Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces
In this paper, we study the split common fixed point and monotone variational inclusion problem in uniformly convex and 2-uniformly smooth Banach spaces. We propose a Halpern-type algorithm with two self-adaptive stepsizes for obtaining solution of the problem and prove strong convergence theorem fo...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 86; H. 4; S. 1359 - 1389 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study the split common fixed point and monotone variational inclusion problem in uniformly convex and 2-uniformly smooth Banach spaces. We propose a Halpern-type algorithm with two self-adaptive stepsizes for obtaining solution of the problem and prove strong convergence theorem for the algorithm. Many existing results in literature are derived as corollary to our main result. In addition, we apply our main result to split common minimization problem and fixed point problem and illustrate the efficiency and performance of our algorithm with a numerical example. The main result in this paper extends and generalizes many recent related results in the literature in this direction. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-020-00937-2 |