Linearization and parallelization schemes for convex mixed-integer nonlinear optimization
We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and so...
Uložené v:
| Vydané v: | Computational optimization and applications Ročník 81; číslo 2; s. 423 - 478 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate nonlinear functions and are more effective than other general approaches. These techniques have been implemented in the Minotaur toolkit. Tests on benchmark instances show up to 12% improvement in the average time to solve the instances. Shared-memory parallel versions of NLP based branch-and-bound and LP/NLP based branch-and-bound algorithms have also been developed in the toolkit. These implementations solve different nodes of branch-and-bound concurrently. About 44% improvement in the speed and an increase in the number of instances solved within the time limit are observed when the two schemes are used together on a computer with 16 cores. These parallelization methods are compared to alternate approaches that exploit parallelism in existing commercial MILP solvers. The latter approaches are seen to perform better thus highlighting the importance of MILP techniques. |
|---|---|
| AbstractList | We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate nonlinear functions and are more effective than other general approaches. These techniques have been implemented in the Minotaur toolkit. Tests on benchmark instances show up to 12% improvement in the average time to solve the instances. Shared-memory parallel versions of NLP based branch-and-bound and LP/NLP based branch-and-bound algorithms have also been developed in the toolkit. These implementations solve different nodes of branch-and-bound concurrently. About 44% improvement in the speed and an increase in the number of instances solved within the time limit are observed when the two schemes are used together on a computer with 16 cores. These parallelization methods are compared to alternate approaches that exploit parallelism in existing commercial MILP solvers. The latter approaches are seen to perform better thus highlighting the importance of MILP techniques. |
| Author | Palkar, Prashant Mahajan, Ashutosh Sharma, Meenarli |
| Author_xml | – sequence: 1 givenname: Meenarli orcidid: 0000-0002-5677-2822 surname: Sharma fullname: Sharma, Meenarli email: meenarli@iitb.ac.in organization: Indian Institute of Technology Bombay – sequence: 2 givenname: Prashant surname: Palkar fullname: Palkar, Prashant organization: Indian Institute of Technology Bombay – sequence: 3 givenname: Ashutosh surname: Mahajan fullname: Mahajan, Ashutosh organization: Indian Institute of Technology Bombay |
| BookMark | eNp9kDtPwzAQgC1UJNrCH2CKxGw4PxOPqOIlVWKBgclyUgdcJU6xUxT49ZimCImh00l3993jm6GJ77xF6JzAJQHIryIBUSgMlGAAxgQejtCUiJxhWig-QVNQVGKZaidoFuMaAFTO6BS9LJ23Jrgv07vOZ8avso0Jpmls85uL1ZttbczqLmRV5z_skLVusCvsfG9fbcjSLc1uStZtetfuuVN0XJsm2rN9nKPn25unxT1ePt49LK6XuGJE9bhgEmqlRG4rCxYUV7ymXEApSC5LIgRIk14oZSVqzkQpDOXckJLxFTWpzuboYpy7Cd371sZer7tt8GmlppLmRAIBmbro2FWFLsZga70JrjXhUxPQPwr1qFAnhXqnUA8JKv5Blet3z_XBuOYwykY0pj0-Wfq76gD1DcoriV0 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3439212 |
| Cites_doi | 10.1287/ijoc.15.1.114.15159 10.1002/9780470400531.eorms0437 10.1080/10556788.2017.1335312 10.1287/ijoc.1090.0373 10.1287/ijoc.1090.0347 10.1007/BF00138693 10.1007/s10589-019-00074-0 10.1007/BF00934810 10.1007/s10479-018-2872-5 10.1287/ijoc.1120.0545 10.1287/ijoc.2017.0762 10.1007/s10898-014-0166-2 10.1016/j.disopt.2006.10.006 10.1007/s10589-010-9350-6 10.1007/978-3-540-75416-9_19 10.1007/978-3-319-63516-3_8 10.1287/ijoc.11.2.173 10.1007/s10479-006-0091-y 10.1016/0098-1354(95)87027-X 10.1515/9781400873173 10.1109/IPDPSW.2019.00095 10.1007/BF01581153 10.1016/j.disopt.2006.10.011 10.4171/dms/1-3/62 10.1007/s12532-008-0001-1 10.1016/j.orl.2004.04.002 10.1007/s10107-004-0559-y 10.1007/s101070100263 10.1016/0098-1354(92)80028-8 10.1017/S0962492913000032 10.1080/10556788.2018.1428602 10.1002/9780470053928.ch1 10.1287/mnsc.31.12.1533 10.1016/j.ejor.2015.12.018 10.1080/10556788.2017.1333612 10.1080/10556780902753221 10.1007/s10107-004-0518-7 10.1137/1.9781611974683.ch21 10.1109/99.660313 10.1007/s10898-015-0322-3 10.1007/978-3-642-24025-6_12 10.1007/978-3-319-89920-6_20 10.1007/s11081-019-09438-1 10.1007/BF02592064 10.1007/s10898-017-0600-3 10.1007/978-3-319-59776-8_17 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10589-021-00335-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 478 |
| ExternalDocumentID | 10_1007_s10589_021_00335_x |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-8360f9957ece0e09494f2450b5176b15506a894b6c5f435b5a244a1b34d2ab153 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Wed Nov 26 14:53:13 EST 2025 Sat Nov 29 01:51:30 EST 2025 Tue Nov 18 22:02:20 EST 2025 Fri Feb 21 02:47:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Branch-and-bound Convex MINLP Outer approximation Linearization techniques Shared-memory parallel |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-8360f9957ece0e09494f2450b5176b15506a894b6c5f435b5a244a1b34d2ab153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5677-2822 |
| PQID | 2627160106 |
| PQPubID | 30811 |
| PageCount | 56 |
| ParticipantIDs | proquest_journals_2627160106 crossref_primary_10_1007_s10589_021_00335_x crossref_citationtrail_10_1007_s10589_021_00335_x springer_journals_10_1007_s10589_021_00335_x |
| PublicationCentury | 2000 |
| PublicationDate | 20220300 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | AchterbergTSCIP: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1 Forrest, J.: CBC MILP solver. http://www.coin-or.org/Cbc Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of SCIP. In: Competence in High Performance Computing 2010, pp. 135–148. Springer (2011) RockafellarRConvex Analysis1970Princeton, NJPrinceton University Press10.1515/9781400873173 Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Tech. rep. (2009) DannaERothbergELe PapeCExploring relaxation induced neighborhoods to improve MIP solutionsMath. Program.200510217190211548110.1007/s10107-004-0518-7 BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer2013221131303869610.1017/S0962492913000032 DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291201213187551510.1007/s101070100263 Abhishek, K.: Topics in mixed integer nonlinear programming. Ph.D. thesis, Lehigh University (2008) WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.200610612557219561610.1007/s10107-004-0559-y CPLEX 12.8 user’s manual (2019). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: MINOTAUR: A mixed-integer nonlinear optimization toolkit. Optimization Online 6275, (2017) Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems (1998) BonamiPGonçalvesJPHeuristics for convex mixed integer nonlinear programsComput. Optim. Appl.2012512729747289191410.1007/s10589-010-9350-6 Shinano, Y.: The ubiquity generator framework: 7 years of progress in parallelizing branch-and-bound. In: Operations Research Proceedings 2017, pp. 143–149. Springer (2018) FICO Xpress-Optimizer (2019). http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx ChapmanBJostGVan Der PasRUsing OpenMP: portable shared memory parallel programming2008CambridgeMIT press DagumLMenonROpenMP: an industry standard API for shared-memory programmingIEEE Comput. Sci. Eng.199851465510.1109/99.660313 VigerskeSGleixnerASCIP: Global optimization of mixed-integer nonlinear programs in a branch-and-cut frameworkOpt. Methods Softw.2018333563593378367410.1080/10556788.2017.1335312 Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 211–220. Springer (2017) Melo, W., Fampa, M., Raupp, F.: An overview of MINLP algorithms and their implementation in muriqui optimizer. Annal. Oper. Res. , 1–25 (2018) AchterbergTConflict analysis in mixed integer programmingDiscret. Optim.200741420229248210.1016/j.disopt.2006.10.006 Lundell, A., Kronqvist, J., Westerlund, T.: The supporting hyperplane optimization toolkit—a polyhedral outer approximation based convex minlp solver utilizing a single branching tree approach. Preprint, Optimization Online (2018) Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical Report (2011) LimaRMGrossmannIEComputational advances in solving mixed integer linear programming problemsChem. Eng. Greetings Prof. Sauro Pierucci, AIDAC2011151160 BoukouvalaFMisenerRFloudasCAGlobal optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimizationCDFO. Eur. J. Oper. Res.20162523701727347349210.1016/j.ejor.2015.12.018 LinYSchrageLThe global solver in the LINDO APIOpt. Methods Softw.2009244–5657668255490410.1080/10556780902753221 Shinano, Y., Rehfeldt, D., Galley, T.: An easy way to build parallel state-of-the-art combinatorial optimization problem solvers: A computational study on solving steiner tree problems and mixed integer semidefinite programs by using ug [SCIP-*,*]-libraries. Technical Report (2019) Mahajan, A.: Presolving mixed–integer linear programs. Wiley Encyclopedia of Operations Research and Management Science (2010) BertholdTFarmerJHeinzSPerregaardMParallelization of the FICO Xpress-OptimizerOpt. Methods Softw.2018333518529378367110.1080/10556788.2017.1333612 Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY 5.6.9 user’s manual (2015) SAS/OR 15.1 user’s guide mathematical programming (2019). https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf ShinanoYHeinzSVigerskeSWinklerMFiberSCIP–a shared memory parallelization of SCIPINFORMS J. Comput.20173011130377698110.1287/ijoc.2017.0762 AbhishekKLeyfferSLinderothJFilMINT: an outer approximation based solver for convex mixed-integer nonlinear programsINFORMS J. Comput.2010224555567276651210.1287/ijoc.1090.0373 Hart, W.E., Phillips, C.A., Eckstein, J.: PEBBL: An object-oriented framework for scalable parallel branch and bound. Tech. rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2013) SahinidisNVBaron: a general purpose global optimization software packageJ. Global Optim.199682201205137650510.1007/BF00138693 Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Parallel combinatorial optimization pp. 1–28 (2006) AchterbergTKochTMartinABranching rules revisitedOper. Res. Lett.20053314254209103410.1016/j.orl.2004.04.002 Kilinç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011) Kilinç, M., Sahinidis, N.V.: State-of-the-art in mixed-integer nonlinear programming. In: Advances and trends in optimization with engineering applications, MOS-SIAM book series on optimization, pp. 273–292. SIAM, Philadelphia (2017) XuYRalphsTKLadányiLSaltzmanMJComputational experience with a software framework for parallel integer programmingINFORMS J. Comput.2009213383397254696010.1287/ijoc.1090.0347 Gurobi optimizer 9.0 reference manual (2019). https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf GramaAKarypisGKVAGIntroduction to parallel computing2003BostonAddison-Wesley GuptaOKRavindranABranch and bound experiments in convex nonlinear integer programmingManage. Sci.198531121533154687888510.1287/mnsc.31.12.1533 KronqvistJLundellAWesterlundTThe extended supporting hyperplane algorithm for convex mixed-integer nonlinear programmingJ. Global Optim.2016642249272345519910.1007/s10898-015-0322-3 QuesadaIGrossmannIEAn LP/NLP based branch and bound algorithm for convex MINLP optimization problemsComput. Chem. Eng.19921610–1193794710.1016/0098-1354(92)80028-8 LINDO Systems Inc (2019). https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX mixed integer optimizer. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 97–106. Springer (2007) BertholdTA computational study of primal heuristics inside an MI(NL)P solverJ. Global Optim.2018701189206374579910.1007/s10898-017-0600-3 HijaziHBonamiPOuorouAAn outer-inner approximation for separable mixed-integer nonlinear programsINFORMS J. Comput.20142613144317124510.1287/ijoc.1120.0545 Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimization. In: Handbook of parallel constraint reasoning, pp. 283–336. Springer (2018) WesterlundTPetterssonFAn extended cutting plane method for solving convex minlp problemsComput. Chem. Eng.19951913113610.1016/0098-1354(95)87027-X LinderothJTSavelsberghMWA computational study of search strategies for mixed integer programmingINFORMS J. Comput.1999112173187169603210.1287/ijoc.11.2.173 Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer programming. Tech. Rep. 16-44, ZIB, Takustr. 7, 14195 Berlin (2016) MisenerRFloudasCAAntigone: algorithms for continuous/integer global optimization of nonlinear equationsJ. Global Optim.2014592–3503526321669010.1007/s10898-014-0166-2 FletcherRLeyfferSSolving mixed integer nonlinear programs by outer approximationMath. Program.1994661–3327349129707010.1007/BF01581153 GeoffrionAMGeneralized benders decompositionJ. Optim. Theory Appl.197210423726032731010.1007/BF00934810 BussieckMRDrudASMeerausAMINLPLib–a collection of test models for mixed-integer nonlinear programmingINFORMS J. Comput.2003151114119196534610.1287/ijoc.15.1.114.15159 DuranMAGrossmannIEAn outer-approximation algorithm for a class of mixed-integer nonlinear programsMath. Program.198636330733986641310.1007/BF02592064 BonamiPBieglerLTConnARCornuéjolsGGrossmannIELairdCDLeeJLodiAMargotFSawayaNAn algorithmic framework for convex mixed integer nonlinear programsDiscret. Optim.200852186204240841610.1016/j.disopt.2006.10.011 BixbyRRothbergEProgress in computational mixed integer programming-a look back from the other side of the tipping pointAnn. Oper. Res.2007149137231335810.1007/s10479-006-0091-y Sahinidis, N.V.: Mixed-integer nonlinear programming 2018. Opt Eng (2019) ShinanoYBertholdTHeinzSParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputersOpt Methods Softw.2018333530539378367210.1080/10556788.2018.1428602 MunguíaLOxberryGRajanDShinanoYParallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programsComp. Opt. Appl.2019732575601394354010.1007/s10589-019-00074-0 L Dagum (335_CR19) 1998; 5 T Westerlund (335_CR57) 1995; 19 335_CR18 L Munguía (335_CR42) 2019; 73 P Bonami (335_CR13) 2008; 5 I Quesada (335_CR43) 1992; 16 335_CR61 335_CR62 335_CR63 T Achterberg (335_CR6) 2005; 33 335_CR64 ED Dolan (335_CR21) 2002; 91 335_CR60 335_CR28 335_CR24 F Boukouvala (335_CR15) 2016; 252 Y Shinano (335_CR51) 2018; 33 A Grama (335_CR26) 2003 B Chapman (335_CR17) 2008 R Rockafellar (335_CR46) 1970 P Belotti (335_CR9) 2013; 22 335_CR30 335_CR31 335_CR37 335_CR38 335_CR39 335_CR32 A Wächter (335_CR56) 2006; 106 P Bonami (335_CR14) 2012; 51 335_CR5 335_CR7 NV Sahinidis (335_CR47) 1996; 8 335_CR8 335_CR1 E Danna (335_CR20) 2005; 102 T Achterberg (335_CR3) 2007; 4 T Achterberg (335_CR4) 2009; 1 T Berthold (335_CR10) 2018; 70 R Fletcher (335_CR23) 1994; 66 335_CR40 OK Gupta (335_CR27) 1985; 31 335_CR48 H Hijazi (335_CR29) 2014; 26 Y Lin (335_CR35) 2009; 24 335_CR49 335_CR44 JT Linderoth (335_CR36) 1999; 11 335_CR45 RM Lima (335_CR34) 2011; 151 MR Bussieck (335_CR16) 2003; 15 Y Shinano (335_CR53) 2017; 30 S Vigerske (335_CR55) 2018; 33 K Abhishek (335_CR2) 2010; 22 J Kronqvist (335_CR33) 2016; 64 MA Duran (335_CR22) 1986; 36 335_CR50 335_CR52 R Misener (335_CR41) 2014; 59 335_CR58 Y Xu (335_CR59) 2009; 21 AM Geoffrion (335_CR25) 1972; 10 335_CR54 T Berthold (335_CR11) 2018; 33 R Bixby (335_CR12) 2007; 149 |
| References_xml | – reference: Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer programming. Tech. Rep. 16-44, ZIB, Takustr. 7, 14195 Berlin (2016) – reference: Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Tech. rep. (2009) – reference: BonamiPGonçalvesJPHeuristics for convex mixed integer nonlinear programsComput. Optim. Appl.2012512729747289191410.1007/s10589-010-9350-6 – reference: DuranMAGrossmannIEAn outer-approximation algorithm for a class of mixed-integer nonlinear programsMath. Program.198636330733986641310.1007/BF02592064 – reference: Hart, W.E., Phillips, C.A., Eckstein, J.: PEBBL: An object-oriented framework for scalable parallel branch and bound. Tech. rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2013) – reference: SahinidisNVBaron: a general purpose global optimization software packageJ. Global Optim.199682201205137650510.1007/BF00138693 – reference: Kilinç, M., Sahinidis, N.V.: State-of-the-art in mixed-integer nonlinear programming. In: Advances and trends in optimization with engineering applications, MOS-SIAM book series on optimization, pp. 273–292. SIAM, Philadelphia (2017) – reference: AchterbergTKochTMartinABranching rules revisitedOper. Res. Lett.20053314254209103410.1016/j.orl.2004.04.002 – reference: GramaAKarypisGKVAGIntroduction to parallel computing2003BostonAddison-Wesley – reference: Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: MINOTAUR: A mixed-integer nonlinear optimization toolkit. Optimization Online 6275, (2017) – reference: Shinano, Y., Rehfeldt, D., Galley, T.: An easy way to build parallel state-of-the-art combinatorial optimization problem solvers: A computational study on solving steiner tree problems and mixed integer semidefinite programs by using ug [SCIP-*,*]-libraries. Technical Report (2019) – reference: Abhishek, K.: Topics in mixed integer nonlinear programming. Ph.D. thesis, Lehigh University (2008) – reference: AbhishekKLeyfferSLinderothJFilMINT: an outer approximation based solver for convex mixed-integer nonlinear programsINFORMS J. Comput.2010224555567276651210.1287/ijoc.1090.0373 – reference: MunguíaLOxberryGRajanDShinanoYParallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programsComp. Opt. Appl.2019732575601394354010.1007/s10589-019-00074-0 – reference: CPLEX 12.8 user’s manual (2019). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf – reference: AchterbergTSCIP: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1 – reference: Gurobi optimizer 9.0 reference manual (2019). https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf – reference: ShinanoYHeinzSVigerskeSWinklerMFiberSCIP–a shared memory parallelization of SCIPINFORMS J. Comput.20173011130377698110.1287/ijoc.2017.0762 – reference: BertholdTA computational study of primal heuristics inside an MI(NL)P solverJ. Global Optim.2018701189206374579910.1007/s10898-017-0600-3 – reference: LinderothJTSavelsberghMWA computational study of search strategies for mixed integer programmingINFORMS J. Comput.1999112173187169603210.1287/ijoc.11.2.173 – reference: Sahinidis, N.V.: Mixed-integer nonlinear programming 2018. Opt Eng (2019) – reference: Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX mixed integer optimizer. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 97–106. Springer (2007) – reference: WesterlundTPetterssonFAn extended cutting plane method for solving convex minlp problemsComput. Chem. Eng.19951913113610.1016/0098-1354(95)87027-X – reference: SAS/OR 15.1 user’s guide mathematical programming (2019). https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf – reference: DagumLMenonROpenMP: an industry standard API for shared-memory programmingIEEE Comput. Sci. Eng.199851465510.1109/99.660313 – reference: Lundell, A., Kronqvist, J., Westerlund, T.: The supporting hyperplane optimization toolkit—a polyhedral outer approximation based convex minlp solver utilizing a single branching tree approach. Preprint, Optimization Online (2018) – reference: Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of SCIP. In: Competence in High Performance Computing 2010, pp. 135–148. Springer (2011) – reference: AchterbergTConflict analysis in mixed integer programmingDiscret. Optim.200741420229248210.1016/j.disopt.2006.10.006 – reference: Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimization. In: Handbook of parallel constraint reasoning, pp. 283–336. Springer (2018) – reference: BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer2013221131303869610.1017/S0962492913000032 – reference: RockafellarRConvex Analysis1970Princeton, NJPrinceton University Press10.1515/9781400873173 – reference: VigerskeSGleixnerASCIP: Global optimization of mixed-integer nonlinear programs in a branch-and-cut frameworkOpt. Methods Softw.2018333563593378367410.1080/10556788.2017.1335312 – reference: FICO Xpress-Optimizer (2019). http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx – reference: ChapmanBJostGVan Der PasRUsing OpenMP: portable shared memory parallel programming2008CambridgeMIT press – reference: HijaziHBonamiPOuorouAAn outer-inner approximation for separable mixed-integer nonlinear programsINFORMS J. Comput.20142613144317124510.1287/ijoc.1120.0545 – reference: BussieckMRDrudASMeerausAMINLPLib–a collection of test models for mixed-integer nonlinear programmingINFORMS J. Comput.2003151114119196534610.1287/ijoc.15.1.114.15159 – reference: KronqvistJLundellAWesterlundTThe extended supporting hyperplane algorithm for convex mixed-integer nonlinear programmingJ. Global Optim.2016642249272345519910.1007/s10898-015-0322-3 – reference: Melo, W., Fampa, M., Raupp, F.: An overview of MINLP algorithms and their implementation in muriqui optimizer. Annal. Oper. Res. , 1–25 (2018) – reference: BertholdTFarmerJHeinzSPerregaardMParallelization of the FICO Xpress-OptimizerOpt. Methods Softw.2018333518529378367110.1080/10556788.2017.1333612 – reference: FletcherRLeyfferSSolving mixed integer nonlinear programs by outer approximationMath. Program.1994661–3327349129707010.1007/BF01581153 – reference: Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Parallel combinatorial optimization pp. 1–28 (2006) – reference: Mahajan, A.: Presolving mixed–integer linear programs. Wiley Encyclopedia of Operations Research and Management Science (2010) – reference: Kilinç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011) – reference: QuesadaIGrossmannIEAn LP/NLP based branch and bound algorithm for convex MINLP optimization problemsComput. Chem. Eng.19921610–1193794710.1016/0098-1354(92)80028-8 – reference: Shinano, Y.: The ubiquity generator framework: 7 years of progress in parallelizing branch-and-bound. In: Operations Research Proceedings 2017, pp. 143–149. Springer (2018) – reference: GeoffrionAMGeneralized benders decompositionJ. Optim. Theory Appl.197210423726032731010.1007/BF00934810 – reference: Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems (1998) – reference: Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical Report (2011) – reference: Forrest, J.: CBC MILP solver. http://www.coin-or.org/Cbc – reference: GuptaOKRavindranABranch and bound experiments in convex nonlinear integer programmingManage. Sci.198531121533154687888510.1287/mnsc.31.12.1533 – reference: ShinanoYBertholdTHeinzSParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputersOpt Methods Softw.2018333530539378367210.1080/10556788.2018.1428602 – reference: BonamiPBieglerLTConnARCornuéjolsGGrossmannIELairdCDLeeJLodiAMargotFSawayaNAn algorithmic framework for convex mixed integer nonlinear programsDiscret. Optim.200852186204240841610.1016/j.disopt.2006.10.011 – reference: MisenerRFloudasCAAntigone: algorithms for continuous/integer global optimization of nonlinear equationsJ. Global Optim.2014592–3503526321669010.1007/s10898-014-0166-2 – reference: Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY 5.6.9 user’s manual (2015) – reference: Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 211–220. Springer (2017) – reference: DannaERothbergELe PapeCExploring relaxation induced neighborhoods to improve MIP solutionsMath. Program.200510217190211548110.1007/s10107-004-0518-7 – reference: LinYSchrageLThe global solver in the LINDO APIOpt. Methods Softw.2009244–5657668255490410.1080/10556780902753221 – reference: WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.200610612557219561610.1007/s10107-004-0559-y – reference: LimaRMGrossmannIEComputational advances in solving mixed integer linear programming problemsChem. Eng. Greetings Prof. Sauro Pierucci, AIDAC2011151160 – reference: LINDO Systems Inc (2019). https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf – reference: BixbyRRothbergEProgress in computational mixed integer programming-a look back from the other side of the tipping pointAnn. Oper. Res.2007149137231335810.1007/s10479-006-0091-y – reference: BoukouvalaFMisenerRFloudasCAGlobal optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimizationCDFO. Eur. J. Oper. Res.20162523701727347349210.1016/j.ejor.2015.12.018 – reference: XuYRalphsTKLadányiLSaltzmanMJComputational experience with a software framework for parallel integer programmingINFORMS J. Comput.2009213383397254696010.1287/ijoc.1090.0347 – reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291201213187551510.1007/s101070100263 – volume: 15 start-page: 114 issue: 1 year: 2003 ident: 335_CR16 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.15.1.114.15159 – ident: 335_CR38 doi: 10.1002/9780470400531.eorms0437 – volume: 33 start-page: 563 issue: 3 year: 2018 ident: 335_CR55 publication-title: Opt. Methods Softw. doi: 10.1080/10556788.2017.1335312 – volume: 22 start-page: 555 issue: 4 year: 2010 ident: 335_CR2 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1090.0373 – volume-title: Introduction to parallel computing year: 2003 ident: 335_CR26 – volume: 21 start-page: 383 issue: 3 year: 2009 ident: 335_CR59 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1090.0347 – volume: 8 start-page: 201 issue: 2 year: 1996 ident: 335_CR47 publication-title: J. Global Optim. doi: 10.1007/BF00138693 – volume: 73 start-page: 575 issue: 2 year: 2019 ident: 335_CR42 publication-title: Comp. Opt. Appl. doi: 10.1007/s10589-019-00074-0 – ident: 335_CR62 – ident: 335_CR24 – volume: 10 start-page: 237 issue: 4 year: 1972 ident: 335_CR25 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00934810 – ident: 335_CR40 doi: 10.1007/s10479-018-2872-5 – ident: 335_CR5 – ident: 335_CR28 – volume: 26 start-page: 31 issue: 1 year: 2014 ident: 335_CR29 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1120.0545 – volume: 30 start-page: 11 issue: 1 year: 2017 ident: 335_CR53 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2017.0762 – volume: 59 start-page: 503 issue: 2–3 year: 2014 ident: 335_CR41 publication-title: J. Global Optim. doi: 10.1007/s10898-014-0166-2 – ident: 335_CR1 – volume: 4 start-page: 4 issue: 1 year: 2007 ident: 335_CR3 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2006.10.006 – volume: 51 start-page: 729 issue: 2 year: 2012 ident: 335_CR14 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-010-9350-6 – ident: 335_CR37 – ident: 335_CR52 doi: 10.1007/978-3-540-75416-9_19 – ident: 335_CR45 doi: 10.1007/978-3-319-63516-3_8 – ident: 335_CR63 – volume: 11 start-page: 173 issue: 2 year: 1999 ident: 335_CR36 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.11.2.173 – volume: 149 start-page: 37 issue: 1 year: 2007 ident: 335_CR12 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-006-0091-y – volume: 19 start-page: 131 year: 1995 ident: 335_CR57 publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(95)87027-X – volume-title: Convex Analysis year: 1970 ident: 335_CR46 doi: 10.1515/9781400873173 – ident: 335_CR54 doi: 10.1109/IPDPSW.2019.00095 – volume: 66 start-page: 327 issue: 1–3 year: 1994 ident: 335_CR23 publication-title: Math. Program. doi: 10.1007/BF01581153 – volume: 5 start-page: 186 issue: 2 year: 2008 ident: 335_CR13 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2006.10.011 – ident: 335_CR32 – ident: 335_CR7 doi: 10.4171/dms/1-3/62 – ident: 335_CR39 – ident: 335_CR64 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 335_CR4 publication-title: Math. Program. Comput. doi: 10.1007/s12532-008-0001-1 – volume: 33 start-page: 42 issue: 1 year: 2005 ident: 335_CR6 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2004.04.002 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 335_CR56 publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – ident: 335_CR60 – volume: 91 start-page: 201 year: 2002 ident: 335_CR21 publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 16 start-page: 937 issue: 10–11 year: 1992 ident: 335_CR43 publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(92)80028-8 – volume: 22 start-page: 1 year: 2013 ident: 335_CR9 publication-title: Acta Numer doi: 10.1017/S0962492913000032 – volume: 33 start-page: 530 issue: 3 year: 2018 ident: 335_CR51 publication-title: Opt Methods Softw. doi: 10.1080/10556788.2018.1428602 – ident: 335_CR18 doi: 10.1002/9780470053928.ch1 – volume: 151 start-page: 160 year: 2011 ident: 335_CR34 publication-title: Chem. Eng. Greetings Prof. Sauro Pierucci, AIDAC – volume: 31 start-page: 1533 issue: 12 year: 1985 ident: 335_CR27 publication-title: Manage. Sci. doi: 10.1287/mnsc.31.12.1533 – volume: 252 start-page: 701 issue: 3 year: 2016 ident: 335_CR15 publication-title: CDFO. Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.12.018 – volume: 33 start-page: 518 issue: 3 year: 2018 ident: 335_CR11 publication-title: Opt. Methods Softw. doi: 10.1080/10556788.2017.1333612 – volume: 24 start-page: 657 issue: 4–5 year: 2009 ident: 335_CR35 publication-title: Opt. Methods Softw. doi: 10.1080/10556780902753221 – volume: 102 start-page: 71 issue: 1 year: 2005 ident: 335_CR20 publication-title: Math. Program. doi: 10.1007/s10107-004-0518-7 – ident: 335_CR31 doi: 10.1137/1.9781611974683.ch21 – volume: 5 start-page: 46 issue: 1 year: 1998 ident: 335_CR19 publication-title: IEEE Comput. Sci. Eng. doi: 10.1109/99.660313 – volume: 64 start-page: 249 issue: 2 year: 2016 ident: 335_CR33 publication-title: J. Global Optim. doi: 10.1007/s10898-015-0322-3 – volume-title: Using OpenMP: portable shared memory parallel programming year: 2008 ident: 335_CR17 – ident: 335_CR50 doi: 10.1007/978-3-642-24025-6_12 – ident: 335_CR49 doi: 10.1007/978-3-319-89920-6_20 – ident: 335_CR61 – ident: 335_CR44 – ident: 335_CR48 doi: 10.1007/s11081-019-09438-1 – volume: 36 start-page: 307 issue: 3 year: 1986 ident: 335_CR22 publication-title: Math. Program. doi: 10.1007/BF02592064 – volume: 70 start-page: 189 issue: 1 year: 2018 ident: 335_CR10 publication-title: J. Global Optim. doi: 10.1007/s10898-017-0600-3 – ident: 335_CR58 doi: 10.1007/978-3-319-59776-8_17 – ident: 335_CR30 – ident: 335_CR8 |
| SSID | ssj0009732 |
| Score | 2.3129375 |
| Snippet | We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 423 |
| SubjectTerms | Algorithms Approximation Convex and Discrete Geometry Linearization Management Science Mathematics Mathematics and Statistics Mixed integer Nodes Nonlinear programming Operations Research Operations Research/Decision Theory Optimization Statistics Toolkits Variables |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb3F1lRy8abBNmz5OIuIiKIsHlfVU8iosdB-2q_TnO8mmVgW9eG2atvSbJN8kM98gdBr73Euk3XH3JQkDZc53lSZKqsSXAfOFFdN5vo8Hg2Q4TB_chlvlwiqbOdFO1GoqzR75BY0oUHvjwVzOXompGmVOV10JjWW04lPqGzu_i0kruhvbAmVeSiMCC3vgkmZc6hwzwUIUnGkvCBipvy9MLdv8cUBq153-5n-_eAttOMaJrxYmso2W9GQHrX_RIdxFL-CRgsW7lEzMJwobSfCi0EVzDZxgPdYVBo6LbaR6jcejWiti9SZ0iScLzQ1e4inMQmPXbw899W8er2-Jq7lAJAzGOTE5HXmaslhL7Wnw_dIwpyHzBPPjSBh_JuJJGopIshyYlmAc-AEHRENFObQH-6gDL9QHCPNIABcUOZUJD3PJRWBkkbmUuWZcMt1FfvPDM-kEyU1djCJrpZQNSBmAlFmQsrqLzj77zBZyHH_e3WuQydzQrLIWli46b7Btm39_2uHfTztCa9SkRtj4tB7qzMs3fYxW5ft8VJUn1jA_ANKv6Vs priority: 102 providerName: ProQuest |
| Title | Linearization and parallelization schemes for convex mixed-integer nonlinear optimization |
| URI | https://link.springer.com/article/10.1007/s10589-021-00335-x https://www.proquest.com/docview/2627160106 |
| Volume | 81 |
| WOSCitedRecordID | wos000744371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o5oM-eJmK0zny4JsG2rTp5VHHhqAbY9N5eSlpmoLQTdmm7Od7krWbigr6ciDNpSUnl-8053wBOPFtYQXS_HG3JXWdRJ_vJoomMgls6XA7NmQ6g2u_0wnu78NuHhQ2KbzdiyNJs1J_CHbj2r2HoflrOQ6niBzLuN0Fejr2-oMl1a5vriWzQuZR3M6dPFTm-zY-b0dLjPnlWNTsNq2t_33nNmzm6JKcz4fDDqyoUQU2PnAOYqq9IGqdVGBdg805V_MuPKBhigM_j8wkYpQQzQyeZSornqEtrIZqQhDqEuOwPiPDp5lKqKGdUGMymlNviDF5xsVomNfbg9tW86ZxSfOrF6jEOTmlOrQjDUPuK6kshSZg6KbM5VbMbd-LtVnjiSB0Y0_yFAFXzAXCBIGKdRMmMN_ZhxK-UB0AEV6MkDBOmQyEm0oRO5odWUiZKi4kV1WwCw1EMucl19djZNGSUVn3aIQ9GpkejWZVOF3UeZmzcvxaulYoNspn6CRiHkNTUVvEVTgrFLnM_rm1w78VP4J1piMmjNtaDUrT8as6hjX5hsod12HVv3uoQ_mi2en2MHXlU5Rtq6El62rp91F2-WPdjPJ3H6_wmA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQc2BFl9QFOYJE4cZYDQgioQJSKQ0FwCo7jSEhtKW2B8lN8I2M3IYBEbxy4xrGz-Nl-Y8-8Adj2bWEF0uy425K6TqLPdxNFE5kEtnS4HRsxnZuaX68Ht7fhVQne81gY7VaZz4lmok4epd4j32ceQ2qvLZjDzhPVWaP06WqeQmMIiwv19oomW-_g_AT7d4ex6mnj-IxmWQWoRLj1qY5aSMOQ-0oqS6F1E7opc7kVc9v3Ys3YPRGEbuxJniKXiLnAFVDgO7sJE1juYLtjMO66OBy0q6B1XIj8-iYhmhUyjyKRcLIgnSxUj2vnJIbGu-U4nA6-L4QFu_1xIGvWuersf_tDczCTMWpyNBwC81BS7QWY_qKzuAh3aHHji2Uhp0S0E6Ilz5tN1cyvoZGvWqpHkMMT44k_IK2HgUqo0dNQXdIeaoqILnnEWbaV1VuC6z_5tmUo4wPVChDhxch145TJQLipFLGjZZ-FlKniQnJVATvv4Ehmgus670czKqSiNSgiBEVkQBENKrD7WaczlBsZefd6joQom3p6UQGDCuzlWCqKf29tdXRrWzB51risRbXz-sUaTDEdBmJ88dah3O8-qw2YkC_9h1530wwKAvd_jbEP3IFDRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NLwQxFH9hiXDwLZZFD5xozHSm83EQEWzIysYB4TQ6nU4i2V3sLta_5q_z2u0YJNwcXKfTzkd_fR_te78HsBm6womk2XF3JfW9TJ_vZopmMotc6XE3NWQ6V2dhsxldX8fnI_BW5MLosMpCJhpBnd1LvUe-ywKGpr32YHZzGxZxflTff3ikuoKUPmktymkMIdJQry_ovvX2To9wrrcYqx9fHJ5QW2GASoRen-oMhjyOeaikchR6OrGfM587KXfDINXWeyCi2E8DyXO0K1IuUBsKfH8_YwLbPRx3FMZQC3O9xhohLQl_Q1MczYlZQNGo8GzCjk3b4zpQiaEj73gep4OvSrG0dL8dzhqdV5_5z39rFqatpU0OhktjDkZUZx6mPvEvLsANeuL4YjYVlYhORjQVequlWsU1dP5VW_UI2vbEROgPSPtuoDJqeDZUl3SGXCOiS-5R-rZtv0W4_JNvW4IKPlAtAxFBijZwmjMZCT-XIvU0HbSQMldcSK6q4BaTnUhLxK7rgbSSkkJaAyRBgCQGIMmgCtsffR6GNCS_3l0rUJFYkdRLSkhUYafAVdn882grv4-2ARMIreTstNlYhUmms0NMiF4NKv3uk1qDcfncv-t11836IHD71xB7B52IS-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearization+and+parallelization+schemes+for+convex+mixed-integer+nonlinear+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Sharma%2C+Meenarli&rft.au=Palkar%2C+Prashant&rft.au=Mahajan%2C+Ashutosh&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=81&rft.issue=2&rft.spage=423&rft.epage=478&rft_id=info:doi/10.1007%2Fs10589-021-00335-x&rft.externalDocID=10_1007_s10589_021_00335_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |