Constructive Deep ReLU Neural Network Approximation

We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f : [ - 1 , 1 ] K → R . We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 90; no. 2; p. 75
Main Authors: Herrmann, Lukas, Opschoor, Joost A. A., Schwab, Christoph
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2022
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f : [ - 1 , 1 ] K → R . We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and proofs apply for many other popular activation functions. The algorithm is based on collocating f in deterministic families of grid points with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis with DNNs to prescribed fidelity. Assuming availability of N function values of a possibly corrupted, numerical approximation f ˘ of f in [ - 1 , 1 ] K and a bound on ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) , we provide an explicit, computational construction of a ReLU DNN which attains accuracy ε (depending on N and ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) ) uniformly, with respect to the inputs. For analytic maps f : [ - 1 , 1 ] K → R , we prove exponential convergence of expression and generalization errors of the constructed ReLU DNNs. Specifically, for every target accuracy ε ∈ ( 0 , 1 ) , there exists N depending also on f such that the error of the construction algorithm with N evaluations of f ˘ as input in the norm L ∞ ( [ - 1 , 1 ] K ; R ) is smaller than ε up to an additive data-corruption bound ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) multiplied with a factor growing slowly with 1 / ε and the number of non-zero DNN weights grows polylogarithmically with respect to 1 / ε . The algorithmic construction of the ReLU DNNs which will realize the approximations, is explicit and deterministic in terms of the function values of f ˘ in tensorized Clenshaw–Curtis grids in [ - 1 , 1 ] K . We illustrate the proposed methodology by a constructive algorithm for (offline) computations of posterior expectations in Bayesian PDE inversion.
AbstractList We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f:[-1,1]K→R. We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and proofs apply for many other popular activation functions. The algorithm is based on collocating f in deterministic families of grid points with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis with DNNs to prescribed fidelity. Assuming availability of N function values of a possibly corrupted, numerical approximation f˘ of f in [-1,1]K and a bound on ‖f-f˘‖L∞([-1,1]K), we provide an explicit, computational construction of a ReLU DNN which attains accuracy ε (depending on N and ‖f-f˘‖L∞([-1,1]K)) uniformly, with respect to the inputs. For analytic maps f:[-1,1]K→R, we prove exponential convergence of expression and generalization errors of the constructed ReLU DNNs. Specifically, for every target accuracy ε∈(0,1), there exists N depending also on f such that the error of the construction algorithm with N evaluations of f˘ as input in the norm L∞([-1,1]K;R) is smaller than ε up to an additive data-corruption bound ‖f-f˘‖L∞([-1,1]K) multiplied with a factor growing slowly with 1/ε and the number of non-zero DNN weights grows polylogarithmically with respect to 1/ε. The algorithmic construction of the ReLU DNNs which will realize the approximations, is explicit and deterministic in terms of the function values of f˘ in tensorized Clenshaw–Curtis grids in [-1,1]K. We illustrate the proposed methodology by a constructive algorithm for (offline) computations of posterior expectations in Bayesian PDE inversion.
We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f : [ - 1 , 1 ] K → R . We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and proofs apply for many other popular activation functions. The algorithm is based on collocating f in deterministic families of grid points with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis with DNNs to prescribed fidelity. Assuming availability of N function values of a possibly corrupted, numerical approximation f ˘ of f in [ - 1 , 1 ] K and a bound on ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) , we provide an explicit, computational construction of a ReLU DNN which attains accuracy ε (depending on N and ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) ) uniformly, with respect to the inputs. For analytic maps f : [ - 1 , 1 ] K → R , we prove exponential convergence of expression and generalization errors of the constructed ReLU DNNs. Specifically, for every target accuracy ε ∈ ( 0 , 1 ) , there exists N depending also on f such that the error of the construction algorithm with N evaluations of f ˘ as input in the norm L ∞ ( [ - 1 , 1 ] K ; R ) is smaller than ε up to an additive data-corruption bound ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) multiplied with a factor growing slowly with 1 / ε and the number of non-zero DNN weights grows polylogarithmically with respect to 1 / ε . The algorithmic construction of the ReLU DNNs which will realize the approximations, is explicit and deterministic in terms of the function values of f ˘ in tensorized Clenshaw–Curtis grids in [ - 1 , 1 ] K . We illustrate the proposed methodology by a constructive algorithm for (offline) computations of posterior expectations in Bayesian PDE inversion.
ArticleNumber 75
Author Herrmann, Lukas
Opschoor, Joost A. A.
Schwab, Christoph
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0000-0003-3402-6420
  surname: Herrmann
  fullname: Herrmann, Lukas
  email: lukas.herrmann@ricam.oeaw.ac.at
  organization: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences
– sequence: 2
  givenname: Joost A. A.
  surname: Opschoor
  fullname: Opschoor, Joost A. A.
  organization: Seminar for Applied Mathematics, ETH Zürich
– sequence: 3
  givenname: Christoph
  surname: Schwab
  fullname: Schwab, Christoph
  organization: Seminar for Applied Mathematics, ETH Zürich
BookMark eNp9kEtPwzAQhC1UJNrCH-AUibNh145r-1iVp1SBhOjZSh0HpZQk2A6Pf49pkJA49DSX-XZmZ0JGTds4Qk4RzhFAXgQEjYICQwooUVF2QMYoJKdypnFExqCUoDKX-RGZhLABAK00GxO-aJsQfW9j_e6yS-e67NEtV9m9632xTRI_Wv-SzbvOt5_1axHrtjkmh1WxDe7kV6dkdX31tLily4ebu8V8SS1HHalSciYEFxaLMpUAqLQVdi1yqAorypJxJtay1I5bx0HIZFwrm1coSlUpBnxKzoa7KfutdyGaTdv7JkUaplFxFEqK5FKDy_o2BO8qY-u46xl9UW8NgvmZyAwTmTSR2U1kWELZP7Tz6Uf_tR_iAxSSuXl2_q_VHuobH255kQ
CitedBy_id crossref_primary_10_1016_j_cma_2025_117798
crossref_primary_10_1007_s10444_025_10245_9
crossref_primary_10_1007_s10444_024_10171_2
crossref_primary_10_1007_s00500_024_09900_y
crossref_primary_10_1016_j_camwa_2024_06_008
crossref_primary_10_1007_s00365_024_09694_0
crossref_primary_10_1177_14759217221132114
crossref_primary_10_1016_j_jco_2025_101933
crossref_primary_10_1142_S0218202525500113
crossref_primary_10_1007_s00041_024_10071_5
crossref_primary_10_1007_s43670_025_00116_1
crossref_primary_10_1016_j_neunet_2024_106761
crossref_primary_10_1007_s10092_023_00565_x
Cites_doi 10.1016/j.jcp.2020.109339
10.1137/16M1076824
10.1142/S021820251750021X
10.1016/j.jcp.2020.109913
10.1137/16M1099406
10.1007/s00780-018-0361-y
10.1007/s00020-021-02653-5
10.1137/1.9781611975949
10.1007/BF01429047
10.4208/cicp.OA-2019-0168
10.1142/S0219530519410136
10.1142/S0219530518500203
10.1162/neco.1996.8.1.164
10.1016/j.neunet.2018.08.019
10.1051/m2an/2020003
10.1137/18M118709X
10.1007/BF02070821
10.1016/j.neunet.2017.07.002
10.1137/20M131309X
10.1016/j.jco.2020.101540
10.1016/j.jcp.2018.10.045
10.1016/j.camwa.2018.09.019
10.1007/978-3-319-12385-1_7
10.1142/S0218202517500439
10.1017/S0962492919000059
10.1016/j.neunet.2021.07.027
10.1088/1361-6420/abaf64
10.1007/s00365-021-09541-6
10.1007/s00365-021-09542-5
10.1007/978-3-030-43465-6_2
10.1007/s11425-018-9387-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-021-01718-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_021_01718_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-88765535c1ad69100f9c5cb540fac5dd2325b7d9e3ce30575c1b8c4f15d8f8203
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739967100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 01:50:02 EST 2025
Sat Nov 29 01:56:29 EST 2025
Tue Nov 18 22:26:37 EST 2025
Fri Feb 21 02:46:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Exponential convergence
Deep ReLU neural networks
41A10
65D05
Neural network construction
Generalization error
41A50
65D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-88765535c1ad69100f9c5cb540fac5dd2325b7d9e3ce30575c1b8c4f15d8f8203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3402-6420
PQID 2918315875
PQPubID 2043771
ParticipantIDs proquest_journals_2918315875
crossref_citationtrail_10_1007_s10915_021_01718_2
crossref_primary_10_1007_s10915_021_01718_2
springer_journals_10_1007_s10915_021_01718_2
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gaß, Glau, Mahlstedt, Mair (CR15) 2018; 22
Dashti, Stuart (CR7) 2017
CR19
Yang, Meng, Karniadakis (CR38) 2021; 425
Cheridito, Jentzen, Rossmannek (CR5) 2021; 64
CR16
Zech, Schwab (CR40) 2020; 54
CR14
CR36
Henríquez, Schwab (CR17) 2021; 93
CR12
CR34
Dũng, Nguyen (CR11) 2021; 142
CR30
Mhaskar (CR26) 1993; 1
Opschoor, Petersen, Schwab (CR29) 2020; 18
Jerez-Hanckes, Schwab, Zech (CR21) 2017; 27
Trefethen (CR37) 2019
Bölcskei, Grohs, Kutyniok, Petersen (CR3) 2019; 1
CR4
Petersen, Voigtlaender (CR31) 2018; 108
Cohen, Schwab, Zech (CR6) 2018; 50
Mhaskar (CR27) 1996; 8
Arridge, Maass, Öktem, Schönlieb (CR2) 2019; 28
CR8
Raissi, Perdikaris, Karniadakis (CR32) 2019; 378
Schwab, Zech (CR35) 2019; 17
Hosseini, Nigam (CR20) 2017; 5
CR28
Yarotsky (CR39) 2017; 94
Ehlich, Zeller (CR13) 1966; 164
Lye, Mishra, Ray (CR25) 2020; 410
CR24
CR23
Rivlin (CR33) 1974
Li, Tang, Yu (CR22) 2019; 27
Dick, Gantner, Gia, Schwab (CR9) 2017; 27
Adcock, Dexter (CR1) 2021; 3
Dick, Gantner, Gia, Schwab (CR10) 2019; 77
Herrmann, Schwab, Zech (CR18) 2020; 36
J Dick (1718_CR10) 2019; 77
HN Mhaskar (1718_CR27) 1996; 8
D Dũng (1718_CR11) 2021; 142
1718_CR30
P Cheridito (1718_CR5) 2021; 64
TJ Rivlin (1718_CR33) 1974
S Arridge (1718_CR2) 2019; 28
P Petersen (1718_CR31) 2018; 108
B Hosseini (1718_CR20) 2017; 5
1718_CR28
D Yarotsky (1718_CR39) 2017; 94
1718_CR24
1718_CR23
1718_CR8
KO Lye (1718_CR25) 2020; 410
JAA Opschoor (1718_CR29) 2020; 18
M Gaß (1718_CR15) 2018; 22
A Cohen (1718_CR6) 2018; 50
1718_CR4
M Dashti (1718_CR7) 2017
C Schwab (1718_CR35) 2019; 17
LN Trefethen (1718_CR37) 2019
H Bölcskei (1718_CR3) 2019; 1
F Henríquez (1718_CR17) 2021; 93
B Li (1718_CR22) 2019; 27
J Zech (1718_CR40) 2020; 54
C Jerez-Hanckes (1718_CR21) 2017; 27
L Herrmann (1718_CR18) 2020; 36
1718_CR14
1718_CR36
M Raissi (1718_CR32) 2019; 378
1718_CR16
B Adcock (1718_CR1) 2021; 3
HN Mhaskar (1718_CR26) 1993; 1
1718_CR12
H Ehlich (1718_CR13) 1966; 164
1718_CR34
J Dick (1718_CR9) 2017; 27
1718_CR19
L Yang (1718_CR38) 2021; 425
References_xml – volume: 410
  start-page: 109339
  year: 2020
  ident: CR25
  article-title: Deep learning observables in computational fluid dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109339
– ident: CR4
– ident: CR14
– volume: 5
  start-page: 436
  issue: 1
  year: 2017
  end-page: 465
  ident: CR20
  article-title: Well-posed Bayesian inverse problems: priors with exponential tails
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M1076824
– ident: CR16
– ident: CR12
– ident: CR30
– volume: 27
  start-page: 953
  issue: 5
  year: 2017
  end-page: 995
  ident: CR9
  article-title: Multilevel higher-order quasi-Monte Carlo Bayesian estimation
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S021820251750021X
– volume: 425
  start-page: 109913
  year: 2021
  ident: CR38
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– volume: 50
  start-page: 1720
  issue: 2
  year: 2018
  end-page: 1752
  ident: CR6
  article-title: Shape holomorphy of the stationary Navier-Stokes Equations
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1099406
– volume: 22
  start-page: 701
  issue: 3
  year: 2018
  end-page: 731
  ident: CR15
  article-title: Chebyshev interpolation for parametric option pricing
  publication-title: Finance Stoch.
  doi: 10.1007/s00780-018-0361-y
– volume: 93
  start-page: 43
  issue: 4
  year: 2021
  ident: CR17
  article-title: Shape holomorphy of the Calderón projector for the Laplacian in
  publication-title: Integral Equ. Oper. Theory
  doi: 10.1007/s00020-021-02653-5
– year: 2019
  ident: CR37
  publication-title: Approximation Theory and Approximation Practice
  doi: 10.1137/1.9781611975949
– volume: 164
  start-page: 105
  year: 1966
  end-page: 112
  ident: CR13
  article-title: Auswertung der Normen von Interpolationsoperatoren
  publication-title: Math. Ann.
  doi: 10.1007/BF01429047
– volume: 27
  start-page: 379
  issue: 2
  year: 2019
  end-page: 411
  ident: CR22
  article-title: Better approximations of high dimensional smooth functions by deep neural networks with rectified power units
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2019-0168
– ident: CR8
– ident: CR23
– volume: 18
  start-page: 715
  issue: 05
  year: 2020
  end-page: 770
  ident: CR29
  article-title: Deep ReLU networks and high-order finite element methods
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530519410136
– volume: 17
  start-page: 19
  issue: 1
  year: 2019
  end-page: 55
  ident: CR35
  article-title: Deep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in UQ
  publication-title: Anal. Appl. Singap.
  doi: 10.1142/S0219530518500203
– volume: 8
  start-page: 164
  issue: 1
  year: 1996
  end-page: 177
  ident: CR27
  article-title: Neural networks for optimal approximation of smooth and analytic functions
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.1.164
– volume: 108
  start-page: 296
  year: 2018
  end-page: 330
  ident: CR31
  article-title: Optimal approximation of piecewise smooth functions using deep ReLU neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.019
– volume: 54
  start-page: 1259
  issue: 4
  year: 2020
  end-page: 1307
  ident: CR40
  article-title: Convergence rates of high dimensional Smolyak quadrature
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2020003
– ident: CR19
– volume: 1
  start-page: 8
  issue: 1
  year: 2019
  end-page: 45
  ident: CR3
  article-title: Optimal approximation with sparsely connected deep neural networks
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M118709X
– volume: 1
  start-page: 61
  issue: 1
  year: 1993
  end-page: 80
  ident: CR26
  article-title: Approximation properties of a multilayered feedforward artificial neural network
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02070821
– volume: 94
  start-page: 103
  year: 2017
  end-page: 114
  ident: CR39
  article-title: Error bounds for approximations with deep ReLU networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.002
– year: 1974
  ident: CR33
  publication-title: The Chebyshev Polynomials
– volume: 3
  start-page: 624
  issue: 2
  year: 2021
  end-page: 655
  ident: CR1
  article-title: The gap between theory and practice in function approximation with deep neural networks
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/20M131309X
– volume: 64
  start-page: 101540
  year: 2021
  ident: CR5
  article-title: Non-convergence of stochastic gradient descent in the training of deep neural networks
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2020.101540
– ident: CR34
– ident: CR36
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: CR32
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 77
  start-page: 144
  issue: 1
  year: 2019
  end-page: 172
  ident: CR10
  article-title: Higher order quasi-Monte Carlo integration for Bayesian PDE inversion
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.09.019
– start-page: 311
  year: 2017
  end-page: 428
  ident: CR7
  article-title: The Bayesian approach to inverse problems
  publication-title: Handbook of Uncertainty Quantification
  doi: 10.1007/978-3-319-12385-1_7
– volume: 27
  start-page: 2229
  issue: 12
  year: 2017
  end-page: 2259
  ident: CR21
  article-title: Electromagnetic wave scattering by random surfaces: shape holomorphy
  publication-title: Math. Mod. Meth. Appl. Sci.
  doi: 10.1142/S0218202517500439
– ident: CR28
– ident: CR24
– volume: 28
  start-page: 1
  year: 2019
  end-page: 174
  ident: CR2
  article-title: Solving inverse problems using data-driven models
  publication-title: Acta Numer.
  doi: 10.1017/S0962492919000059
– volume: 142
  start-page: 619
  year: 2021
  end-page: 635
  ident: CR11
  article-title: Deep ReLU neural networks in high-dimensional approximation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.07.027
– volume: 36
  start-page: 125011
  issue: 12
  year: 2020
  ident: CR18
  article-title: Deep neural network expression of posterior expectations in Bayesian PDE inversion
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/abaf64
– volume: 1
  start-page: 8
  issue: 1
  year: 2019
  ident: 1718_CR3
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M118709X
– volume: 50
  start-page: 1720
  issue: 2
  year: 2018
  ident: 1718_CR6
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1099406
– ident: 1718_CR14
  doi: 10.1007/s00365-021-09541-6
– volume: 22
  start-page: 701
  issue: 3
  year: 2018
  ident: 1718_CR15
  publication-title: Finance Stoch.
  doi: 10.1007/s00780-018-0361-y
– ident: 1718_CR30
  doi: 10.1007/s00365-021-09542-5
– volume-title: Approximation Theory and Approximation Practice
  year: 2019
  ident: 1718_CR37
  doi: 10.1137/1.9781611975949
– ident: 1718_CR8
– volume: 77
  start-page: 144
  issue: 1
  year: 2019
  ident: 1718_CR10
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.09.019
– volume: 28
  start-page: 1
  year: 2019
  ident: 1718_CR2
  publication-title: Acta Numer.
  doi: 10.1017/S0962492919000059
– ident: 1718_CR4
– volume: 5
  start-page: 436
  issue: 1
  year: 2017
  ident: 1718_CR20
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M1076824
– volume: 36
  start-page: 125011
  issue: 12
  year: 2020
  ident: 1718_CR18
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/abaf64
– volume: 18
  start-page: 715
  issue: 05
  year: 2020
  ident: 1718_CR29
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530519410136
– volume: 108
  start-page: 296
  year: 2018
  ident: 1718_CR31
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.019
– volume: 54
  start-page: 1259
  issue: 4
  year: 2020
  ident: 1718_CR40
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2020003
– volume: 27
  start-page: 953
  issue: 5
  year: 2017
  ident: 1718_CR9
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S021820251750021X
– volume: 94
  start-page: 103
  year: 2017
  ident: 1718_CR39
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.002
– volume: 17
  start-page: 19
  issue: 1
  year: 2019
  ident: 1718_CR35
  publication-title: Anal. Appl. Singap.
  doi: 10.1142/S0219530518500203
– volume: 3
  start-page: 624
  issue: 2
  year: 2021
  ident: 1718_CR1
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/20M131309X
– volume: 27
  start-page: 2229
  issue: 12
  year: 2017
  ident: 1718_CR21
  publication-title: Math. Mod. Meth. Appl. Sci.
  doi: 10.1142/S0218202517500439
– ident: 1718_CR16
– ident: 1718_CR23
– volume: 164
  start-page: 105
  year: 1966
  ident: 1718_CR13
  publication-title: Math. Ann.
  doi: 10.1007/BF01429047
– volume: 425
  start-page: 109913
  year: 2021
  ident: 1718_CR38
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– volume: 64
  start-page: 101540
  year: 2021
  ident: 1718_CR5
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2020.101540
– volume: 1
  start-page: 61
  issue: 1
  year: 1993
  ident: 1718_CR26
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02070821
– ident: 1718_CR36
– ident: 1718_CR28
– volume: 142
  start-page: 619
  year: 2021
  ident: 1718_CR11
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.07.027
– ident: 1718_CR34
– start-page: 311
  volume-title: Handbook of Uncertainty Quantification
  year: 2017
  ident: 1718_CR7
  doi: 10.1007/978-3-319-12385-1_7
– volume: 27
  start-page: 379
  issue: 2
  year: 2019
  ident: 1718_CR22
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2019-0168
– volume: 93
  start-page: 43
  issue: 4
  year: 2021
  ident: 1718_CR17
  publication-title: Integral Equ. Oper. Theory
  doi: 10.1007/s00020-021-02653-5
– ident: 1718_CR24
– volume: 378
  start-page: 686
  year: 2019
  ident: 1718_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume-title: The Chebyshev Polynomials
  year: 1974
  ident: 1718_CR33
– volume: 410
  start-page: 109339
  year: 2020
  ident: 1718_CR25
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109339
– volume: 8
  start-page: 164
  issue: 1
  year: 1996
  ident: 1718_CR27
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.1.164
– ident: 1718_CR19
  doi: 10.1007/978-3-030-43465-6_2
– ident: 1718_CR12
  doi: 10.1007/s11425-018-9387-x
SSID ssj0009892
Score 2.4643528
Snippet We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic...
We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Accuracy
Algorithms
Approximation
Artificial neural networks
Computational Mathematics and Numerical Analysis
Convergence
Fourier transforms
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Neural networks
Optimization
Partial differential equations
Polynomials
Theoretical
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9OBFnT9wOqUHD4oGl7Zpm5MMdXgYY4iT4aWkSQoD2aYdwz_flzS1KLiLpx7ShpL3I1-b974P4JzGoqMoFQQvjIS5CojgHUHyTMiYCxkltprwpR8PBsl4zIfuh1vhyiqrnGgTtZpJ84_8xufofJQhvL6dvxOjGmVOV52ExjpsGJYEI90wZK816W5iRZExkBhB2By6phnXOsep6U02H9OYn4n_c2Oq0eavA1K77_R2_vvGu7DtEKfXLV2kCWt6ugdNF9OFd-GIpy_3ITDqnSWf7FJ791rPvSfdH3mGwANnGJQV417X0JB_TsqexwMY9R6e7x6JE1UgEqNtQTCpRIwFTFKhIsQKnZxLJjMEbrmQTClEWCyLFdeB1IEBc5JmiQxzylSSI1wIDqExnU31EXhZwlWEY4ngMsxiie5gjmUtpY6hPWsBrVY0lY5x3AhfvKU1V7KxQopWSK0VUr8FV9_PzEu-jZV3t6ulT13sFWm97i24roxXD_892_Hq2U5gyze9D7Zkuw0NtIc-hU25XEyKjzPreV--vttn
  priority: 102
  providerName: ProQuest
Title Constructive Deep ReLU Neural Network Approximation
URI https://link.springer.com/article/10.1007/s10915-021-01718-2
https://www.proquest.com/docview/2918315875
Volume 90
WOSCitedRecordID wos000739967100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEP6qbidI4ePCgaWNambY5TNwRnGdON4aWkSQoDmcOO4Z_vSz82FRX00h6ShvLyPn4h7_0ewCn1RFNRKgi-GHFiZRPBm4LEkZAeF9L102zCUc8LAn885v28KCwpst2LK8nUU38oduPUVBOb4y96VIKOt4zhzjcNGwYPoxXVrp-2QkbzYQTBspOXyny_xudwtMKYX65F02jT3fnff-7Cdo4urXamDhVY09MqbN0vqVmTKlRya06ss5xy-nwPbNO3M2OSXWjrRuuZNdC9oWWoO3C9IMsVt9qGgPxtklU77sOw23m8viV5OwUi0c7mBN2Jy5jNJBXKRZTQjLlkMkLIFgvJlEJsxSJPcW1LbRsYJ2nkSyemTPkxAgX7AErTl6k-BCvyuXJxzBdcOpEnURHMhWxKpmMIz2pAC6mGMucaNy0vnsMVS7KRUohSClMpha0aXCy_mWVMG7_OrhebFeZWl4Qtjg6KMjyC1eCy2JzV8M-rHf1t-jFstkwVRJq8XYcS7o8-gQ25mE-S1waUrzpBf9CA9TuP4LPPnhqphr4D4LTZHw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CnrxLVar5qCg6GI3yTbZg0ixlpbWIlKlt7jZ3UBB2mrFx5_yNzqbh0HB3nrwlMMmQ8g3r83OfANwQD1RVpQKghdG3Eg5RPCyIFEopMeFrPhxNeF92-t0_F6P38zAZ9YLY8oqM58YO2o1lOYf-ZnNUfkow_T6YvREzNQoc7qajdBI1KKlP95wyzY-b9YQ30Pbrl91LxsknSpAJKrbC0GrqjDmMEmFqmCwLEdcMhli5hIJyZTCFIOFnuLakdox2YykoS_diDLlRxgvHZQ7C3Ou43vGrloeyUl-_XgIMxouI5imu2mTTtqqx6nphTabd4wHxP4ZCPPs9teBbBzn6sv_7QutwFKaUVvVxARWYUYP1mA19Vlj6ygl1j5eB8dMJ034cl-1VdN6ZN3q9p1lCEpQQiepiLeqhmb9vZ_0dG7A3VRefhMKg-FAb4EV-lxVcM0XXLqhJ1HdzbFzTBlkaN2KQDMEA5kyqpvBHo9BzgVtUA8Q9SBGPbCLcPL9zCjhE5l4dymDOkh9yzjIcS7CaaYs-fLf0rYnS9uHhUb3uh20m53WDizaps8jLk8vQQGx0bswL19f-uPnvVjrLXiYthJ9AfNBNzg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7IFNGDuqk4ndqDB0XDlrVZm-NwDsVZhrqxW0mTFAZShxvDP9-XtPuhqCCeesgPykveyxfyvu8BnFFf1BSlguCHES9RLhG8JkgSC-lzIRuBzSbsd_wwDAYD3l1i8dts99mTZMZpMCpN6aQ6Ukl1ifjGqWEWm6swRleCQXjVM4n05r7-1F_I7ga2LDK6EiMInL2cNvP9HJ-PpgXe_PJEak-e9vb__3kHtnLU6TSzbVKEFZ2WYPNhLtk6LkEx9_Kxc55LUV_sgmvqeWYKs1PttLQeOY-603OMpAfOF2Y55E7TCJO_DzMW5B702jfP17ckL7NAJPrfhGCYaTDmMkmFaiB6qCVcMhkjlEuEZEoh5mKxr7h2pXYNvJM0DqSXUKaCBAGEuw-F9DXVB-DEAVcNbAsEl17sS9wg5qHWiuwYIbQy0JmFI5lrkJtSGC_RQj3ZWClCK0XWSlG9DJfzMaNMgePX3pXZwkW5N46jOsfARRlezcpwNVuoRfPPsx3-rfsprHdb7ahzF94fwUbdECVsfncFCrhU-hjW5HQyHL-d2E36ASAS4X0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructive+Deep+ReLU+Neural+Network+Approximation&rft.jtitle=Journal+of+scientific+computing&rft.au=Herrmann%2C+Lukas&rft.au=Opschoor%2C+Joost+A.+A.&rft.au=Schwab%2C+Christoph&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=90&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-021-01718-2&rft.externalDocID=10_1007_s10915_021_01718_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon