Linearization and parallelization schemes for convex mixed-integer nonlinear optimization

We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and so...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 81; číslo 2; s. 423 - 478
Hlavní autori: Sharma, Meenarli, Palkar, Prashant, Mahajan, Ashutosh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2022
Springer Nature B.V
Predmet:
ISSN:0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate nonlinear functions and are more effective than other general approaches. These techniques have been implemented in the Minotaur toolkit. Tests on benchmark instances show up to 12% improvement in the average time to solve the instances. Shared-memory parallel versions of NLP based branch-and-bound and LP/NLP based branch-and-bound algorithms have also been developed in the toolkit. These implementations solve different nodes of branch-and-bound concurrently. About 44% improvement in the speed and an increase in the number of instances solved within the time limit are observed when the two schemes are used together on a computer with 16 cores. These parallelization methods are compared to alternate approaches that exploit parallelism in existing commercial MILP solvers. The latter approaches are seen to perform better thus highlighting the importance of MILP techniques.
AbstractList We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate nonlinear functions and are more effective than other general approaches. These techniques have been implemented in the Minotaur toolkit. Tests on benchmark instances show up to 12% improvement in the average time to solve the instances. Shared-memory parallel versions of NLP based branch-and-bound and LP/NLP based branch-and-bound algorithms have also been developed in the toolkit. These implementations solve different nodes of branch-and-bound concurrently. About 44% improvement in the speed and an increase in the number of instances solved within the time limit are observed when the two schemes are used together on a computer with 16 cores. These parallelization methods are compared to alternate approaches that exploit parallelism in existing commercial MILP solvers. The latter approaches are seen to perform better thus highlighting the importance of MILP techniques.
Author Palkar, Prashant
Mahajan, Ashutosh
Sharma, Meenarli
Author_xml – sequence: 1
  givenname: Meenarli
  orcidid: 0000-0002-5677-2822
  surname: Sharma
  fullname: Sharma, Meenarli
  email: meenarli@iitb.ac.in
  organization: Indian Institute of Technology Bombay
– sequence: 2
  givenname: Prashant
  surname: Palkar
  fullname: Palkar, Prashant
  organization: Indian Institute of Technology Bombay
– sequence: 3
  givenname: Ashutosh
  surname: Mahajan
  fullname: Mahajan, Ashutosh
  organization: Indian Institute of Technology Bombay
BookMark eNp9kDtPwzAQgC1UJNrCH2CKxGw4PxOPqOIlVWKBgclyUgdcJU6xUxT49ZimCImh00l3993jm6GJ77xF6JzAJQHIryIBUSgMlGAAxgQejtCUiJxhWig-QVNQVGKZaidoFuMaAFTO6BS9LJ23Jrgv07vOZ8avso0Jpmls85uL1ZttbczqLmRV5z_skLVusCvsfG9fbcjSLc1uStZtetfuuVN0XJsm2rN9nKPn25unxT1ePt49LK6XuGJE9bhgEmqlRG4rCxYUV7ymXEApSC5LIgRIk14oZSVqzkQpDOXckJLxFTWpzuboYpy7Cd371sZer7tt8GmlppLmRAIBmbro2FWFLsZga70JrjXhUxPQPwr1qFAnhXqnUA8JKv5Blet3z_XBuOYwykY0pj0-Wfq76gD1DcoriV0
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3439212
Cites_doi 10.1287/ijoc.15.1.114.15159
10.1002/9780470400531.eorms0437
10.1080/10556788.2017.1335312
10.1287/ijoc.1090.0373
10.1287/ijoc.1090.0347
10.1007/BF00138693
10.1007/s10589-019-00074-0
10.1007/BF00934810
10.1007/s10479-018-2872-5
10.1287/ijoc.1120.0545
10.1287/ijoc.2017.0762
10.1007/s10898-014-0166-2
10.1016/j.disopt.2006.10.006
10.1007/s10589-010-9350-6
10.1007/978-3-540-75416-9_19
10.1007/978-3-319-63516-3_8
10.1287/ijoc.11.2.173
10.1007/s10479-006-0091-y
10.1016/0098-1354(95)87027-X
10.1515/9781400873173
10.1109/IPDPSW.2019.00095
10.1007/BF01581153
10.1016/j.disopt.2006.10.011
10.4171/dms/1-3/62
10.1007/s12532-008-0001-1
10.1016/j.orl.2004.04.002
10.1007/s10107-004-0559-y
10.1007/s101070100263
10.1016/0098-1354(92)80028-8
10.1017/S0962492913000032
10.1080/10556788.2018.1428602
10.1002/9780470053928.ch1
10.1287/mnsc.31.12.1533
10.1016/j.ejor.2015.12.018
10.1080/10556788.2017.1333612
10.1080/10556780902753221
10.1007/s10107-004-0518-7
10.1137/1.9781611974683.ch21
10.1109/99.660313
10.1007/s10898-015-0322-3
10.1007/978-3-642-24025-6_12
10.1007/978-3-319-89920-6_20
10.1007/s11081-019-09438-1
10.1007/BF02592064
10.1007/s10898-017-0600-3
10.1007/978-3-319-59776-8_17
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-021-00335-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 478
ExternalDocumentID 10_1007_s10589_021_00335_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-8360f9957ece0e09494f2450b5176b15506a894b6c5f435b5a244a1b34d2ab153
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 14:53:13 EST 2025
Sat Nov 29 01:51:30 EST 2025
Tue Nov 18 22:02:20 EST 2025
Fri Feb 21 02:47:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Branch-and-bound
Convex MINLP
Outer approximation
Linearization techniques
Shared-memory parallel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8360f9957ece0e09494f2450b5176b15506a894b6c5f435b5a244a1b34d2ab153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5677-2822
PQID 2627160106
PQPubID 30811
PageCount 56
ParticipantIDs proquest_journals_2627160106
crossref_primary_10_1007_s10589_021_00335_x
crossref_citationtrail_10_1007_s10589_021_00335_x
springer_journals_10_1007_s10589_021_00335_x
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AchterbergTSCIP: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1
Forrest, J.: CBC MILP solver. http://www.coin-or.org/Cbc
Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of SCIP. In: Competence in High Performance Computing 2010, pp. 135–148. Springer (2011)
RockafellarRConvex Analysis1970Princeton, NJPrinceton University Press10.1515/9781400873173
Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Tech. rep. (2009)
DannaERothbergELe PapeCExploring relaxation induced neighborhoods to improve MIP solutionsMath. Program.200510217190211548110.1007/s10107-004-0518-7
BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer2013221131303869610.1017/S0962492913000032
DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291201213187551510.1007/s101070100263
Abhishek, K.: Topics in mixed integer nonlinear programming. Ph.D. thesis, Lehigh University (2008)
WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.200610612557219561610.1007/s10107-004-0559-y
CPLEX 12.8 user’s manual (2019). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: MINOTAUR: A mixed-integer nonlinear optimization toolkit. Optimization Online 6275, (2017)
Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems (1998)
BonamiPGonçalvesJPHeuristics for convex mixed integer nonlinear programsComput. Optim. Appl.2012512729747289191410.1007/s10589-010-9350-6
Shinano, Y.: The ubiquity generator framework: 7 years of progress in parallelizing branch-and-bound. In: Operations Research Proceedings 2017, pp. 143–149. Springer (2018)
FICO Xpress-Optimizer (2019). http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
ChapmanBJostGVan Der PasRUsing OpenMP: portable shared memory parallel programming2008CambridgeMIT press
DagumLMenonROpenMP: an industry standard API for shared-memory programmingIEEE Comput. Sci. Eng.199851465510.1109/99.660313
VigerskeSGleixnerASCIP: Global optimization of mixed-integer nonlinear programs in a branch-and-cut frameworkOpt. Methods Softw.2018333563593378367410.1080/10556788.2017.1335312
Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 211–220. Springer (2017)
Melo, W., Fampa, M., Raupp, F.: An overview of MINLP algorithms and their implementation in muriqui optimizer. Annal. Oper. Res. , 1–25 (2018)
AchterbergTConflict analysis in mixed integer programmingDiscret. Optim.200741420229248210.1016/j.disopt.2006.10.006
Lundell, A., Kronqvist, J., Westerlund, T.: The supporting hyperplane optimization toolkit—a polyhedral outer approximation based convex minlp solver utilizing a single branching tree approach. Preprint, Optimization Online (2018)
Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical Report (2011)
LimaRMGrossmannIEComputational advances in solving mixed integer linear programming problemsChem. Eng. Greetings Prof. Sauro Pierucci, AIDAC2011151160
BoukouvalaFMisenerRFloudasCAGlobal optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimizationCDFO. Eur. J. Oper. Res.20162523701727347349210.1016/j.ejor.2015.12.018
LinYSchrageLThe global solver in the LINDO APIOpt. Methods Softw.2009244–5657668255490410.1080/10556780902753221
Shinano, Y., Rehfeldt, D., Galley, T.: An easy way to build parallel state-of-the-art combinatorial optimization problem solvers: A computational study on solving steiner tree problems and mixed integer semidefinite programs by using ug [SCIP-*,*]-libraries. Technical Report (2019)
Mahajan, A.: Presolving mixed–integer linear programs. Wiley Encyclopedia of Operations Research and Management Science (2010)
BertholdTFarmerJHeinzSPerregaardMParallelization of the FICO Xpress-OptimizerOpt. Methods Softw.2018333518529378367110.1080/10556788.2017.1333612
Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY 5.6.9 user’s manual (2015)
SAS/OR 15.1 user’s guide mathematical programming (2019). https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf
ShinanoYHeinzSVigerskeSWinklerMFiberSCIP–a shared memory parallelization of SCIPINFORMS J. Comput.20173011130377698110.1287/ijoc.2017.0762
AbhishekKLeyfferSLinderothJFilMINT: an outer approximation based solver for convex mixed-integer nonlinear programsINFORMS J. Comput.2010224555567276651210.1287/ijoc.1090.0373
Hart, W.E., Phillips, C.A., Eckstein, J.: PEBBL: An object-oriented framework for scalable parallel branch and bound. Tech. rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2013)
SahinidisNVBaron: a general purpose global optimization software packageJ. Global Optim.199682201205137650510.1007/BF00138693
Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Parallel combinatorial optimization pp. 1–28 (2006)
AchterbergTKochTMartinABranching rules revisitedOper. Res. Lett.20053314254209103410.1016/j.orl.2004.04.002
Kilinç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011)
Kilinç, M., Sahinidis, N.V.: State-of-the-art in mixed-integer nonlinear programming. In: Advances and trends in optimization with engineering applications, MOS-SIAM book series on optimization, pp. 273–292. SIAM, Philadelphia (2017)
XuYRalphsTKLadányiLSaltzmanMJComputational experience with a software framework for parallel integer programmingINFORMS J. Comput.2009213383397254696010.1287/ijoc.1090.0347
Gurobi optimizer 9.0 reference manual (2019). https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
GramaAKarypisGKVAGIntroduction to parallel computing2003BostonAddison-Wesley
GuptaOKRavindranABranch and bound experiments in convex nonlinear integer programmingManage. Sci.198531121533154687888510.1287/mnsc.31.12.1533
KronqvistJLundellAWesterlundTThe extended supporting hyperplane algorithm for convex mixed-integer nonlinear programmingJ. Global Optim.2016642249272345519910.1007/s10898-015-0322-3
QuesadaIGrossmannIEAn LP/NLP based branch and bound algorithm for convex MINLP optimization problemsComput. Chem. Eng.19921610–1193794710.1016/0098-1354(92)80028-8
LINDO Systems Inc (2019). https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf
Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX mixed integer optimizer. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 97–106. Springer (2007)
BertholdTA computational study of primal heuristics inside an MI(NL)P solverJ. Global Optim.2018701189206374579910.1007/s10898-017-0600-3
HijaziHBonamiPOuorouAAn outer-inner approximation for separable mixed-integer nonlinear programsINFORMS J. Comput.20142613144317124510.1287/ijoc.1120.0545
Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimization. In: Handbook of parallel constraint reasoning, pp. 283–336. Springer (2018)
WesterlundTPetterssonFAn extended cutting plane method for solving convex minlp problemsComput. Chem. Eng.19951913113610.1016/0098-1354(95)87027-X
LinderothJTSavelsberghMWA computational study of search strategies for mixed integer programmingINFORMS J. Comput.1999112173187169603210.1287/ijoc.11.2.173
Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer programming. Tech. Rep. 16-44, ZIB, Takustr. 7, 14195 Berlin (2016)
MisenerRFloudasCAAntigone: algorithms for continuous/integer global optimization of nonlinear equationsJ. Global Optim.2014592–3503526321669010.1007/s10898-014-0166-2
FletcherRLeyfferSSolving mixed integer nonlinear programs by outer approximationMath. Program.1994661–3327349129707010.1007/BF01581153
GeoffrionAMGeneralized benders decompositionJ. Optim. Theory Appl.197210423726032731010.1007/BF00934810
BussieckMRDrudASMeerausAMINLPLib–a collection of test models for mixed-integer nonlinear programmingINFORMS J. Comput.2003151114119196534610.1287/ijoc.15.1.114.15159
DuranMAGrossmannIEAn outer-approximation algorithm for a class of mixed-integer nonlinear programsMath. Program.198636330733986641310.1007/BF02592064
BonamiPBieglerLTConnARCornuéjolsGGrossmannIELairdCDLeeJLodiAMargotFSawayaNAn algorithmic framework for convex mixed integer nonlinear programsDiscret. Optim.200852186204240841610.1016/j.disopt.2006.10.011
BixbyRRothbergEProgress in computational mixed integer programming-a look back from the other side of the tipping pointAnn. Oper. Res.2007149137231335810.1007/s10479-006-0091-y
Sahinidis, N.V.: Mixed-integer nonlinear programming 2018. Opt Eng (2019)
ShinanoYBertholdTHeinzSParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputersOpt Methods Softw.2018333530539378367210.1080/10556788.2018.1428602
MunguíaLOxberryGRajanDShinanoYParallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programsComp. Opt. Appl.2019732575601394354010.1007/s10589-019-00074-0
L Dagum (335_CR19) 1998; 5
T Westerlund (335_CR57) 1995; 19
335_CR18
L Munguía (335_CR42) 2019; 73
P Bonami (335_CR13) 2008; 5
I Quesada (335_CR43) 1992; 16
335_CR61
335_CR62
335_CR63
T Achterberg (335_CR6) 2005; 33
335_CR64
ED Dolan (335_CR21) 2002; 91
335_CR60
335_CR28
335_CR24
F Boukouvala (335_CR15) 2016; 252
Y Shinano (335_CR51) 2018; 33
A Grama (335_CR26) 2003
B Chapman (335_CR17) 2008
R Rockafellar (335_CR46) 1970
P Belotti (335_CR9) 2013; 22
335_CR30
335_CR31
335_CR37
335_CR38
335_CR39
335_CR32
A Wächter (335_CR56) 2006; 106
P Bonami (335_CR14) 2012; 51
335_CR5
335_CR7
NV Sahinidis (335_CR47) 1996; 8
335_CR8
335_CR1
E Danna (335_CR20) 2005; 102
T Achterberg (335_CR3) 2007; 4
T Achterberg (335_CR4) 2009; 1
T Berthold (335_CR10) 2018; 70
R Fletcher (335_CR23) 1994; 66
335_CR40
OK Gupta (335_CR27) 1985; 31
335_CR48
H Hijazi (335_CR29) 2014; 26
Y Lin (335_CR35) 2009; 24
335_CR49
335_CR44
JT Linderoth (335_CR36) 1999; 11
335_CR45
RM Lima (335_CR34) 2011; 151
MR Bussieck (335_CR16) 2003; 15
Y Shinano (335_CR53) 2017; 30
S Vigerske (335_CR55) 2018; 33
K Abhishek (335_CR2) 2010; 22
J Kronqvist (335_CR33) 2016; 64
MA Duran (335_CR22) 1986; 36
335_CR50
335_CR52
R Misener (335_CR41) 2014; 59
335_CR58
Y Xu (335_CR59) 2009; 21
AM Geoffrion (335_CR25) 1972; 10
335_CR54
T Berthold (335_CR11) 2018; 33
R Bixby (335_CR12) 2007; 149
References_xml – reference: Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer programming. Tech. Rep. 16-44, ZIB, Takustr. 7, 14195 Berlin (2016)
– reference: Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Tech. rep. (2009)
– reference: BonamiPGonçalvesJPHeuristics for convex mixed integer nonlinear programsComput. Optim. Appl.2012512729747289191410.1007/s10589-010-9350-6
– reference: DuranMAGrossmannIEAn outer-approximation algorithm for a class of mixed-integer nonlinear programsMath. Program.198636330733986641310.1007/BF02592064
– reference: Hart, W.E., Phillips, C.A., Eckstein, J.: PEBBL: An object-oriented framework for scalable parallel branch and bound. Tech. rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2013)
– reference: SahinidisNVBaron: a general purpose global optimization software packageJ. Global Optim.199682201205137650510.1007/BF00138693
– reference: Kilinç, M., Sahinidis, N.V.: State-of-the-art in mixed-integer nonlinear programming. In: Advances and trends in optimization with engineering applications, MOS-SIAM book series on optimization, pp. 273–292. SIAM, Philadelphia (2017)
– reference: AchterbergTKochTMartinABranching rules revisitedOper. Res. Lett.20053314254209103410.1016/j.orl.2004.04.002
– reference: GramaAKarypisGKVAGIntroduction to parallel computing2003BostonAddison-Wesley
– reference: Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: MINOTAUR: A mixed-integer nonlinear optimization toolkit. Optimization Online 6275, (2017)
– reference: Shinano, Y., Rehfeldt, D., Galley, T.: An easy way to build parallel state-of-the-art combinatorial optimization problem solvers: A computational study on solving steiner tree problems and mixed integer semidefinite programs by using ug [SCIP-*,*]-libraries. Technical Report (2019)
– reference: Abhishek, K.: Topics in mixed integer nonlinear programming. Ph.D. thesis, Lehigh University (2008)
– reference: AbhishekKLeyfferSLinderothJFilMINT: an outer approximation based solver for convex mixed-integer nonlinear programsINFORMS J. Comput.2010224555567276651210.1287/ijoc.1090.0373
– reference: MunguíaLOxberryGRajanDShinanoYParallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programsComp. Opt. Appl.2019732575601394354010.1007/s10589-019-00074-0
– reference: CPLEX 12.8 user’s manual (2019). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
– reference: AchterbergTSCIP: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1
– reference: Gurobi optimizer 9.0 reference manual (2019). https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
– reference: ShinanoYHeinzSVigerskeSWinklerMFiberSCIP–a shared memory parallelization of SCIPINFORMS J. Comput.20173011130377698110.1287/ijoc.2017.0762
– reference: BertholdTA computational study of primal heuristics inside an MI(NL)P solverJ. Global Optim.2018701189206374579910.1007/s10898-017-0600-3
– reference: LinderothJTSavelsberghMWA computational study of search strategies for mixed integer programmingINFORMS J. Comput.1999112173187169603210.1287/ijoc.11.2.173
– reference: Sahinidis, N.V.: Mixed-integer nonlinear programming 2018. Opt Eng (2019)
– reference: Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX mixed integer optimizer. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 97–106. Springer (2007)
– reference: WesterlundTPetterssonFAn extended cutting plane method for solving convex minlp problemsComput. Chem. Eng.19951913113610.1016/0098-1354(95)87027-X
– reference: SAS/OR 15.1 user’s guide mathematical programming (2019). https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf
– reference: DagumLMenonROpenMP: an industry standard API for shared-memory programmingIEEE Comput. Sci. Eng.199851465510.1109/99.660313
– reference: Lundell, A., Kronqvist, J., Westerlund, T.: The supporting hyperplane optimization toolkit—a polyhedral outer approximation based convex minlp solver utilizing a single branching tree approach. Preprint, Optimization Online (2018)
– reference: Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of SCIP. In: Competence in High Performance Computing 2010, pp. 135–148. Springer (2011)
– reference: AchterbergTConflict analysis in mixed integer programmingDiscret. Optim.200741420229248210.1016/j.disopt.2006.10.006
– reference: Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimization. In: Handbook of parallel constraint reasoning, pp. 283–336. Springer (2018)
– reference: BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer2013221131303869610.1017/S0962492913000032
– reference: RockafellarRConvex Analysis1970Princeton, NJPrinceton University Press10.1515/9781400873173
– reference: VigerskeSGleixnerASCIP: Global optimization of mixed-integer nonlinear programs in a branch-and-cut frameworkOpt. Methods Softw.2018333563593378367410.1080/10556788.2017.1335312
– reference: FICO Xpress-Optimizer (2019). http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
– reference: ChapmanBJostGVan Der PasRUsing OpenMP: portable shared memory parallel programming2008CambridgeMIT press
– reference: HijaziHBonamiPOuorouAAn outer-inner approximation for separable mixed-integer nonlinear programsINFORMS J. Comput.20142613144317124510.1287/ijoc.1120.0545
– reference: BussieckMRDrudASMeerausAMINLPLib–a collection of test models for mixed-integer nonlinear programmingINFORMS J. Comput.2003151114119196534610.1287/ijoc.15.1.114.15159
– reference: KronqvistJLundellAWesterlundTThe extended supporting hyperplane algorithm for convex mixed-integer nonlinear programmingJ. Global Optim.2016642249272345519910.1007/s10898-015-0322-3
– reference: Melo, W., Fampa, M., Raupp, F.: An overview of MINLP algorithms and their implementation in muriqui optimizer. Annal. Oper. Res. , 1–25 (2018)
– reference: BertholdTFarmerJHeinzSPerregaardMParallelization of the FICO Xpress-OptimizerOpt. Methods Softw.2018333518529378367110.1080/10556788.2017.1333612
– reference: FletcherRLeyfferSSolving mixed integer nonlinear programs by outer approximationMath. Program.1994661–3327349129707010.1007/BF01581153
– reference: Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Parallel combinatorial optimization pp. 1–28 (2006)
– reference: Mahajan, A.: Presolving mixed–integer linear programs. Wiley Encyclopedia of Operations Research and Management Science (2010)
– reference: Kilinç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011)
– reference: QuesadaIGrossmannIEAn LP/NLP based branch and bound algorithm for convex MINLP optimization problemsComput. Chem. Eng.19921610–1193794710.1016/0098-1354(92)80028-8
– reference: Shinano, Y.: The ubiquity generator framework: 7 years of progress in parallelizing branch-and-bound. In: Operations Research Proceedings 2017, pp. 143–149. Springer (2018)
– reference: GeoffrionAMGeneralized benders decompositionJ. Optim. Theory Appl.197210423726032731010.1007/BF00934810
– reference: Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems (1998)
– reference: Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical Report (2011)
– reference: Forrest, J.: CBC MILP solver. http://www.coin-or.org/Cbc
– reference: GuptaOKRavindranABranch and bound experiments in convex nonlinear integer programmingManage. Sci.198531121533154687888510.1287/mnsc.31.12.1533
– reference: ShinanoYBertholdTHeinzSParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputersOpt Methods Softw.2018333530539378367210.1080/10556788.2018.1428602
– reference: BonamiPBieglerLTConnARCornuéjolsGGrossmannIELairdCDLeeJLodiAMargotFSawayaNAn algorithmic framework for convex mixed integer nonlinear programsDiscret. Optim.200852186204240841610.1016/j.disopt.2006.10.011
– reference: MisenerRFloudasCAAntigone: algorithms for continuous/integer global optimization of nonlinear equationsJ. Global Optim.2014592–3503526321669010.1007/s10898-014-0166-2
– reference: Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY 5.6.9 user’s manual (2015)
– reference: Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 211–220. Springer (2017)
– reference: DannaERothbergELe PapeCExploring relaxation induced neighborhoods to improve MIP solutionsMath. Program.200510217190211548110.1007/s10107-004-0518-7
– reference: LinYSchrageLThe global solver in the LINDO APIOpt. Methods Softw.2009244–5657668255490410.1080/10556780902753221
– reference: WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.200610612557219561610.1007/s10107-004-0559-y
– reference: LimaRMGrossmannIEComputational advances in solving mixed integer linear programming problemsChem. Eng. Greetings Prof. Sauro Pierucci, AIDAC2011151160
– reference: LINDO Systems Inc (2019). https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf
– reference: BixbyRRothbergEProgress in computational mixed integer programming-a look back from the other side of the tipping pointAnn. Oper. Res.2007149137231335810.1007/s10479-006-0091-y
– reference: BoukouvalaFMisenerRFloudasCAGlobal optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimizationCDFO. Eur. J. Oper. Res.20162523701727347349210.1016/j.ejor.2015.12.018
– reference: XuYRalphsTKLadányiLSaltzmanMJComputational experience with a software framework for parallel integer programmingINFORMS J. Comput.2009213383397254696010.1287/ijoc.1090.0347
– reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291201213187551510.1007/s101070100263
– volume: 15
  start-page: 114
  issue: 1
  year: 2003
  ident: 335_CR16
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.15.1.114.15159
– ident: 335_CR38
  doi: 10.1002/9780470400531.eorms0437
– volume: 33
  start-page: 563
  issue: 3
  year: 2018
  ident: 335_CR55
  publication-title: Opt. Methods Softw.
  doi: 10.1080/10556788.2017.1335312
– volume: 22
  start-page: 555
  issue: 4
  year: 2010
  ident: 335_CR2
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1090.0373
– volume-title: Introduction to parallel computing
  year: 2003
  ident: 335_CR26
– volume: 21
  start-page: 383
  issue: 3
  year: 2009
  ident: 335_CR59
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1090.0347
– volume: 8
  start-page: 201
  issue: 2
  year: 1996
  ident: 335_CR47
  publication-title: J. Global Optim.
  doi: 10.1007/BF00138693
– volume: 73
  start-page: 575
  issue: 2
  year: 2019
  ident: 335_CR42
  publication-title: Comp. Opt. Appl.
  doi: 10.1007/s10589-019-00074-0
– ident: 335_CR62
– ident: 335_CR24
– volume: 10
  start-page: 237
  issue: 4
  year: 1972
  ident: 335_CR25
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934810
– ident: 335_CR40
  doi: 10.1007/s10479-018-2872-5
– ident: 335_CR5
– ident: 335_CR28
– volume: 26
  start-page: 31
  issue: 1
  year: 2014
  ident: 335_CR29
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1120.0545
– volume: 30
  start-page: 11
  issue: 1
  year: 2017
  ident: 335_CR53
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2017.0762
– volume: 59
  start-page: 503
  issue: 2–3
  year: 2014
  ident: 335_CR41
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0166-2
– ident: 335_CR1
– volume: 4
  start-page: 4
  issue: 1
  year: 2007
  ident: 335_CR3
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2006.10.006
– volume: 51
  start-page: 729
  issue: 2
  year: 2012
  ident: 335_CR14
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-010-9350-6
– ident: 335_CR37
– ident: 335_CR52
  doi: 10.1007/978-3-540-75416-9_19
– ident: 335_CR45
  doi: 10.1007/978-3-319-63516-3_8
– ident: 335_CR63
– volume: 11
  start-page: 173
  issue: 2
  year: 1999
  ident: 335_CR36
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.2.173
– volume: 149
  start-page: 37
  issue: 1
  year: 2007
  ident: 335_CR12
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-006-0091-y
– volume: 19
  start-page: 131
  year: 1995
  ident: 335_CR57
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)87027-X
– volume-title: Convex Analysis
  year: 1970
  ident: 335_CR46
  doi: 10.1515/9781400873173
– ident: 335_CR54
  doi: 10.1109/IPDPSW.2019.00095
– volume: 66
  start-page: 327
  issue: 1–3
  year: 1994
  ident: 335_CR23
  publication-title: Math. Program.
  doi: 10.1007/BF01581153
– volume: 5
  start-page: 186
  issue: 2
  year: 2008
  ident: 335_CR13
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2006.10.011
– ident: 335_CR32
– ident: 335_CR7
  doi: 10.4171/dms/1-3/62
– ident: 335_CR39
– ident: 335_CR64
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 335_CR4
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-008-0001-1
– volume: 33
  start-page: 42
  issue: 1
  year: 2005
  ident: 335_CR6
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2004.04.002
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 335_CR56
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– ident: 335_CR60
– volume: 91
  start-page: 201
  year: 2002
  ident: 335_CR21
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 16
  start-page: 937
  issue: 10–11
  year: 1992
  ident: 335_CR43
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80028-8
– volume: 22
  start-page: 1
  year: 2013
  ident: 335_CR9
  publication-title: Acta Numer
  doi: 10.1017/S0962492913000032
– volume: 33
  start-page: 530
  issue: 3
  year: 2018
  ident: 335_CR51
  publication-title: Opt Methods Softw.
  doi: 10.1080/10556788.2018.1428602
– ident: 335_CR18
  doi: 10.1002/9780470053928.ch1
– volume: 151
  start-page: 160
  year: 2011
  ident: 335_CR34
  publication-title: Chem. Eng. Greetings Prof. Sauro Pierucci, AIDAC
– volume: 31
  start-page: 1533
  issue: 12
  year: 1985
  ident: 335_CR27
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.31.12.1533
– volume: 252
  start-page: 701
  issue: 3
  year: 2016
  ident: 335_CR15
  publication-title: CDFO. Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.12.018
– volume: 33
  start-page: 518
  issue: 3
  year: 2018
  ident: 335_CR11
  publication-title: Opt. Methods Softw.
  doi: 10.1080/10556788.2017.1333612
– volume: 24
  start-page: 657
  issue: 4–5
  year: 2009
  ident: 335_CR35
  publication-title: Opt. Methods Softw.
  doi: 10.1080/10556780902753221
– volume: 102
  start-page: 71
  issue: 1
  year: 2005
  ident: 335_CR20
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0518-7
– ident: 335_CR31
  doi: 10.1137/1.9781611974683.ch21
– volume: 5
  start-page: 46
  issue: 1
  year: 1998
  ident: 335_CR19
  publication-title: IEEE Comput. Sci. Eng.
  doi: 10.1109/99.660313
– volume: 64
  start-page: 249
  issue: 2
  year: 2016
  ident: 335_CR33
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-015-0322-3
– volume-title: Using OpenMP: portable shared memory parallel programming
  year: 2008
  ident: 335_CR17
– ident: 335_CR50
  doi: 10.1007/978-3-642-24025-6_12
– ident: 335_CR49
  doi: 10.1007/978-3-319-89920-6_20
– ident: 335_CR61
– ident: 335_CR44
– ident: 335_CR48
  doi: 10.1007/s11081-019-09438-1
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  ident: 335_CR22
  publication-title: Math. Program.
  doi: 10.1007/BF02592064
– volume: 70
  start-page: 189
  issue: 1
  year: 2018
  ident: 335_CR10
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0600-3
– ident: 335_CR58
  doi: 10.1007/978-3-319-59776-8_17
– ident: 335_CR30
– ident: 335_CR8
SSID ssj0009732
Score 2.3129375
Snippet We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 423
SubjectTerms Algorithms
Approximation
Convex and Discrete Geometry
Linearization
Management Science
Mathematics
Mathematics and Statistics
Mixed integer
Nodes
Nonlinear programming
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
Toolkits
Variables
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb3F1lRy8abBNmz5OIuIiKIsHlfVU8iosdB-2q_TnO8mmVgW9eG2atvSbJN8kM98gdBr73Euk3XH3JQkDZc53lSZKqsSXAfOFFdN5vo8Hg2Q4TB_chlvlwiqbOdFO1GoqzR75BY0oUHvjwVzOXompGmVOV10JjWW04lPqGzu_i0kruhvbAmVeSiMCC3vgkmZc6hwzwUIUnGkvCBipvy9MLdv8cUBq153-5n-_eAttOMaJrxYmso2W9GQHrX_RIdxFL-CRgsW7lEzMJwobSfCi0EVzDZxgPdYVBo6LbaR6jcejWiti9SZ0iScLzQ1e4inMQmPXbw899W8er2-Jq7lAJAzGOTE5HXmaslhL7Wnw_dIwpyHzBPPjSBh_JuJJGopIshyYlmAc-AEHRENFObQH-6gDL9QHCPNIABcUOZUJD3PJRWBkkbmUuWZcMt1FfvPDM-kEyU1djCJrpZQNSBmAlFmQsrqLzj77zBZyHH_e3WuQydzQrLIWli46b7Btm39_2uHfTztCa9SkRtj4tB7qzMs3fYxW5ft8VJUn1jA_ANKv6Vs
  priority: 102
  providerName: ProQuest
Title Linearization and parallelization schemes for convex mixed-integer nonlinear optimization
URI https://link.springer.com/article/10.1007/s10589-021-00335-x
https://www.proquest.com/docview/2627160106
Volume 81
WOSCitedRecordID wos000744371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o5oM-eJmK0zny4JsG2rTp5VHHhqAbY9N5eSlpmoLQTdmm7Od7krWbigr6ciDNpSUnl-8053wBOPFtYQXS_HG3JXWdRJ_vJoomMgls6XA7NmQ6g2u_0wnu78NuHhQ2KbzdiyNJs1J_CHbj2r2HoflrOQ6niBzLuN0Fejr2-oMl1a5vriWzQuZR3M6dPFTm-zY-b0dLjPnlWNTsNq2t_33nNmzm6JKcz4fDDqyoUQU2PnAOYqq9IGqdVGBdg805V_MuPKBhigM_j8wkYpQQzQyeZSornqEtrIZqQhDqEuOwPiPDp5lKqKGdUGMymlNviDF5xsVomNfbg9tW86ZxSfOrF6jEOTmlOrQjDUPuK6kshSZg6KbM5VbMbd-LtVnjiSB0Y0_yFAFXzAXCBIGKdRMmMN_ZhxK-UB0AEV6MkDBOmQyEm0oRO5odWUiZKi4kV1WwCw1EMucl19djZNGSUVn3aIQ9GpkejWZVOF3UeZmzcvxaulYoNspn6CRiHkNTUVvEVTgrFLnM_rm1w78VP4J1piMmjNtaDUrT8as6hjX5hsod12HVv3uoQ_mi2en2MHXlU5Rtq6El62rp91F2-WPdjPJ3H6_wmA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQc2BFl9QFOYJE4cZYDQgioQJSKQ0FwCo7jSEhtKW2B8lN8I2M3IYBEbxy4xrGz-Nl-Y8-8Adj2bWEF0uy425K6TqLPdxNFE5kEtnS4HRsxnZuaX68Ht7fhVQne81gY7VaZz4lmok4epd4j32ceQ2qvLZjDzhPVWaP06WqeQmMIiwv19oomW-_g_AT7d4ex6mnj-IxmWQWoRLj1qY5aSMOQ-0oqS6F1E7opc7kVc9v3Ys3YPRGEbuxJniKXiLnAFVDgO7sJE1juYLtjMO66OBy0q6B1XIj8-iYhmhUyjyKRcLIgnSxUj2vnJIbGu-U4nA6-L4QFu_1xIGvWuersf_tDczCTMWpyNBwC81BS7QWY_qKzuAh3aHHji2Uhp0S0E6Ilz5tN1cyvoZGvWqpHkMMT44k_IK2HgUqo0dNQXdIeaoqILnnEWbaV1VuC6z_5tmUo4wPVChDhxch145TJQLipFLGjZZ-FlKniQnJVATvv4Ehmgus670czKqSiNSgiBEVkQBENKrD7WaczlBsZefd6joQom3p6UQGDCuzlWCqKf29tdXRrWzB51risRbXz-sUaTDEdBmJ88dah3O8-qw2YkC_9h1530wwKAvd_jbEP3IFDRg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NLwQxFH9hiXDwLZZFD5xozHSm83EQEWzIysYB4TQ6nU4i2V3sLta_5q_z2u0YJNwcXKfTzkd_fR_te78HsBm6womk2XF3JfW9TJ_vZopmMotc6XE3NWQ6V2dhsxldX8fnI_BW5MLosMpCJhpBnd1LvUe-ywKGpr32YHZzGxZxflTff3ikuoKUPmktymkMIdJQry_ovvX2To9wrrcYqx9fHJ5QW2GASoRen-oMhjyOeaikchR6OrGfM587KXfDINXWeyCi2E8DyXO0K1IuUBsKfH8_YwLbPRx3FMZQC3O9xhohLQl_Q1MczYlZQNGo8GzCjk3b4zpQiaEj73gep4OvSrG0dL8dzhqdV5_5z39rFqatpU0OhktjDkZUZx6mPvEvLsANeuL4YjYVlYhORjQVequlWsU1dP5VW_UI2vbEROgPSPtuoDJqeDZUl3SGXCOiS-5R-rZtv0W4_JNvW4IKPlAtAxFBijZwmjMZCT-XIvU0HbSQMldcSK6q4BaTnUhLxK7rgbSSkkJaAyRBgCQGIMmgCtsffR6GNCS_3l0rUJFYkdRLSkhUYafAVdn882grv4-2ARMIreTstNlYhUmms0NMiF4NKv3uk1qDcfncv-t11836IHD71xB7B52IS-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearization+and+parallelization+schemes+for+convex+mixed-integer+nonlinear+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Sharma%2C+Meenarli&rft.au=Palkar%2C+Prashant&rft.au=Mahajan%2C+Ashutosh&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=81&rft.issue=2&rft.spage=423&rft.epage=478&rft_id=info:doi/10.1007%2Fs10589-021-00335-x&rft.externalDocID=10_1007_s10589_021_00335_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon