Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay

This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned aerial vehicle (UAV), which allows the quadrotor UAV to track a presupposed trajectory despite the simultaneous existence of model uncertainti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear dynamics Ročník 107; číslo 3; s. 2363 - 2390
Hlavní autori: Liu, Kang, Wang, Rujing, Zheng, Shijian, Dong, Shifeng, Sun, Guowei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.02.2022
Springer Nature B.V
Predmet:
ISSN:0924-090X, 1573-269X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned aerial vehicle (UAV), which allows the quadrotor UAV to track a presupposed trajectory despite the simultaneous existence of model uncertainties, external disturbances, actuator faults, and input delay. First of all, the combination of Pade approximation and an intermediate variable is employed to reduce the complexity of studying the quadrotor system with input delay. Secondly, the fixed-time disturbance observer is proposed to eliminate the effects of the composite disturbances without requiring some serious assumptions. Subsequently, the new nonsingular fixed-time sliding mode manifold and the auxiliary system are developed to overcome the singular problem without any piecewise continuous functions. In the sense of the Lyapunov theorem, it is proved that the tracking errors of the closed-loop system converge to the origin within a fixed time regardless of the initial conditions. Eventually, extensive comparative simulations are performed to manifest the feasibility and validity of the proposed control strategy in terms of disturbance rejection, fault-tolerance, chattering elimination, and singularity-free.
AbstractList This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned aerial vehicle (UAV), which allows the quadrotor UAV to track a presupposed trajectory despite the simultaneous existence of model uncertainties, external disturbances, actuator faults, and input delay. First of all, the combination of Pade approximation and an intermediate variable is employed to reduce the complexity of studying the quadrotor system with input delay. Secondly, the fixed-time disturbance observer is proposed to eliminate the effects of the composite disturbances without requiring some serious assumptions. Subsequently, the new nonsingular fixed-time sliding mode manifold and the auxiliary system are developed to overcome the singular problem without any piecewise continuous functions. In the sense of the Lyapunov theorem, it is proved that the tracking errors of the closed-loop system converge to the origin within a fixed time regardless of the initial conditions. Eventually, extensive comparative simulations are performed to manifest the feasibility and validity of the proposed control strategy in terms of disturbance rejection, fault-tolerance, chattering elimination, and singularity-free.
Author Liu, Kang
Wang, Rujing
Sun, Guowei
Zheng, Shijian
Dong, Shifeng
Author_xml – sequence: 1
  givenname: Kang
  orcidid: 0000-0003-2881-5095
  surname: Liu
  fullname: Liu, Kang
  email: xinxilk@mail.ustc.edu.cn
  organization: Institute of Intelligent Machines, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 2
  givenname: Rujing
  surname: Wang
  fullname: Wang, Rujing
  email: rjwang@iim.ac.cn
  organization: Institute of Intelligent Machines, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Department of Automation, University of Science and Technology of China, Institutes of Physical Science and Information Technology, Anhui University
– sequence: 3
  givenname: Shijian
  surname: Zheng
  fullname: Zheng, Shijian
  organization: Department of Control Science and Engineering, School of Information Engineering, Southwest University of Science and Technology
– sequence: 4
  givenname: Shifeng
  surname: Dong
  fullname: Dong, Shifeng
  organization: Institute of Intelligent Machines, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 5
  givenname: Guowei
  surname: Sun
  fullname: Sun, Guowei
  organization: Department of Electronic Engineering, School of Information Science and Engineering, Fudan University
BookMark eNp9kM9rFTEQgINU8LX6D3gKeI5Okt2X7LEUa4WCFyu9hckmW_LcJq_5IfbUf908n1Dw0MMwzDDfzPCdkpOYoifkPYePHEB9KpyD4gxEDwUaGLwiGz4qycR2uj0hG5jEwGCC2zfktJQdAEgBekOeLsNv71gN9566UGrLFuPsabLF518-M4vFO5qTbaXSBdtaWU2rzxgrrRnnnyHe0TnFmtNKl5Rp63iuGCJ9aOhyqr13c_6DlmZ3fu5QoiHuW6XOr_j4lrxecC3-3b98Rm4uP3-_uGLX3758vTi_ZrPkU2VaO7RWccHBWz-ikwOXIBC9QKWk1crpxQoxKwcjwDCOAnspxdYNk9dbeUY-HPfuc3povlSzSy3HftKIrdADDFxAnxLHqTmnUrJfzD6He8yPhoM5iDZH0aaLNn9FmwOk_4PmULGGgxMM68uoPKKl34l3Pj9_9QL1B-K4lrM
CitedBy_id crossref_primary_10_1109_TAES_2023_3308552
crossref_primary_10_1016_j_ast_2025_110868
crossref_primary_10_1016_j_ijhydene_2023_11_264
crossref_primary_10_1016_j_jfranklin_2024_106833
crossref_primary_10_1109_TIE_2023_3277090
crossref_primary_10_1002_acs_3925
crossref_primary_10_1007_s10489_025_06655_3
crossref_primary_10_1016_j_ast_2024_109596
crossref_primary_10_1007_s11071_025_11021_6
crossref_primary_10_1016_j_isatra_2024_02_012
crossref_primary_10_3390_act13060217
crossref_primary_10_1007_s11071_024_09691_9
crossref_primary_10_3390_pr12112431
crossref_primary_10_1016_j_ast_2023_108668
crossref_primary_10_1016_j_conengprac_2025_106526
crossref_primary_10_1109_TSMC_2025_3539707
crossref_primary_10_3390_math11040994
crossref_primary_10_1109_TFUZZ_2024_3486750
crossref_primary_10_1016_j_jfranklin_2023_11_020
crossref_primary_10_1108_AEAT_04_2024_0121
crossref_primary_10_3390_drones9040232
crossref_primary_10_1002_eng2_70215
crossref_primary_10_3390_aerospace10060537
crossref_primary_10_1371_journal_pone_0300305
crossref_primary_10_1007_s11071_025_11485_6
crossref_primary_10_3390_s22145082
crossref_primary_10_1016_j_ast_2024_109426
crossref_primary_10_3390_app13010670
crossref_primary_10_1007_s11071_024_10029_8
crossref_primary_10_1080_00207721_2023_2178863
crossref_primary_10_1177_01423312241264070
crossref_primary_10_1007_s11071_024_10791_9
crossref_primary_10_1177_10775463241247258
crossref_primary_10_3390_drones7070420
crossref_primary_10_1177_10775463251329834
crossref_primary_10_1016_j_ast_2022_107848
crossref_primary_10_3390_drones7110665
crossref_primary_10_1016_j_dt_2024_04_009
crossref_primary_10_1016_j_ast_2025_110792
crossref_primary_10_3390_drones7080496
crossref_primary_10_1007_s11071_025_11201_4
crossref_primary_10_1016_j_ast_2025_110079
crossref_primary_10_3390_drones7080495
crossref_primary_10_1016_j_ast_2024_109138
crossref_primary_10_1016_j_jfranklin_2024_107506
crossref_primary_10_3390_drones8010025
crossref_primary_10_3390_electronics12214415
crossref_primary_10_1002_asjc_3350
crossref_primary_10_1016_j_ast_2024_109019
crossref_primary_10_1109_TVT_2025_3554972
crossref_primary_10_1109_TCSII_2022_3167532
crossref_primary_10_3390_machines10070551
crossref_primary_10_1002_rnc_7932
crossref_primary_10_1049_cth2_70031
crossref_primary_10_1007_s11071_024_09504_z
crossref_primary_10_1016_j_isatra_2024_12_003
crossref_primary_10_1109_ACCESS_2023_3345250
crossref_primary_10_3390_drones7070474
crossref_primary_10_1016_j_ast_2024_108968
crossref_primary_10_1080_00207721_2024_2429802
crossref_primary_10_1016_j_neucom_2023_127037
crossref_primary_10_3390_pr11123267
crossref_primary_10_3390_app15116352
crossref_primary_10_1016_j_ast_2025_110042
crossref_primary_10_3390_act12070265
crossref_primary_10_1177_01423312231161140
crossref_primary_10_1038_s41598_025_98443_9
crossref_primary_10_3390_pr11113095
crossref_primary_10_1016_j_ast_2025_110616
crossref_primary_10_1109_TCSII_2022_3172417
crossref_primary_10_1016_j_jfranklin_2025_107515
crossref_primary_10_3390_aerospace10090747
crossref_primary_10_3390_machines11070672
crossref_primary_10_1109_ACCESS_2025_3559180
crossref_primary_10_1007_s10489_025_06784_9
crossref_primary_10_1007_s11071_025_11596_0
crossref_primary_10_1007_s44245_024_00036_9
crossref_primary_10_3390_math11092193
crossref_primary_10_1002_rnc_7571
crossref_primary_10_1016_j_ejcon_2023_100879
crossref_primary_10_3390_math11040991
crossref_primary_10_1007_s11071_024_10826_1
crossref_primary_10_1109_TCSII_2023_3331825
crossref_primary_10_1016_j_automatica_2025_112540
crossref_primary_10_1017_aer_2024_19
crossref_primary_10_1088_1361_6501_ad4627
crossref_primary_10_1177_14644193241229558
crossref_primary_10_1109_TIV_2023_3333888
Cites_doi 10.3390/math9101128
10.1109/TAES.2018.2832998
10.1109/TCSII.2021.3069967
10.1109/JAS.2019.1911807
10.1109/TIE.2011.2107719
10.1016/j.automatica.2020.109274
10.1049/iet-cta.2014.0202
10.1109/TCST.2018.2812758
10.1109/TCYB.2020.3034146
10.1109/ACC.2014.6859271
10.2514/1.G005465
10.1016/j.isatra.2020.11.008
10.1177/0954406219849445
10.1109/TSMC.2019.2930995
10.1109/TAES.2020.2988836
10.1109/TCSI.2021.3091533
10.1109/TNNLS.2018.2876130
10.1109/TCSII.2021.3084240
10.1109/TAES.2021.3053109
10.1016/j.ast.2020.106314
10.1007/s40815-017-0388-9
10.1002/rnc.5653
10.1007/s11071-020-05674-8
10.1109/TFUZZ.2020.2989265
10.1007/s12555-019-0262-7
10.1109/TIE.2019.2937065
10.1002/rnc.5774
10.1016/j.automatica.2017.01.007
10.1016/j.ast.2020.105968
10.1007/s12555-020-0043-3
10.1109/TFUZZ.2020.2965884
10.1109/TTE.2020.3027367
10.1016/j.automatica.2015.01.021
10.3390/math9111229
10.1016/j.isatra.2021.04.046
10.1109/TSMC.2020.3010678
10.1109/TCYB.2020.3024672
10.1007/s12555-018-0849-4
10.1109/JSYST.2021.3078826
10.1109/TAC.2011.2179869
10.1016/j.jfranklin.2019.05.018
10.1016/j.ast.2021.106790
10.1007/s11071-018-4711-2
10.1002/rnc.4662
10.1109/TCST.2018.2868038
10.1109/TNNLS.2019.2927887
10.1109/ACCESS.2021.3056037
10.1016/j.conengprac.2021.104861
10.1109/TCYB.2018.2799683
10.1109/TIE.2020.3001800
10.1007/s11071-020-06050-2
10.1007/s11071-021-06776-7
10.1002/rnc.5760
10.1109/TMECH.2021.3086527
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-021-07080-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 2390
ExternalDocumentID 10_1007_s11071_021_07080_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31671586
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-88dabb71210ebe5ad341302aae2a773b87d8fb22c7d05004552ab22326d49e863
IEDL.DBID RSV
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744456800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 09:32:33 EST 2025
Sat Nov 29 03:06:31 EST 2025
Tue Nov 18 21:45:48 EST 2025
Fri Feb 21 02:47:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Quadrotor UAV
Disturbance observer
Fixed-time stability
Nonsingular fixed-time sliding mode control
Fault-tolerant control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-88dabb71210ebe5ad341302aae2a773b87d8fb22c7d05004552ab22326d49e863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2881-5095
PQID 2628404120
PQPubID 2043746
PageCount 28
ParticipantIDs proquest_journals_2628404120
crossref_primary_10_1007_s11071_021_07080_0
crossref_citationtrail_10_1007_s11071_021_07080_0
springer_journals_10_1007_s11071_021_07080_0
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References EsmaeilzadehSMGolestaniMMobayenSChattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraftInt. J. Control Autom. Syst.20211927677761455.93099
Chen, L., Liu, Z., Gao, H., Wang, G.: “Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2021.04.046, (2021)
Wang, Y., Zhang, J., Zhang, H., Xie, X.: “Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients,” IEEE Trans. Cybern., early access, https://doi.org/10.1109/TCYB.2020.3034146, (2020)
LiuXZhangMRogersEWangYYaoFTerminal sliding mode-based tracking control with error transformation for underwater vehiclesInt. J. Robust Nonlin. Control20213115718672064335290
WangNTongSLiYObserver-based adaptive fuzzy control of nonlinear non-strict feedback system with input delayInt. J. Fuzzy Syst.20182012362453782132
ZuoZNonsingular fixed-time consensus tracking for second-order multi-agent networksAutomatica20155430530933245351318.93010
YuZZhangYJiangBSuC-YFuJJinYChaiTFractional order PID-based adaptive fault-tolerant cooperative control of networked unmanned aerial vehicles against actuator faults and wind effects with hardware-in-the-loop experimental validationControl. Eng. Pract.2021114104861
KeighobadiJFatehMMXuBAdaptive fuzzy voltage-based backstepping tracking control for uncertain robotic manipulators subject to partial state constraints and input delayNonlinear Dyn.202010026092634
Liu, K., Wang, R.: “Antisaturation command filtered backstepping control based disturbance rejection for a quadarotor UAV,” IEEE Trans. Circuits Syst. II: Express Briefs, to be published, https://doi.org/10.1109/TCSII.2021.3069967
LiangXWangQHuCDongCFixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faultsAerosp. Sci. Technol.2020107106314
YangHJiangYYinSAdaptive fuzzy fault tolerant control for Markov jump systems with additive and multiplicative actuator faultsIEEE Trans. Fuzzy Syst.2021294772785
Guerrero-Sánchez, M.E., Hernández-González, O., Valencia-Palomo, G., Mercado-Ravell, D.A. , López-Estrada, F.R., Hoyo-Montaño, J.A.: “Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load,” Nonlinear Dyn., early access, https://doi.org/10.1007/s11071-021-06776-7, (Aug. 2021)
LiuKWangXWangRSunGWangXAntisaturation finite-time attitude tracking control based observer for a quadrotorIEEE Trans. Circuits Syst. II, Exp. Briefs202168620472051
LiDLiuYTongSPhilip ChenCLLiDNeural networks-based adaptive control for nonlinear state constrained systems with input delayIEEE Trans. Cybern.201949412491258
VaseghiBMobayenSEsmaeilzadehSMFekihAFast reaching finite time synchronization approach for chaotic systems with application in medical image encryptionIEEE Access202192591125925
Yu, Z., Zhang, Y., Jiang, B., Fu, J., Jin, Y., Chai, T.: “Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs,” IEEE Trans. Syst., Man, Cybern., Syst., early access, https://doi.org/10.1109/TSMC.2020.3010678, (2020)
Liu, K., Gao, H., Ji, H., Hao, Z.: Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. Int. J. Control Autom. Syst. 18(5), 1288–1298 (2020)
HuangYJiaYAdaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around missionIEEE Trans. Control Syst. Technol.201927417961804
Tripathi, V.K., Yogi, S.C., Kamath, A.K., Behera, L., Verma, N.K., Nahavandi, S.: “A disturbance observer-based intelligent finite-time sliding mode flight controller design for an autonomous quadrotor,” IEEE Syst. J., early access, https://doi.org/10.1109/JSYST.2021.3078826, (2021)
Xu, D., Ding, B., Jiang, B., Yang, W., Yang, W., Shi, P.: “Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer,” IEEE/ASME Trans. Mechatronics, early access, https://doi.org/10.1109/TMECH.2021.3086527, (2021)
MaDXiaYShenGJiangHHaoCPractical fixed-time disturbance rejection control for quadrotor attitude trackingIEEE Trans. Ind. Electron.202168872747283
LabbadiMCherkaouiMAdaptive fractional-order nonsingular fast terminal sliding mode-based robust tracking control of quadrotor UAV with gaussian random disturbances and uncertaintiesIEEE Trans. Aerosp. Electron. Syst.202157422652277
TangPLinDZhengDFanSYeJObserver based finite-time fault tolerant quadrotor attitude control with actuator faultsAerosp. Sci. Technol.2020104105968
ZhouJChengYDuHWuDZhuMLinXAdaptive finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturationJ. Frankl. Inst.202035711153111701450.93039
SobhanipourHAfzalianAAActive fault tolerant control for switched positive linear systemsInt. J. Robust Nonlin. Control201929144971498439943651426.93066
Fekih, A.: “Fault diagnosis and fault tolerant control design for aerospace systems: a bibliographical review,” in Proc. Amer. Control Conf. (ACC), pp. 1286–1291, (2014)
ZhuZXiaYFuMAdaptive sliding mode control for attitude stabilization with actuator saturationIEEE Trans. Ind. Electron.201158148984907
ZhaoKMaDXiaYComposite disturbance rejection attitude control for quadrotor with unknown disturbanceIEEE Trans. Ind. Electron.202067868946903
Cui, G., Yang, W., Yu, J., Li, Z., Tao, C.: “Fixed-time prescribed performance adaptive trajectory tracking control for QUAV”, IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, https://doi.org/10.1109/TCSII.2021.3084240, (2021)
Liu, K.,Wang, Y., Ji, H.,Wang, S.: “Adaptive saturated tracking control for spacecraft proximityoperations via integral terminal sliding mode technique,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5774, (Sept. 2021)
JainAKBhasinSTracking control of uncertain nonlinear systems with unknown constant input delayIEEE/CAA J. Autom. Sinica2020724204254086646
LiuKWangRWangXWangXAnti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbancesAerosp. Sci. Technol.2021115106790
YaoXZhangLZhengWXUncertain disturbance rejection and attenuation for semi-Markov jump systems with application to 2-degree-freedom robot armIEEE Trans. Circuits Syst. I, Reg. Papers202168938363845
YangXWangYYangJWangTFault-tolerant control based on fixed-time observer for a 3-DOF helicopter systemInt. J. Control Autom. Syst.2020181229933000
SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solutionIEEE Trans. Neural Netw. Learn. Syst.2019307197519833978158
YuZQuYZhangYDistributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturationIEEE Trans. Control Syst. Technol.201927624172429
DingBXuDJiangBShiPYangWDisturbance-observer-based terminal sliding mode control for linear traction system with prescribed performanceIEEE Trans. Transp. Electrific.202172649658
SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor uavs: a more affordable solutionIEEE Trans. Control Netw. Syst.2019307197519833978158
RahmaniRMobayenSFekihARoJ-SRobust passivity cascade technique-based control using RBFN approximators for the stabilization of a cart inverted pendulumMathematics20219111229
Liu, K., Ji, H., Zhang, Y.: “Extended state observer based adaptive sliding mode tracking control of wheeled mobile robot with input saturation and uncertainties,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 233(15): 5460–5476, (2019)
Sharma, M., Kar, I.: “Control of a quadrotor with network induced time delay,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2020.11.008, (May 2021)
YuZLiuZZhangYQuYSuC-YDistributed finite-time fault-tolerant containment control for multiple unmanned aerial vehiclesIEEE Trans. Neural Netw. Learn. Syst.2020316207720904112520
ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamicsNonlinear Dyn.202010225832596
NguyenCMTanCPTrinhHSliding mode observer for estimating states and faults of linear time-delay systems with outputs subject to delaysAutomatica202112410927441930011461.93072
SunRShanAZhangXWuJJiaQQuantized fault-tolerant control for attitude stabilization with fixed-time disturbance observerJ. Guid. Control. Dyn.2021442449455
ZhangQHeDDisturbance-observer-based adaptive fuzzy control for strict-feedback switched nonlinear systems with input delayIEEE Trans. Fuzzy Syst.202129719421952
PolyakovANonlinear feedback design for fixed-time stabilization of linear control systemsIEEE Trans. Automat. Control20125782106211029571841369.93128
Zhao, J., Ding, X., Jiang, B., Jiang, G., Xie, F.: “A novel control strategy for quadrotors with variable mass and external disturbance,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5760, (Sept. 2021)
SilvaALSantosDAFast nonsingular terminal sliding mode flight control for multirotor aerial vehiclesIEEE Trans. Aerosp. Electron. Syst.202056642884299
KaramiHMobayenSLashkariMBayatFChangALMI-observer-based stabilizer for chaotic systems in the existence of a nonlinear function and perturbationMathematics20219101128
ZhaoZWangXYaoPXuJYuJFuzzy health degree-based dynamic performance evaluation of quadrotors in the presence of actuator and sensor faultsNonlinear Dyn.20199524772490
TianBZuoZYanXWangHA fixed-time output feedback control scheme for double integrator systemsAutomatica201780172436380521370.93202
ZuoZNon-singular fixed-time terminal sliding mode control of non-linear systemsIET Control Theory Appl.2015945455523328478
ChenQXieSSunMHeXAdaptive nonsingular fixed-time attitude stabilization of uncertain spacecraftIEEE Trans. Aerosp. Electron. Syst.201854629372950
ChenQXieSHeXNeural-network-based adaptive singularity-free fixed-time attitude tracking control f
R Rahmani (7080_CR7) 2021; 9
Z Yu (7080_CR28) 2019; 27
A Polyakov (7080_CR13) 2012; 57
P Tang (7080_CR45) 2020; 104
H Karami (7080_CR9) 2021; 9
Y Song (7080_CR11) 2019; 30
SM Esmaeilzadeh (7080_CR34) 2021; 19
X Liu (7080_CR55) 2021; 31
7080_CR39
7080_CR8
Z Zhao (7080_CR32) 2019; 95
7080_CR6
7080_CR5
Z Zuo (7080_CR22) 2015; 9
Y Song (7080_CR33) 2019; 30
7080_CR4
7080_CR3
7080_CR1
Q Chen (7080_CR24) 2021; 51
X Yao (7080_CR10) 2021; 68
B Vaseghi (7080_CR14) 2021; 9
Y Huang (7080_CR16) 2019; 27
7080_CR49
Z Yu (7080_CR31) 2021; 114
7080_CR12
B Ding (7080_CR46) 2021; 7
7080_CR50
H Sobhanipour (7080_CR27) 2019; 29
AK Jain (7080_CR41) 2020; 7
D Ma (7080_CR19) 2021; 68
K Zhao (7080_CR47) 2020; 67
K Liu (7080_CR56) 2021; 68
M Labbadi (7080_CR54) 2021; 57
Z Zuo (7080_CR53) 2015; 54
AL Silva (7080_CR2) 2020; 56
Q Chen (7080_CR23) 2018; 54
7080_CR15
R Sun (7080_CR20) 2021; 44
Z Zhu (7080_CR57) 2011; 58
7080_CR17
Z Yu (7080_CR29) 2020; 31
H Yang (7080_CR51) 2021; 29
X Liang (7080_CR18) 2020; 107
K Liu (7080_CR52) 2021; 115
Q Zhang (7080_CR35) 2021; 29
Z Zhao (7080_CR48) 2020; 102
B Tian (7080_CR21) 2017; 80
CM Nguyen (7080_CR42) 2021; 124
P Tang (7080_CR43) 2020; 104
7080_CR25
7080_CR26
J Keighobadi (7080_CR40) 2020; 100
N Wang (7080_CR37) 2018; 20
7080_CR30
J Zhou (7080_CR44) 2020; 357
D Li (7080_CR36) 2019; 49
X Yang (7080_CR38) 2020; 18
References_xml – reference: KeighobadiJFatehMMXuBAdaptive fuzzy voltage-based backstepping tracking control for uncertain robotic manipulators subject to partial state constraints and input delayNonlinear Dyn.202010026092634
– reference: PolyakovANonlinear feedback design for fixed-time stabilization of linear control systemsIEEE Trans. Automat. Control20125782106211029571841369.93128
– reference: RahmaniRMobayenSFekihARoJ-SRobust passivity cascade technique-based control using RBFN approximators for the stabilization of a cart inverted pendulumMathematics20219111229
– reference: KaramiHMobayenSLashkariMBayatFChangALMI-observer-based stabilizer for chaotic systems in the existence of a nonlinear function and perturbationMathematics20219101128
– reference: Liu, K.,Wang, Y., Ji, H.,Wang, S.: “Adaptive saturated tracking control for spacecraft proximityoperations via integral terminal sliding mode technique,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5774, (Sept. 2021)
– reference: YuZZhangYJiangBSuC-YFuJJinYChaiTFractional order PID-based adaptive fault-tolerant cooperative control of networked unmanned aerial vehicles against actuator faults and wind effects with hardware-in-the-loop experimental validationControl. Eng. Pract.2021114104861
– reference: LiangXWangQHuCDongCFixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faultsAerosp. Sci. Technol.2020107106314
– reference: ZuoZNon-singular fixed-time terminal sliding mode control of non-linear systemsIET Control Theory Appl.2015945455523328478
– reference: MaDXiaYShenGJiangHHaoCPractical fixed-time disturbance rejection control for quadrotor attitude trackingIEEE Trans. Ind. Electron.202168872747283
– reference: TangPLinDZhengDFanSYeJObserver based finite-time fault tolerant quadrotor attitude control with actuator faultsAerosp. Sci. Technol.2020104105968
– reference: Chen, L., Liu, Z., Gao, H., Wang, G.: “Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2021.04.046, (2021)
– reference: TangPLinDZhengDFanSYeJBack-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refuelingAerosp. Sci. Technol.2020104105968
– reference: SunRShanAZhangXWuJJiaQQuantized fault-tolerant control for attitude stabilization with fixed-time disturbance observerJ. Guid. Control. Dyn.2021442449455
– reference: ZhaoZCaoDYangJWangHHigh-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamicsNonlinear Dyn.202010225832596
– reference: LabbadiMCherkaouiMAdaptive fractional-order nonsingular fast terminal sliding mode-based robust tracking control of quadrotor UAV with gaussian random disturbances and uncertaintiesIEEE Trans. Aerosp. Electron. Syst.202157422652277
– reference: YangHJiangYYinSAdaptive fuzzy fault tolerant control for Markov jump systems with additive and multiplicative actuator faultsIEEE Trans. Fuzzy Syst.2021294772785
– reference: Long, Y., Park, J.H., Ye, D.: “Asynchronous fault detection and isolation for Markov jump systems with actuator failures under networked environment,” IEEE Trans. Syst., Man, Cybern., Syst., 51(6), 3477–3887, (2021)
– reference: ZhaoKMaDXiaYComposite disturbance rejection attitude control for quadrotor with unknown disturbanceIEEE Trans. Ind. Electron.202067868946903
– reference: ChenQXieSSunMHeXAdaptive nonsingular fixed-time attitude stabilization of uncertain spacecraftIEEE Trans. Aerosp. Electron. Syst.201854629372950
– reference: JainAKBhasinSTracking control of uncertain nonlinear systems with unknown constant input delayIEEE/CAA J. Autom. Sinica2020724204254086646
– reference: LiDLiuYTongSPhilip ChenCLLiDNeural networks-based adaptive control for nonlinear state constrained systems with input delayIEEE Trans. Cybern.201949412491258
– reference: Cui, G., Yang, W., Yu, J., Li, Z., Tao, C.: “Fixed-time prescribed performance adaptive trajectory tracking control for QUAV”, IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, https://doi.org/10.1109/TCSII.2021.3084240, (2021)
– reference: Tripathi, V.K., Yogi, S.C., Kamath, A.K., Behera, L., Verma, N.K., Nahavandi, S.: “A disturbance observer-based intelligent finite-time sliding mode flight controller design for an autonomous quadrotor,” IEEE Syst. J., early access, https://doi.org/10.1109/JSYST.2021.3078826, (2021)
– reference: Liu, K., Ji, H., Zhang, Y.: “Extended state observer based adaptive sliding mode tracking control of wheeled mobile robot with input saturation and uncertainties,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 233(15): 5460–5476, (2019)
– reference: Fekih, A.: “Fault diagnosis and fault tolerant control design for aerospace systems: a bibliographical review,” in Proc. Amer. Control Conf. (ACC), pp. 1286–1291, (2014)
– reference: Wang, Y., Zhang, J., Zhang, H., Xie, X.: “Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients,” IEEE Trans. Cybern., early access, https://doi.org/10.1109/TCYB.2020.3034146, (2020)
– reference: Yu, Z., Zhang, Y., Jiang, B., Fu, J., Jin, Y., Chai, T.: “Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs,” IEEE Trans. Syst., Man, Cybern., Syst., early access, https://doi.org/10.1109/TSMC.2020.3010678, (2020)
– reference: LiuKWangXWangRSunGWangXAntisaturation finite-time attitude tracking control based observer for a quadrotorIEEE Trans. Circuits Syst. II, Exp. Briefs202168620472051
– reference: ZhangQHeDDisturbance-observer-based adaptive fuzzy control for strict-feedback switched nonlinear systems with input delayIEEE Trans. Fuzzy Syst.202129719421952
– reference: LiuKWangRWangXWangXAnti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbancesAerosp. Sci. Technol.2021115106790
– reference: Sharma, M., Kar, I.: “Control of a quadrotor with network induced time delay,” ISA Trans., early access, https://doi.org/10.1016/j.isatra.2020.11.008, (May 2021)
– reference: HuangYJiaYAdaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around missionIEEE Trans. Control Syst. Technol.201927417961804
– reference: SilvaALSantosDAFast nonsingular terminal sliding mode flight control for multirotor aerial vehiclesIEEE Trans. Aerosp. Electron. Syst.202056642884299
– reference: SobhanipourHAfzalianAAActive fault tolerant control for switched positive linear systemsInt. J. Robust Nonlin. Control201929144971498439943651426.93066
– reference: Liu, K., Gao, H., Ji, H., Hao, Z.: Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. Int. J. Control Autom. Syst. 18(5), 1288–1298 (2020)
– reference: ZhuZXiaYFuMAdaptive sliding mode control for attitude stabilization with actuator saturationIEEE Trans. Ind. Electron.201158148984907
– reference: EsmaeilzadehSMGolestaniMMobayenSChattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraftInt. J. Control Autom. Syst.20211927677761455.93099
– reference: Zhao, J., Ding, X., Jiang, B., Jiang, G., Xie, F.: “A novel control strategy for quadrotors with variable mass and external disturbance,” Int. J. Robust Nonlin. Control, early access, https://doi.org/10.1002/rnc.5760, (Sept. 2021)
– reference: DingBXuDJiangBShiPYangWDisturbance-observer-based terminal sliding mode control for linear traction system with prescribed performanceIEEE Trans. Transp. Electrific.202172649658
– reference: YangXWangYYangJWangTFault-tolerant control based on fixed-time observer for a 3-DOF helicopter systemInt. J. Control Autom. Syst.2020181229933000
– reference: WangNTongSLiYObserver-based adaptive fuzzy control of nonlinear non-strict feedback system with input delayInt. J. Fuzzy Syst.20182012362453782132
– reference: YaoXZhangLZhengWXUncertain disturbance rejection and attenuation for semi-Markov jump systems with application to 2-degree-freedom robot armIEEE Trans. Circuits Syst. I, Reg. Papers202168938363845
– reference: LiuXZhangMRogersEWangYYaoFTerminal sliding mode-based tracking control with error transformation for underwater vehiclesInt. J. Robust Nonlin. Control20213115718672064335290
– reference: Guerrero-Sánchez, M.E., Hernández-González, O., Valencia-Palomo, G., Mercado-Ravell, D.A. , López-Estrada, F.R., Hoyo-Montaño, J.A.: “Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load,” Nonlinear Dyn., early access, https://doi.org/10.1007/s11071-021-06776-7, (Aug. 2021)
– reference: SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor uavs: a more affordable solutionIEEE Trans. Control Netw. Syst.2019307197519833978158
– reference: NguyenCMTanCPTrinhHSliding mode observer for estimating states and faults of linear time-delay systems with outputs subject to delaysAutomatica202112410927441930011461.93072
– reference: ChenQXieSHeXNeural-network-based adaptive singularity-free fixed-time attitude tracking control for spacecraftsIEEE Trans. Cybern.202151105032505
– reference: ZuoZNonsingular fixed-time consensus tracking for second-order multi-agent networksAutomatica20155430530933245351318.93010
– reference: VaseghiBMobayenSEsmaeilzadehSMFekihAFast reaching finite time synchronization approach for chaotic systems with application in medical image encryptionIEEE Access202192591125925
– reference: Xu, D., Ding, B., Jiang, B., Yang, W., Yang, W., Shi, P.: “Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer,” IEEE/ASME Trans. Mechatronics, early access, https://doi.org/10.1109/TMECH.2021.3086527, (2021)
– reference: YuZQuYZhangYDistributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturationIEEE Trans. Control Syst. Technol.201927624172429
– reference: YuZLiuZZhangYQuYSuC-YDistributed finite-time fault-tolerant containment control for multiple unmanned aerial vehiclesIEEE Trans. Neural Netw. Learn. Syst.2020316207720904112520
– reference: SongYHeLZhangDQianJFuJNeuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solutionIEEE Trans. Neural Netw. Learn. Syst.2019307197519833978158
– reference: ZhaoZWangXYaoPXuJYuJFuzzy health degree-based dynamic performance evaluation of quadrotors in the presence of actuator and sensor faultsNonlinear Dyn.20199524772490
– reference: TianBZuoZYanXWangHA fixed-time output feedback control scheme for double integrator systemsAutomatica201780172436380521370.93202
– reference: Liu, K., Wang, R.: “Antisaturation command filtered backstepping control based disturbance rejection for a quadarotor UAV,” IEEE Trans. Circuits Syst. II: Express Briefs, to be published, https://doi.org/10.1109/TCSII.2021.3069967
– reference: ZhouJChengYDuHWuDZhuMLinXAdaptive finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturationJ. Frankl. Inst.202035711153111701450.93039
– volume: 9
  start-page: 1128
  issue: 10
  year: 2021
  ident: 7080_CR9
  publication-title: Mathematics
  doi: 10.3390/math9101128
– volume: 54
  start-page: 2937
  issue: 6
  year: 2018
  ident: 7080_CR23
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2832998
– ident: 7080_CR3
  doi: 10.1109/TCSII.2021.3069967
– volume: 7
  start-page: 420
  issue: 2
  year: 2020
  ident: 7080_CR41
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2019.1911807
– volume: 58
  start-page: 4898
  issue: 1
  year: 2011
  ident: 7080_CR57
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2107719
– volume: 124
  start-page: 109274
  year: 2021
  ident: 7080_CR42
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109274
– volume: 9
  start-page: 545
  issue: 4
  year: 2015
  ident: 7080_CR22
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2014.0202
– volume: 27
  start-page: 1796
  issue: 4
  year: 2019
  ident: 7080_CR16
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2018.2812758
– ident: 7080_CR39
  doi: 10.1109/TCYB.2020.3034146
– ident: 7080_CR25
  doi: 10.1109/ACC.2014.6859271
– volume: 44
  start-page: 449
  issue: 2
  year: 2021
  ident: 7080_CR20
  publication-title: J. Guid. Control. Dyn.
  doi: 10.2514/1.G005465
– ident: 7080_CR4
  doi: 10.1016/j.isatra.2020.11.008
– ident: 7080_CR8
  doi: 10.1177/0954406219849445
– ident: 7080_CR26
  doi: 10.1109/TSMC.2019.2930995
– volume: 56
  start-page: 4288
  issue: 6
  year: 2020
  ident: 7080_CR2
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2020.2988836
– volume: 68
  start-page: 3836
  issue: 9
  year: 2021
  ident: 7080_CR10
  publication-title: IEEE Trans. Circuits Syst. I, Reg. Papers
  doi: 10.1109/TCSI.2021.3091533
– volume: 30
  start-page: 1975
  issue: 7
  year: 2019
  ident: 7080_CR33
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876130
– volume: 30
  start-page: 1975
  issue: 7
  year: 2019
  ident: 7080_CR11
  publication-title: IEEE Trans. Control Netw. Syst.
– ident: 7080_CR17
  doi: 10.1109/TCSII.2021.3084240
– volume: 57
  start-page: 2265
  issue: 4
  year: 2021
  ident: 7080_CR54
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3053109
– volume: 107
  start-page: 106314
  year: 2020
  ident: 7080_CR18
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106314
– volume: 20
  start-page: 236
  issue: 1
  year: 2018
  ident: 7080_CR37
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0388-9
– volume: 31
  start-page: 7186
  issue: 15
  year: 2021
  ident: 7080_CR55
  publication-title: Int. J. Robust Nonlin. Control
  doi: 10.1002/rnc.5653
– volume: 100
  start-page: 2609
  year: 2020
  ident: 7080_CR40
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05674-8
– volume: 29
  start-page: 1942
  issue: 7
  year: 2021
  ident: 7080_CR35
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2989265
– ident: 7080_CR15
  doi: 10.1007/s12555-019-0262-7
– volume: 67
  start-page: 6894
  issue: 8
  year: 2020
  ident: 7080_CR47
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2937065
– ident: 7080_CR12
  doi: 10.1002/rnc.5774
– volume: 80
  start-page: 17
  year: 2017
  ident: 7080_CR21
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.01.007
– volume: 104
  start-page: 105968
  year: 2020
  ident: 7080_CR43
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105968
– volume: 19
  start-page: 767
  issue: 2
  year: 2021
  ident: 7080_CR34
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-020-0043-3
– volume: 29
  start-page: 772
  issue: 4
  year: 2021
  ident: 7080_CR51
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2965884
– volume: 7
  start-page: 649
  issue: 2
  year: 2021
  ident: 7080_CR46
  publication-title: IEEE Trans. Transp. Electrific.
  doi: 10.1109/TTE.2020.3027367
– volume: 54
  start-page: 305
  year: 2015
  ident: 7080_CR53
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.01.021
– volume: 9
  start-page: 1229
  issue: 11
  year: 2021
  ident: 7080_CR7
  publication-title: Mathematics
  doi: 10.3390/math9111229
– ident: 7080_CR6
  doi: 10.1016/j.isatra.2021.04.046
– ident: 7080_CR30
  doi: 10.1109/TSMC.2020.3010678
– volume: 68
  start-page: 2047
  issue: 6
  year: 2021
  ident: 7080_CR56
  publication-title: IEEE Trans. Circuits Syst. II, Exp. Briefs
– volume: 51
  start-page: 5032
  issue: 10
  year: 2021
  ident: 7080_CR24
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3024672
– volume: 18
  start-page: 2993
  issue: 12
  year: 2020
  ident: 7080_CR38
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-018-0849-4
– ident: 7080_CR50
  doi: 10.1109/JSYST.2021.3078826
– volume: 57
  start-page: 2106
  issue: 8
  year: 2012
  ident: 7080_CR13
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2179869
– volume: 357
  start-page: 11153
  year: 2020
  ident: 7080_CR44
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.05.018
– volume: 115
  start-page: 106790
  year: 2021
  ident: 7080_CR52
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106790
– volume: 95
  start-page: 2477
  year: 2019
  ident: 7080_CR32
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4711-2
– volume: 29
  start-page: 4971
  issue: 14
  year: 2019
  ident: 7080_CR27
  publication-title: Int. J. Robust Nonlin. Control
  doi: 10.1002/rnc.4662
– volume: 27
  start-page: 2417
  issue: 6
  year: 2019
  ident: 7080_CR28
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2018.2868038
– volume: 31
  start-page: 2077
  issue: 6
  year: 2020
  ident: 7080_CR29
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2927887
– volume: 9
  start-page: 25911
  year: 2021
  ident: 7080_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056037
– volume: 114
  start-page: 104861
  year: 2021
  ident: 7080_CR31
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104861
– volume: 104
  start-page: 105968
  year: 2020
  ident: 7080_CR45
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105968
– volume: 49
  start-page: 1249
  issue: 4
  year: 2019
  ident: 7080_CR36
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2799683
– volume: 68
  start-page: 7274
  issue: 8
  year: 2021
  ident: 7080_CR19
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3001800
– volume: 102
  start-page: 2583
  year: 2020
  ident: 7080_CR48
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06050-2
– ident: 7080_CR1
  doi: 10.1007/s11071-021-06776-7
– ident: 7080_CR5
  doi: 10.1002/rnc.5760
– ident: 7080_CR49
  doi: 10.1109/TMECH.2021.3086527
SSID ssj0003208
Score 2.5990999
Snippet This study focuses on the design of a fixed-time disturbance observer-based robust fault-tolerant tracking control scheme for an uncertain quadrotor unmanned...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2363
SubjectTerms Actuators
Automotive Engineering
Classical Mechanics
Continuity (mathematics)
Control
Delay
Disturbance observers
Dynamical Systems
Engineering
Fault tolerance
Feedback control
Initial conditions
Mechanical Engineering
Original Paper
Pade approximation
Robust control
Sliding mode control
Tracking control
Tracking errors
Unmanned aerial vehicles
Unmanned helicopters
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VwIEeSnmpKbTaAzdYYdaP3ZwqQEQ9VBGqAOVm7cOWIkVxsNcITvz1zjgbQivBpQcfLNsrSzM738zszDcAR8pJIUrreKql5slZabmyieOmHGQDG8U260h97n7J0UiNx4PrkHBrQlnl0iZ2htpVlnLkpyJDQ0rkUNGP-T2nqVF0uhpGaKzBOjGVJT1Yv7gaXf9-scWx6GbSRRhlUEZiHNpmFs1zGPlgKC3wkug38ehvaFr5m_8ckXbIM9z633_-DJ-Cz8nOF0qyDR-K2Q5sBf-Thd3d7MDHV-SEu_A8nDwWjtPweeZQGdrakIawylAit6g5AaBjdWXaxrNSt1PPfTUtEPw887W2lIRnoRSeoW_MEEIXBQjsvtWurjDcZ7fnd6xpDWWDmK_YZDZvPSPmyqc9uB1e3Vz-5GFcA7e4jz1XymljJDGSoWak2nUAKbQuhJYyNko6VRohrHRRSq5kKjTeov_okkGhsngferNqVnyhRvIkdanKnCJGOGFVUhoTa43QifFNVvbhbCmp3AYucxqpMc1XLMwk3Rylm3fSzaM-HL98M18webz79uFSpHnY1U2-kmcfTpZKsXr89mpf31_tADYFdVV0xeCH0PN1W3yDDfvgJ039Pej0Hwpp_Zo
  priority: 102
  providerName: ProQuest
Title Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay
URI https://link.springer.com/article/10.1007/s11071-021-07080-0
https://www.proquest.com/docview/2628404120
Volume 107
WOSCitedRecordID wos000744456800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW3wuOXjTwJo-kj2quHiQRXwseyt5tLCwbNc2FT35153ppq6KCnrooSQNJcnkm5nMfEPIkbSC88xYFimhWHiaGSZNaJnOOnHHtAMT16Q-_WvR68nBoHPjk8LKJtq9uZKsT-pZshtYKmD6cngE6DkMDPUFgDuJ4nh7138_fwNe16Frg2WBXoiBT5X5fozPcDTTMb9ci9Zo013933-ukRWvXdKz6XZYJ3PpeIOsek2TejkuN8jyBxrCTfLaHT6nlmGZeWph2atC416guUaXbVowhDpLi1xXpaOZqkaOuXyUAsw56gpl0N1OfdA7BS2YAlhOQw3oY6VskYNhTx_O-rSsNPp9qMvpcDypHEWOypct8tC9vL-4Yr4wAzMgsY5JaZXWArnHYA9EytZQyJVKuRIi0FJYmWnOjbDtCJXGiCt4BU3Rhp1UxsE2mR_n43QHU8bDyEYythK537iRYaZ1oBSAJFgycbZLTpv1SYxnLcfiGaNkxreM853AfCf1fCftXXL8_s1kytnxa--DZtkTL79lwmOAbaQig-aTZplnzT-Ptve37vtkiWM-RR0GfkDmXVGlh2TRPLlhWbTIwvll7-a2hQGpd616l78BitH0zw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQSwv4ACewSJ2X91ChCli16rJCoq32FvyKtNKy2SYO0BP_qL-xM3l0AYneeuCQQ16W4nwef2PPfAPwUtpUiNxYHqtU8WgnN1yayHKdD5OhCUKTNKI-J-N0MpHT6fDzGpz3uTAUVtnbxMZQ28LQGvlbkaAhJXGo4N3ylFPVKNpd7UtotLA4dGc_0GWrdg8-4P99JcTo49H7fd5VFeAG4ea5lFZpnZJwFn5ArGxjx4VSTqg0DbVMrcy1ECa1QUyMJxYKT5Hm2GjoZBJiuzfgZkRvNaGCXy4tfyiaCngB-jS0_jHtknTaVD30s9BxF3ikyNJ48OdEuGK3f23INvPcaON_66H7cK9j1GyvHQIPYM0tNmGjY9ess13VJtz9TXrxIfwazX46y_3sm2MWoV6XmvDPCk3L1K7kNL1bVha6rjzLVT333Bdzh1O7Z75UhrYYWBfoz5D5MyQIbXgFO62VLQuP1473TlhVa1rrYr5gs8Wy9ox0Oc8ewfG1dMpjWF8UC_eE0uSj2MYysZL07oSRUa51qBQSA_TeknwAOz0yMtMptVPBkHm20pgmNGWIpqxBUxYM4PXlO8tWp-TKp7d7CGWdzaqyFX4G8KYH4er2v1t7enVrL-D2_tGncTY-mBxuwR1B-SNN2Ps2rPuyds_glvnuZ1X5vBlNDL5eNzgvAPVDWAk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iInrwLb7NwZsGd9NHskdRF0VZBHXZW8mjhYWlXdtU9ORfd6bbdVVUEA89lDwoyaTfzGTmG0IOpRWcJ8ayQAnF_GZimDS-ZTpphS3T8ExYkfp0b0SnI3u91u2HLP4q2n18JTnKaUCWptSdDG1yMkl8A6sFzGAOjwCdh4HRPuNj0SC01--67_9ij1c16RpgZaBHolenzXw_x2domuibX65IK-RpL_3_m5fJYq110tORmKyQqThdJUu1Bkrr812skoUP9IRr5LXdf44tw_Lz1II4lLlGGaGZRldunDOEQEvzTJeFo4kqB465bBAD_DnqcmXQDU_rYHgK2jEFEB2FINDHUtk8A4OfPpx2aVFq9AdRl9F-OiwdRe7Kl3Xy0L64P7tkdcEGZuAkOyalVVoL5CQD2QiUrSCSKxVzJYSnpbAy0ZwbYRsBKpMBV_AKGqT1W7EMvQ0ynWZpvImp5H5gAxlaiZxw3Eg_0dpTCsATLJww2SLN8V5FpmYzx6Iag2jCw4zrHcF6R9V6R40tcvQ-Zjji8vi19-5YBKL6XBcRDwHOkaIMmo_HWz5p_nm27b91PyBzt-ft6Oaqc71D5jmmXFSR4rtk2uVlvEdmzZPrF_l-Je5vL1r-BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fixed-time+disturbance+observer-based+robust+fault-tolerant+tracking+control+for+uncertain+quadrotor+UAV+subject+to+input+delay&rft.jtitle=Nonlinear+dynamics&rft.au=Liu%2C+Kang&rft.au=Wang%2C+Rujing&rft.au=Zheng%2C+Shijian&rft.au=Dong%2C+Shifeng&rft.date=2022-02-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=3&rft.spage=2363&rft.epage=2390&rft_id=info:doi/10.1007%2Fs11071-021-07080-0&rft.externalDocID=10_1007_s11071_021_07080_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon