeSnmpKbTaAzdYYdaP3ZwqQEQ9VBGqAOVm7cOWIkVxsNcITvz1zjgbQivBpQcfLNsrSzM738zszDcAR8pJIUrreKql5slZabmyieOmHGQDG8U260h97n7J0UiNx4PrkHBrQlnl0iZ2htpVlnLkpyJDQ0rkUNGP-T2nqVF0uhpGaKzBOjGVJT1Yv7gaXf9-scWx6GbSRRhlUEZiHNpmFs1zGPlgKC3wkug38ehvaFr5m_8ckXbIM9z633_-DJ-Cz8nOF0qyDR-K2Q5sBf-Thd3d7MDHV-SEu_A8nDwWjtPweeZQGdrakIawylAit6g5AaBjdWXaxrNSt1PPfTUtEPw887W2lIRnoRSeoW_MEEIXBQjsvtWurjDcZ7fnd6xpDWWDmK_YZDZvPSPmyqc9uB1e3Vz-5GFcA7e4jz1XymljJDGSoWak2nUAKbQuhJYyNko6VRohrHRRSq5kKjTeov_okkGhsngferNqVnyhRvIkdanKnCJGOGFVUhoTa43QifFNVvbhbCmp3AYucxqpMc1XLMwk3Rylm3fSzaM-HL98M18webz79uFSpHnY1U2-kmcfTpZKsXr89mpf31_tADYFdVV0xeCH0PN1W3yDDfvgJ039Pej0Hwpp_Zo priority: 102 providerName: ProQuest |
| Title | Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay |
| URI | https://link.springer.com/article/10.1007/s11071-021-07080-0 https://www.proquest.com/docview/2628404120 |
| Volume | 107 |
| WOSCitedRecordID | wos000744456800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-269X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-269X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW3wuOXjTwJo-kj2quHiQRXwseyt5tLCwbNc2FT35153ppq6KCnrooSQNJcnkm5nMfEPIkbSC88xYFimhWHiaGSZNaJnOOnHHtAMT16Q-_WvR68nBoHPjk8LKJtq9uZKsT-pZshtYKmD6cngE6DkMDPUFgDuJ4nh7138_fwNe16Frg2WBXoiBT5X5fozPcDTTMb9ci9Zo013933-ukRWvXdKz6XZYJ3PpeIOsek2TejkuN8jyBxrCTfLaHT6nlmGZeWph2atC416guUaXbVowhDpLi1xXpaOZqkaOuXyUAsw56gpl0N1OfdA7BS2YAlhOQw3oY6VskYNhTx_O-rSsNPp9qMvpcDypHEWOypct8tC9vL-4Yr4wAzMgsY5JaZXWArnHYA9EytZQyJVKuRIi0FJYmWnOjbDtCJXGiCt4BU3Rhp1UxsE2mR_n43QHU8bDyEYythK537iRYaZ1oBSAJFgycbZLTpv1SYxnLcfiGaNkxreM853AfCf1fCftXXL8_s1kytnxa--DZtkTL79lwmOAbaQig-aTZplnzT-Ptve37vtkiWM-RR0GfkDmXVGlh2TRPLlhWbTIwvll7-a2hQGpd616l78BitH0zw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQSwv4ACewSJ2X91ChCli16rJCoq32FvyKtNKy2SYO0BP_qL-xM3l0AYneeuCQQ16W4nwef2PPfAPwUtpUiNxYHqtU8WgnN1yayHKdD5OhCUKTNKI-J-N0MpHT6fDzGpz3uTAUVtnbxMZQ28LQGvlbkaAhJXGo4N3ylFPVKNpd7UtotLA4dGc_0GWrdg8-4P99JcTo49H7fd5VFeAG4ea5lFZpnZJwFn5ArGxjx4VSTqg0DbVMrcy1ECa1QUyMJxYKT5Hm2GjoZBJiuzfgZkRvNaGCXy4tfyiaCngB-jS0_jHtknTaVD30s9BxF3ikyNJ48OdEuGK3f23INvPcaON_66H7cK9j1GyvHQIPYM0tNmGjY9ess13VJtz9TXrxIfwazX46y_3sm2MWoV6XmvDPCk3L1K7kNL1bVha6rjzLVT333Bdzh1O7Z75UhrYYWBfoz5D5MyQIbXgFO62VLQuP1473TlhVa1rrYr5gs8Wy9ox0Oc8ewfG1dMpjWF8UC_eE0uSj2MYysZL07oSRUa51qBQSA_TeknwAOz0yMtMptVPBkHm20pgmNGWIpqxBUxYM4PXlO8tWp-TKp7d7CGWdzaqyFX4G8KYH4er2v1t7enVrL-D2_tGncTY-mBxuwR1B-SNN2Ps2rPuyds_glvnuZ1X5vBlNDL5eNzgvAPVDWAk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iInrwLb7NwZsGd9NHskdRF0VZBHXZW8mjhYWlXdtU9ORfd6bbdVVUEA89lDwoyaTfzGTmG0IOpRWcJ8ayQAnF_GZimDS-ZTpphS3T8ExYkfp0b0SnI3u91u2HLP4q2n18JTnKaUCWptSdDG1yMkl8A6sFzGAOjwCdh4HRPuNj0SC01--67_9ij1c16RpgZaBHolenzXw_x2domuibX65IK-RpL_3_m5fJYq110tORmKyQqThdJUu1Bkrr812skoUP9IRr5LXdf44tw_Lz1II4lLlGGaGZRldunDOEQEvzTJeFo4kqB465bBAD_DnqcmXQDU_rYHgK2jEFEB2FINDHUtk8A4OfPpx2aVFq9AdRl9F-OiwdRe7Kl3Xy0L64P7tkdcEGZuAkOyalVVoL5CQD2QiUrSCSKxVzJYSnpbAy0ZwbYRsBKpMBV_AKGqT1W7EMvQ0ynWZpvImp5H5gAxlaiZxw3Eg_0dpTCsATLJww2SLN8V5FpmYzx6Iag2jCw4zrHcF6R9V6R40tcvQ-Zjji8vi19-5YBKL6XBcRDwHOkaIMmo_HWz5p_nm27b91PyBzt-ft6Oaqc71D5jmmXFSR4rtk2uVlvEdmzZPrF_l-Je5vL1r-BQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fixed-time+disturbance+observer-based+robust+fault-tolerant+tracking+control+for+uncertain+quadrotor+UAV+subject+to+input+delay&rft.jtitle=Nonlinear+dynamics&rft.au=Liu%2C+Kang&rft.au=Wang%2C+Rujing&rft.au=Zheng%2C+Shijian&rft.au=Dong%2C+Shifeng&rft.date=2022-02-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=3&rft.spage=2363&rft.epage=2390&rft_id=info:doi/10.1007%2Fs11071-021-07080-0&rft.externalDocID=10_1007_s11071_021_07080_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |