Mixed Finite Element Method for a Hemivariational Inequality of Stationary Navier–Stokes Equations

In this paper, we develop and study the mixed finite element method for a hemivariational inequality of the stationary Navier–Stokes equations (NS hemivariational inequality). The NS hemivariational inequality models the motion of a viscous incompressible fluid in a bounded domain, subject to a nons...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 89; číslo 1; s. 8
Hlavní autoři: Han, Weimin, Czuprynski, Kenneth, Jing, Feifei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2021
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we develop and study the mixed finite element method for a hemivariational inequality of the stationary Navier–Stokes equations (NS hemivariational inequality). The NS hemivariational inequality models the motion of a viscous incompressible fluid in a bounded domain, subject to a nonsmooth and nonconvex slip boundary condition. The incompressibility contraint is treated through a mixed formulation. Solution existence and uniqueness are explored. The mixed finite element method is applied to solve the NS hemivariational inequality and error estimates are derived. Numerical results are reported on the use of the P1b/P1 pair, illustrating the optimal convergence order predicted by the error analysis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-021-01614-9