Constructive Deep ReLU Neural Network Approximation
We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f : [ - 1 , 1 ] K → R . We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and...
Saved in:
| Published in: | Journal of scientific computing Vol. 90; no. 2; p. 75 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose an efficient,
deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations
of multivariate, analytic maps
f
:
[
-
1
,
1
]
K
→
R
. We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and proofs apply for many other popular activation functions. The algorithm is based on collocating
f
in deterministic families of grid points with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis with DNNs to prescribed fidelity. Assuming availability of
N
function values of a possibly corrupted, numerical approximation
f
˘
of
f
in
[
-
1
,
1
]
K
and a bound on
‖
f
-
f
˘
‖
L
∞
(
[
-
1
,
1
]
K
)
, we provide an explicit, computational construction of a ReLU DNN which attains accuracy
ε
(depending on
N
and
‖
f
-
f
˘
‖
L
∞
(
[
-
1
,
1
]
K
)
) uniformly, with respect to the inputs. For analytic maps
f
:
[
-
1
,
1
]
K
→
R
, we prove
exponential convergence of expression and generalization errors
of the constructed ReLU DNNs. Specifically, for every target accuracy
ε
∈
(
0
,
1
)
, there exists
N
depending also on
f
such that the error of the construction algorithm with
N
evaluations of
f
˘
as input in the norm
L
∞
(
[
-
1
,
1
]
K
;
R
)
is smaller than
ε
up to an additive data-corruption bound
‖
f
-
f
˘
‖
L
∞
(
[
-
1
,
1
]
K
)
multiplied with a factor growing slowly with
1
/
ε
and the number of non-zero DNN weights grows polylogarithmically with respect to
1
/
ε
. The algorithmic construction of the ReLU DNNs which will realize the approximations, is explicit and deterministic in terms of the function values of
f
˘
in tensorized Clenshaw–Curtis grids in
[
-
1
,
1
]
K
. We illustrate the proposed methodology by a constructive algorithm for (offline) computations of posterior expectations in Bayesian PDE inversion. |
|---|---|
| AbstractList | We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f:[-1,1]K→R. We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and proofs apply for many other popular activation functions. The algorithm is based on collocating f in deterministic families of grid points with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis with DNNs to prescribed fidelity. Assuming availability of N function values of a possibly corrupted, numerical approximation f˘ of f in [-1,1]K and a bound on ‖f-f˘‖L∞([-1,1]K), we provide an explicit, computational construction of a ReLU DNN which attains accuracy ε (depending on N and ‖f-f˘‖L∞([-1,1]K)) uniformly, with respect to the inputs. For analytic maps f:[-1,1]K→R, we prove exponential convergence of expression and generalization errors of the constructed ReLU DNNs. Specifically, for every target accuracy ε∈(0,1), there exists N depending also on f such that the error of the construction algorithm with N evaluations of f˘ as input in the norm L∞([-1,1]K;R) is smaller than ε up to an additive data-corruption bound ‖f-f˘‖L∞([-1,1]K) multiplied with a factor growing slowly with 1/ε and the number of non-zero DNN weights grows polylogarithmically with respect to 1/ε. The algorithmic construction of the ReLU DNNs which will realize the approximations, is explicit and deterministic in terms of the function values of f˘ in tensorized Clenshaw–Curtis grids in [-1,1]K. We illustrate the proposed methodology by a constructive algorithm for (offline) computations of posterior expectations in Bayesian PDE inversion. We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic maps f : [ - 1 , 1 ] K → R . We address in particular networks with the rectified linear unit (ReLU) activation function. Similar results and proofs apply for many other popular activation functions. The algorithm is based on collocating f in deterministic families of grid points with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis with DNNs to prescribed fidelity. Assuming availability of N function values of a possibly corrupted, numerical approximation f ˘ of f in [ - 1 , 1 ] K and a bound on ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) , we provide an explicit, computational construction of a ReLU DNN which attains accuracy ε (depending on N and ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) ) uniformly, with respect to the inputs. For analytic maps f : [ - 1 , 1 ] K → R , we prove exponential convergence of expression and generalization errors of the constructed ReLU DNNs. Specifically, for every target accuracy ε ∈ ( 0 , 1 ) , there exists N depending also on f such that the error of the construction algorithm with N evaluations of f ˘ as input in the norm L ∞ ( [ - 1 , 1 ] K ; R ) is smaller than ε up to an additive data-corruption bound ‖ f - f ˘ ‖ L ∞ ( [ - 1 , 1 ] K ) multiplied with a factor growing slowly with 1 / ε and the number of non-zero DNN weights grows polylogarithmically with respect to 1 / ε . The algorithmic construction of the ReLU DNNs which will realize the approximations, is explicit and deterministic in terms of the function values of f ˘ in tensorized Clenshaw–Curtis grids in [ - 1 , 1 ] K . We illustrate the proposed methodology by a constructive algorithm for (offline) computations of posterior expectations in Bayesian PDE inversion. |
| ArticleNumber | 75 |
| Author | Herrmann, Lukas Opschoor, Joost A. A. Schwab, Christoph |
| Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0003-3402-6420 surname: Herrmann fullname: Herrmann, Lukas email: lukas.herrmann@ricam.oeaw.ac.at organization: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences – sequence: 2 givenname: Joost A. A. surname: Opschoor fullname: Opschoor, Joost A. A. organization: Seminar for Applied Mathematics, ETH Zürich – sequence: 3 givenname: Christoph surname: Schwab fullname: Schwab, Christoph organization: Seminar for Applied Mathematics, ETH Zürich |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-AUibNh145r-1iVp1SBhOjZSh0HpZQk2A6Pf49pkJA49DSX-XZmZ0JGTds4Qk4RzhFAXgQEjYICQwooUVF2QMYoJKdypnFExqCUoDKX-RGZhLABAK00GxO-aJsQfW9j_e6yS-e67NEtV9m9632xTRI_Wv-SzbvOt5_1axHrtjkmh1WxDe7kV6dkdX31tLily4ebu8V8SS1HHalSciYEFxaLMpUAqLQVdi1yqAorypJxJtay1I5bx0HIZFwrm1coSlUpBnxKzoa7KfutdyGaTdv7JkUaplFxFEqK5FKDy_o2BO8qY-u46xl9UW8NgvmZyAwTmTSR2U1kWELZP7Tz6Uf_tR_iAxSSuXl2_q_VHuobH255kQ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_117798 crossref_primary_10_1007_s10444_025_10245_9 crossref_primary_10_1007_s10444_024_10171_2 crossref_primary_10_1007_s00500_024_09900_y crossref_primary_10_1016_j_camwa_2024_06_008 crossref_primary_10_1007_s00365_024_09694_0 crossref_primary_10_1177_14759217221132114 crossref_primary_10_1016_j_jco_2025_101933 crossref_primary_10_1142_S0218202525500113 crossref_primary_10_1007_s00041_024_10071_5 crossref_primary_10_1007_s43670_025_00116_1 crossref_primary_10_1016_j_neunet_2024_106761 crossref_primary_10_1007_s10092_023_00565_x |
| Cites_doi | 10.1016/j.jcp.2020.109339 10.1137/16M1076824 10.1142/S021820251750021X 10.1016/j.jcp.2020.109913 10.1137/16M1099406 10.1007/s00780-018-0361-y 10.1007/s00020-021-02653-5 10.1137/1.9781611975949 10.1007/BF01429047 10.4208/cicp.OA-2019-0168 10.1142/S0219530519410136 10.1142/S0219530518500203 10.1162/neco.1996.8.1.164 10.1016/j.neunet.2018.08.019 10.1051/m2an/2020003 10.1137/18M118709X 10.1007/BF02070821 10.1016/j.neunet.2017.07.002 10.1137/20M131309X 10.1016/j.jco.2020.101540 10.1016/j.jcp.2018.10.045 10.1016/j.camwa.2018.09.019 10.1007/978-3-319-12385-1_7 10.1142/S0218202517500439 10.1017/S0962492919000059 10.1016/j.neunet.2021.07.027 10.1088/1361-6420/abaf64 10.1007/s00365-021-09541-6 10.1007/s00365-021-09542-5 10.1007/978-3-030-43465-6_2 10.1007/s11425-018-9387-x |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-021-01718-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_021_01718_2 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-88765535c1ad69100f9c5cb540fac5dd2325b7d9e3ce30575c1b8c4f15d8f8203 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739967100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 01:50:02 EST 2025 Sat Nov 29 01:56:29 EST 2025 Tue Nov 18 22:26:37 EST 2025 Fri Feb 21 02:46:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Exponential convergence Deep ReLU neural networks 41A10 65D05 Neural network construction Generalization error 41A50 65D15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-88765535c1ad69100f9c5cb540fac5dd2325b7d9e3ce30575c1b8c4f15d8f8203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3402-6420 |
| PQID | 2918315875 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_2918315875 crossref_citationtrail_10_1007_s10915_021_01718_2 crossref_primary_10_1007_s10915_021_01718_2 springer_journals_10_1007_s10915_021_01718_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gaß, Glau, Mahlstedt, Mair (CR15) 2018; 22 Dashti, Stuart (CR7) 2017 CR19 Yang, Meng, Karniadakis (CR38) 2021; 425 Cheridito, Jentzen, Rossmannek (CR5) 2021; 64 CR16 Zech, Schwab (CR40) 2020; 54 CR14 CR36 Henríquez, Schwab (CR17) 2021; 93 CR12 CR34 Dũng, Nguyen (CR11) 2021; 142 CR30 Mhaskar (CR26) 1993; 1 Opschoor, Petersen, Schwab (CR29) 2020; 18 Jerez-Hanckes, Schwab, Zech (CR21) 2017; 27 Trefethen (CR37) 2019 Bölcskei, Grohs, Kutyniok, Petersen (CR3) 2019; 1 CR4 Petersen, Voigtlaender (CR31) 2018; 108 Cohen, Schwab, Zech (CR6) 2018; 50 Mhaskar (CR27) 1996; 8 Arridge, Maass, Öktem, Schönlieb (CR2) 2019; 28 CR8 Raissi, Perdikaris, Karniadakis (CR32) 2019; 378 Schwab, Zech (CR35) 2019; 17 Hosseini, Nigam (CR20) 2017; 5 CR28 Yarotsky (CR39) 2017; 94 Ehlich, Zeller (CR13) 1966; 164 Lye, Mishra, Ray (CR25) 2020; 410 CR24 CR23 Rivlin (CR33) 1974 Li, Tang, Yu (CR22) 2019; 27 Dick, Gantner, Gia, Schwab (CR9) 2017; 27 Adcock, Dexter (CR1) 2021; 3 Dick, Gantner, Gia, Schwab (CR10) 2019; 77 Herrmann, Schwab, Zech (CR18) 2020; 36 J Dick (1718_CR10) 2019; 77 HN Mhaskar (1718_CR27) 1996; 8 D Dũng (1718_CR11) 2021; 142 1718_CR30 P Cheridito (1718_CR5) 2021; 64 TJ Rivlin (1718_CR33) 1974 S Arridge (1718_CR2) 2019; 28 P Petersen (1718_CR31) 2018; 108 B Hosseini (1718_CR20) 2017; 5 1718_CR28 D Yarotsky (1718_CR39) 2017; 94 1718_CR24 1718_CR23 1718_CR8 KO Lye (1718_CR25) 2020; 410 JAA Opschoor (1718_CR29) 2020; 18 M Gaß (1718_CR15) 2018; 22 A Cohen (1718_CR6) 2018; 50 1718_CR4 M Dashti (1718_CR7) 2017 C Schwab (1718_CR35) 2019; 17 LN Trefethen (1718_CR37) 2019 H Bölcskei (1718_CR3) 2019; 1 F Henríquez (1718_CR17) 2021; 93 B Li (1718_CR22) 2019; 27 J Zech (1718_CR40) 2020; 54 C Jerez-Hanckes (1718_CR21) 2017; 27 L Herrmann (1718_CR18) 2020; 36 1718_CR14 1718_CR36 M Raissi (1718_CR32) 2019; 378 1718_CR16 B Adcock (1718_CR1) 2021; 3 HN Mhaskar (1718_CR26) 1993; 1 1718_CR12 H Ehlich (1718_CR13) 1966; 164 1718_CR34 J Dick (1718_CR9) 2017; 27 1718_CR19 L Yang (1718_CR38) 2021; 425 |
| References_xml | – volume: 410 start-page: 109339 year: 2020 ident: CR25 article-title: Deep learning observables in computational fluid dynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109339 – ident: CR4 – ident: CR14 – volume: 5 start-page: 436 issue: 1 year: 2017 end-page: 465 ident: CR20 article-title: Well-posed Bayesian inverse problems: priors with exponential tails publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M1076824 – ident: CR16 – ident: CR12 – ident: CR30 – volume: 27 start-page: 953 issue: 5 year: 2017 end-page: 995 ident: CR9 article-title: Multilevel higher-order quasi-Monte Carlo Bayesian estimation publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S021820251750021X – volume: 425 start-page: 109913 year: 2021 ident: CR38 article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – volume: 50 start-page: 1720 issue: 2 year: 2018 end-page: 1752 ident: CR6 article-title: Shape holomorphy of the stationary Navier-Stokes Equations publication-title: SIAM J. Math. Anal. doi: 10.1137/16M1099406 – volume: 22 start-page: 701 issue: 3 year: 2018 end-page: 731 ident: CR15 article-title: Chebyshev interpolation for parametric option pricing publication-title: Finance Stoch. doi: 10.1007/s00780-018-0361-y – volume: 93 start-page: 43 issue: 4 year: 2021 ident: CR17 article-title: Shape holomorphy of the Calderón projector for the Laplacian in publication-title: Integral Equ. Oper. Theory doi: 10.1007/s00020-021-02653-5 – year: 2019 ident: CR37 publication-title: Approximation Theory and Approximation Practice doi: 10.1137/1.9781611975949 – volume: 164 start-page: 105 year: 1966 end-page: 112 ident: CR13 article-title: Auswertung der Normen von Interpolationsoperatoren publication-title: Math. Ann. doi: 10.1007/BF01429047 – volume: 27 start-page: 379 issue: 2 year: 2019 end-page: 411 ident: CR22 article-title: Better approximations of high dimensional smooth functions by deep neural networks with rectified power units publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2019-0168 – ident: CR8 – ident: CR23 – volume: 18 start-page: 715 issue: 05 year: 2020 end-page: 770 ident: CR29 article-title: Deep ReLU networks and high-order finite element methods publication-title: Anal. Appl. doi: 10.1142/S0219530519410136 – volume: 17 start-page: 19 issue: 1 year: 2019 end-page: 55 ident: CR35 article-title: Deep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in UQ publication-title: Anal. Appl. Singap. doi: 10.1142/S0219530518500203 – volume: 8 start-page: 164 issue: 1 year: 1996 end-page: 177 ident: CR27 article-title: Neural networks for optimal approximation of smooth and analytic functions publication-title: Neural Comput. doi: 10.1162/neco.1996.8.1.164 – volume: 108 start-page: 296 year: 2018 end-page: 330 ident: CR31 article-title: Optimal approximation of piecewise smooth functions using deep ReLU neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.019 – volume: 54 start-page: 1259 issue: 4 year: 2020 end-page: 1307 ident: CR40 article-title: Convergence rates of high dimensional Smolyak quadrature publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2020003 – ident: CR19 – volume: 1 start-page: 8 issue: 1 year: 2019 end-page: 45 ident: CR3 article-title: Optimal approximation with sparsely connected deep neural networks publication-title: SIAM J. Math. Data Sci. doi: 10.1137/18M118709X – volume: 1 start-page: 61 issue: 1 year: 1993 end-page: 80 ident: CR26 article-title: Approximation properties of a multilayered feedforward artificial neural network publication-title: Adv. Comput. Math. doi: 10.1007/BF02070821 – volume: 94 start-page: 103 year: 2017 end-page: 114 ident: CR39 article-title: Error bounds for approximations with deep ReLU networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – year: 1974 ident: CR33 publication-title: The Chebyshev Polynomials – volume: 3 start-page: 624 issue: 2 year: 2021 end-page: 655 ident: CR1 article-title: The gap between theory and practice in function approximation with deep neural networks publication-title: SIAM J. Math. Data Sci. doi: 10.1137/20M131309X – volume: 64 start-page: 101540 year: 2021 ident: CR5 article-title: Non-convergence of stochastic gradient descent in the training of deep neural networks publication-title: J. Complex. doi: 10.1016/j.jco.2020.101540 – ident: CR34 – ident: CR36 – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: CR32 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 77 start-page: 144 issue: 1 year: 2019 end-page: 172 ident: CR10 article-title: Higher order quasi-Monte Carlo integration for Bayesian PDE inversion publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.09.019 – start-page: 311 year: 2017 end-page: 428 ident: CR7 article-title: The Bayesian approach to inverse problems publication-title: Handbook of Uncertainty Quantification doi: 10.1007/978-3-319-12385-1_7 – volume: 27 start-page: 2229 issue: 12 year: 2017 end-page: 2259 ident: CR21 article-title: Electromagnetic wave scattering by random surfaces: shape holomorphy publication-title: Math. Mod. Meth. Appl. Sci. doi: 10.1142/S0218202517500439 – ident: CR28 – ident: CR24 – volume: 28 start-page: 1 year: 2019 end-page: 174 ident: CR2 article-title: Solving inverse problems using data-driven models publication-title: Acta Numer. doi: 10.1017/S0962492919000059 – volume: 142 start-page: 619 year: 2021 end-page: 635 ident: CR11 article-title: Deep ReLU neural networks in high-dimensional approximation publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.07.027 – volume: 36 start-page: 125011 issue: 12 year: 2020 ident: CR18 article-title: Deep neural network expression of posterior expectations in Bayesian PDE inversion publication-title: Inverse Probl. doi: 10.1088/1361-6420/abaf64 – volume: 1 start-page: 8 issue: 1 year: 2019 ident: 1718_CR3 publication-title: SIAM J. Math. Data Sci. doi: 10.1137/18M118709X – volume: 50 start-page: 1720 issue: 2 year: 2018 ident: 1718_CR6 publication-title: SIAM J. Math. Anal. doi: 10.1137/16M1099406 – ident: 1718_CR14 doi: 10.1007/s00365-021-09541-6 – volume: 22 start-page: 701 issue: 3 year: 2018 ident: 1718_CR15 publication-title: Finance Stoch. doi: 10.1007/s00780-018-0361-y – ident: 1718_CR30 doi: 10.1007/s00365-021-09542-5 – volume-title: Approximation Theory and Approximation Practice year: 2019 ident: 1718_CR37 doi: 10.1137/1.9781611975949 – ident: 1718_CR8 – volume: 77 start-page: 144 issue: 1 year: 2019 ident: 1718_CR10 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.09.019 – volume: 28 start-page: 1 year: 2019 ident: 1718_CR2 publication-title: Acta Numer. doi: 10.1017/S0962492919000059 – ident: 1718_CR4 – volume: 5 start-page: 436 issue: 1 year: 2017 ident: 1718_CR20 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M1076824 – volume: 36 start-page: 125011 issue: 12 year: 2020 ident: 1718_CR18 publication-title: Inverse Probl. doi: 10.1088/1361-6420/abaf64 – volume: 18 start-page: 715 issue: 05 year: 2020 ident: 1718_CR29 publication-title: Anal. Appl. doi: 10.1142/S0219530519410136 – volume: 108 start-page: 296 year: 2018 ident: 1718_CR31 publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.019 – volume: 54 start-page: 1259 issue: 4 year: 2020 ident: 1718_CR40 publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2020003 – volume: 27 start-page: 953 issue: 5 year: 2017 ident: 1718_CR9 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S021820251750021X – volume: 94 start-page: 103 year: 2017 ident: 1718_CR39 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – volume: 17 start-page: 19 issue: 1 year: 2019 ident: 1718_CR35 publication-title: Anal. Appl. Singap. doi: 10.1142/S0219530518500203 – volume: 3 start-page: 624 issue: 2 year: 2021 ident: 1718_CR1 publication-title: SIAM J. Math. Data Sci. doi: 10.1137/20M131309X – volume: 27 start-page: 2229 issue: 12 year: 2017 ident: 1718_CR21 publication-title: Math. Mod. Meth. Appl. Sci. doi: 10.1142/S0218202517500439 – ident: 1718_CR16 – ident: 1718_CR23 – volume: 164 start-page: 105 year: 1966 ident: 1718_CR13 publication-title: Math. Ann. doi: 10.1007/BF01429047 – volume: 425 start-page: 109913 year: 2021 ident: 1718_CR38 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – volume: 64 start-page: 101540 year: 2021 ident: 1718_CR5 publication-title: J. Complex. doi: 10.1016/j.jco.2020.101540 – volume: 1 start-page: 61 issue: 1 year: 1993 ident: 1718_CR26 publication-title: Adv. Comput. Math. doi: 10.1007/BF02070821 – ident: 1718_CR36 – ident: 1718_CR28 – volume: 142 start-page: 619 year: 2021 ident: 1718_CR11 publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.07.027 – ident: 1718_CR34 – start-page: 311 volume-title: Handbook of Uncertainty Quantification year: 2017 ident: 1718_CR7 doi: 10.1007/978-3-319-12385-1_7 – volume: 27 start-page: 379 issue: 2 year: 2019 ident: 1718_CR22 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2019-0168 – volume: 93 start-page: 43 issue: 4 year: 2021 ident: 1718_CR17 publication-title: Integral Equ. Oper. Theory doi: 10.1007/s00020-021-02653-5 – ident: 1718_CR24 – volume: 378 start-page: 686 year: 2019 ident: 1718_CR32 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume-title: The Chebyshev Polynomials year: 1974 ident: 1718_CR33 – volume: 410 start-page: 109339 year: 2020 ident: 1718_CR25 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109339 – volume: 8 start-page: 164 issue: 1 year: 1996 ident: 1718_CR27 publication-title: Neural Comput. doi: 10.1162/neco.1996.8.1.164 – ident: 1718_CR19 doi: 10.1007/978-3-030-43465-6_2 – ident: 1718_CR12 doi: 10.1007/s11425-018-9387-x |
| SSID | ssj0009892 |
| Score | 2.4643528 |
| Snippet | We propose an efficient,
deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations
of multivariate, analytic... We propose an efficient, deterministic algorithm for constructing exponentially convergent deep neural network (DNN) approximations of multivariate, analytic... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 75 |
| SubjectTerms | Accuracy Algorithms Approximation Artificial neural networks Computational Mathematics and Numerical Analysis Convergence Fourier transforms Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Neural networks Optimization Partial differential equations Polynomials Theoretical |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9OBFnT9wOqUHD4oGl7Zpm5MMdXgYY4iT4aWkSQoD2aYdwz_flzS1KLiLpx7ShpL3I1-b974P4JzGoqMoFQQvjIS5CojgHUHyTMiYCxkltprwpR8PBsl4zIfuh1vhyiqrnGgTtZpJ84_8xufofJQhvL6dvxOjGmVOV52ExjpsGJYEI90wZK816W5iRZExkBhB2By6phnXOsep6U02H9OYn4n_c2Oq0eavA1K77_R2_vvGu7DtEKfXLV2kCWt6ugdNF9OFd-GIpy_3ITDqnSWf7FJ791rPvSfdH3mGwANnGJQV417X0JB_TsqexwMY9R6e7x6JE1UgEqNtQTCpRIwFTFKhIsQKnZxLJjMEbrmQTClEWCyLFdeB1IEBc5JmiQxzylSSI1wIDqExnU31EXhZwlWEY4ngMsxiie5gjmUtpY6hPWsBrVY0lY5x3AhfvKU1V7KxQopWSK0VUr8FV9_PzEu-jZV3t6ulT13sFWm97i24roxXD_892_Hq2U5gyze9D7Zkuw0NtIc-hU25XEyKjzPreV--vttn priority: 102 providerName: ProQuest |
| Title | Constructive Deep ReLU Neural Network Approximation |
| URI | https://link.springer.com/article/10.1007/s10915-021-01718-2 https://www.proquest.com/docview/2918315875 |
| Volume | 90 |
| WOSCitedRecordID | wos000739967100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEP6qbidI4ePCgaWNambY5TNwRnGdON4aWkSQoDmcOO4Z_vSz82FRX00h6ShvLyPn4h7_0ewCn1RFNRKgi-GHFiZRPBm4LEkZAeF9L102zCUc8LAn885v28KCwpst2LK8nUU38oduPUVBOb4y96VIKOt4zhzjcNGwYPoxXVrp-2QkbzYQTBspOXyny_xudwtMKYX65F02jT3fnff-7Cdo4urXamDhVY09MqbN0vqVmTKlRya06ss5xy-nwPbNO3M2OSXWjrRuuZNdC9oWWoO3C9IMsVt9qGgPxtklU77sOw23m8viV5OwUi0c7mBN2Jy5jNJBXKRZTQjLlkMkLIFgvJlEJsxSJPcW1LbRsYJ2nkSyemTPkxAgX7AErTl6k-BCvyuXJxzBdcOpEnURHMhWxKpmMIz2pAC6mGMucaNy0vnsMVS7KRUohSClMpha0aXCy_mWVMG7_OrhebFeZWl4Qtjg6KMjyC1eCy2JzV8M-rHf1t-jFstkwVRJq8XYcS7o8-gQ25mE-S1waUrzpBf9CA9TuP4LPPnhqphr4D4LTZHw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CnrxLVar5qCg6GI3yTbZg0ixlpbWIlKlt7jZ3UBB2mrFx5_yNzqbh0HB3nrwlMMmQ8g3r83OfANwQD1RVpQKghdG3Eg5RPCyIFEopMeFrPhxNeF92-t0_F6P38zAZ9YLY8oqM58YO2o1lOYf-ZnNUfkow_T6YvREzNQoc7qajdBI1KKlP95wyzY-b9YQ30Pbrl91LxsknSpAJKrbC0GrqjDmMEmFqmCwLEdcMhli5hIJyZTCFIOFnuLakdox2YykoS_diDLlRxgvHZQ7C3Ou43vGrloeyUl-_XgIMxouI5imu2mTTtqqx6nphTabd4wHxP4ZCPPs9teBbBzn6sv_7QutwFKaUVvVxARWYUYP1mA19Vlj6ygl1j5eB8dMJ034cl-1VdN6ZN3q9p1lCEpQQiepiLeqhmb9vZ_0dG7A3VRefhMKg-FAb4EV-lxVcM0XXLqhJ1HdzbFzTBlkaN2KQDMEA5kyqpvBHo9BzgVtUA8Q9SBGPbCLcPL9zCjhE5l4dymDOkh9yzjIcS7CaaYs-fLf0rYnS9uHhUb3uh20m53WDizaps8jLk8vQQGx0bswL19f-uPnvVjrLXiYthJ9AfNBNzg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7IFNGDuqk4ndqDB0XDlrVZm-NwDsVZhrqxW0mTFAZShxvDP9-XtPuhqCCeesgPykveyxfyvu8BnFFf1BSlguCHES9RLhG8JkgSC-lzIRuBzSbsd_wwDAYD3l1i8dts99mTZMZpMCpN6aQ6Ukl1ifjGqWEWm6swRleCQXjVM4n05r7-1F_I7ga2LDK6EiMInL2cNvP9HJ-PpgXe_PJEak-e9vb__3kHtnLU6TSzbVKEFZ2WYPNhLtk6LkEx9_Kxc55LUV_sgmvqeWYKs1PttLQeOY-603OMpAfOF2Y55E7TCJO_DzMW5B702jfP17ckL7NAJPrfhGCYaTDmMkmFaiB6qCVcMhkjlEuEZEoh5mKxr7h2pXYNvJM0DqSXUKaCBAGEuw-F9DXVB-DEAVcNbAsEl17sS9wg5qHWiuwYIbQy0JmFI5lrkJtSGC_RQj3ZWClCK0XWSlG9DJfzMaNMgePX3pXZwkW5N46jOsfARRlezcpwNVuoRfPPsx3-rfsprHdb7ahzF94fwUbdECVsfncFCrhU-hjW5HQyHL-d2E36ASAS4X0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructive+Deep+ReLU+Neural+Network+Approximation&rft.jtitle=Journal+of+scientific+computing&rft.au=Herrmann%2C+Lukas&rft.au=Opschoor%2C+Joost+A.+A.&rft.au=Schwab%2C+Christoph&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=90&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-021-01718-2&rft.externalDocID=10_1007_s10915_021_01718_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |