Mixed Finite Element Method for a Hemivariational Inequality of Stationary Navier–Stokes Equations
In this paper, we develop and study the mixed finite element method for a hemivariational inequality of the stationary Navier–Stokes equations (NS hemivariational inequality). The NS hemivariational inequality models the motion of a viscous incompressible fluid in a bounded domain, subject to a nons...
Uložené v:
| Vydané v: | Journal of scientific computing Ročník 89; číslo 1; s. 8 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we develop and study the mixed finite element method for a hemivariational inequality of the stationary Navier–Stokes equations (NS hemivariational inequality). The NS hemivariational inequality models the motion of a viscous incompressible fluid in a bounded domain, subject to a nonsmooth and nonconvex slip boundary condition. The incompressibility contraint is treated through a mixed formulation. Solution existence and uniqueness are explored. The mixed finite element method is applied to solve the NS hemivariational inequality and error estimates are derived. Numerical results are reported on the use of the P1b/P1 pair, illustrating the optimal convergence order predicted by the error analysis. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-021-01614-9 |