Moving objects detection in thermal scene videos using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm
In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm. It consists of the following steps: the first contains of classify and estimate the motion vectors between successive frames us...
Saved in:
| Published in: | Multimedia tools and applications Vol. 83; no. 2; pp. 6335 - 6350 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm. It consists of the following steps: the first contains of classify and estimate the motion vectors between successive frames using the Star diamond search algorithm based on unsupervised Bayesian classifier with Gaussian Expectation of Maximization algorithm, this step serves also to detect the static and dynamic blocks. In the second step, the dynamic blocks are compensated with the white pixels value and the stationary are compensated by black pixels value. In the third step, the morphological opening and closing filters are used for refining the object detected. The proposed approach is trained and evaluated using available infrared (FLIR_ADAS_v2) dataset. The results demonstrate the effectiveness of the proposed method. |
|---|---|
| AbstractList | In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm. It consists of the following steps: the first contains of classify and estimate the motion vectors between successive frames using the Star diamond search algorithm based on unsupervised Bayesian classifier with Gaussian Expectation of Maximization algorithm, this step serves also to detect the static and dynamic blocks. In the second step, the dynamic blocks are compensated with the white pixels value and the stationary are compensated by black pixels value. In the third step, the morphological opening and closing filters are used for refining the object detected. The proposed approach is trained and evaluated using available infrared (FLIR_ADAS_v2) dataset. The results demonstrate the effectiveness of the proposed method. |
| Author | Kerfa, Djoudi |
| Author_xml | – sequence: 1 givenname: Djoudi orcidid: 0000-0002-0615-9464 surname: Kerfa fullname: Kerfa, Djoudi email: dj.kerfa@yahoo.fr organization: National Polytechnic School of Oran Maurice Audin (Ex- Enset) |
| BookMark | eNp9kcFu1DAQhi1UJNrCC3CyxDngsZN1coQKClIRFzhbjj3ZepXYwZMsbR-DJ8bdICFx6Gls6fv8j_VfsLOYIjL2GsRbEEK_IwBRy0pIVUHT1l0Fz9g5NFpVWks4K2fViko3Al6wC6KDELBrZH3Ofn9NxxD3PPUHdAtxj0uZIUUeIl9uMU925OQwIj8Gj4n4So_8GmmdMR8Doecf7D1SsJG70RKFIWDmv8Jyy_uUFlqynfm1XemE4N1cAuwpYrJ3YQoP28WO-5SLNL1kzwc7Er76Oy_Zj08fv199rm6-XX-5en9TOQXdUrWqaVvvetc3SqpetALRamtrrf3Oe-n1DuwAQ1fXXS1QCHTYKdt4jzh0g1SX7M327pzTzxVpMYe05lgijewAoJZ6pwvVbpTLiSjjYFzY1i__CqMBYR4bMFsDpjRgTg0YKKr8T51zmGy-f1pSm0QFjnvM_7Z6wvoDo6mgLA |
| CitedBy_id | crossref_primary_10_1007_s10044_023_01193_5 crossref_primary_10_1016_j_aej_2025_05_082 crossref_primary_10_1109_TIFS_2024_3447237 |
| Cites_doi | 10.1109/CCDC.2019.8832900 10.1007/s11042-018-6353-2 10.1109/76.499840 10.1109/CVPR.2017.660 10.1109/TPAMI.2017.2699184 10.1016/j.patrec.2018.08.002 10.1016/j.neunet.2019.04.024 10.1109/SECON.2011.5752971 10.3390/s17091945 10.1109/WACV45572.2020.9093464 10.1007/s11042-020-09040-z 10.1007/s10044-019-00845-9 10.1007/s11042-014-2428-x 10.1007/s11042-018-6157-4 10.1109/CVPR.2015.7298965 10.1109/TMM.2014.2298377 10.1109/TPAMI.2006.68 10.1109/ICAEE47123.2019.9015144 10.1007/s00138-018-0993-0 10.1109/TIP.2000.826791 10.1109/ICECS49266.2020.9294806 10.1007/978-981-13-1927-3_5 10.1109/31.44347 10.1109/ICCET.2010.5485814 10.1109/76.313138 10.1109/CCWC51732.2021.9375959 10.1109/ICASSP.1993.319893 10.1109/ICECTE48615.2019.9303552 10.1002/9780470989418 10.1109/SDF.2017.8126361 10.1109/ICME.2017.8019397 10.1007/s00779-017-1058-5 10.1109/ACCESS.2021.3071163 10.1109/SSD52085.2021.9429516 10.1109/CSPIS.2018.8642743 10.1109/PRIMEASIA.2010.5604955 10.1109/ACCESS.2019.2927211 10.1109/CVPRW.2019.00049 10.1109/76.564122 10.1109/TCSVT.2013.2241352 10.1007/978-981-16-6328-4_81 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-15849-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 6350 |
| ExternalDocumentID | 10_1007_s11042_023_15849_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-83588dcbcb5323b080eea7aa477d6dd2d761af1f944940e00ece93a5ddeef9f23 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995787000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 02:24:27 EST 2025 Tue Nov 18 22:13:28 EST 2025 Sat Nov 29 06:20:29 EST 2025 Fri Feb 21 02:40:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Gaussian expectation of maximization Unsupervised bayesian classifier Block matching algorithm Infrared video sequences Moving object detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-83588dcbcb5323b080eea7aa477d6dd2d761af1f944940e00ece93a5ddeef9f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0615-9464 |
| PQID | 2911142767 |
| PQPubID | 54626 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2911142767 crossref_citationtrail_10_1007_s11042_023_15849_1 crossref_primary_10_1007_s11042_023_15849_1 springer_journals_10_1007_s11042_023_15849_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20240100 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | YaoGLeiTZhongJJiangPJiaWComparative evaluation of background subtraction algorithms in remote scene videos capturedby mwir sensorsSensors20171713110.3390/s17091945 PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl20197822447246410.1007/s11042-018-6353-2 El Rai MC, Aburaed N, Al-Saad M, Al-Ahmad H, Al Mansouri S, Marshall S (2020) Integrating deep learning with active contour modelsin remote sensing image segmentation. In: IEEE 27th International Conference on Electronics, Circuits and Systems (ICECS), pp.1–4 LimLAYalim KelesHForeground segmentation using convolutional neural networks for multiscale feature encodingPattern Recogn Lett201811225626210.1016/j.patrec.2018.08.002 ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFsIEEE Trans Pattern Anal Mach Intell201840483484810.1109/TPAMI.2017.2699184 Zhou Y, Maskell S (2017) Moving object detection using background subtraction for a moving camera with pronounced parallax. In: 2017 IEEE Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6 Ghorbel F, Derrode S, Alata O (2012) Récentes avancées en reconnaissance de formes statistique. ARTS-PI éditions RichardsonIEGH.264 and MPEG-4 Video Compression20102John Wiley & Sons10.1002/9780470989418 ZhuSMaKKA new diamond search algorithm for fast block-matching motion estimationIEEE Trans Image Processing2000928729010.1109/TIP.2000.826791 Basher HA (March 2011) Two Minimum Three-Step Search Algorithm for Motion Estimation of Images from Moving IR Camera. Proceedings of IEEE Southeastcon, pp. 384–389 GangodkarDKumarPKumarPMittalAReal-time motion detection using block matching algorithms on multicore processorsInt J Inf Commun Technol201132131 Koga T (1981) Motion Compensated Inter Frame Coding for Video Conferencing. In: National Telecommunication. Conference, G5.3.1–5, New Orleans LiRZengBLiouMLA new three-step search algorithm for block motion estimationIEEE Trans Circuits Syst Video Technol1994443844210.1109/76.313138 KurmashaHTRAliIHThreshold adaptation and XOR accumulation algorithm for objects detectionInt J Electr Comput Eng (2088–8708)20221232517 SultanaMMahmoodAJavedSJungSKUnsupervised deep context prediction for background estimation and foreground segmentationMach Vis Appl201930337539510.1007/s00138-018-0993-0 Tezcan MO, Ishwar P, Konrad J (2020) BSUV-Net: A Fully-Convolutional Neural Network for Background Subtraction of Unseen Videos, Snowmass Village CO, USA, Mar 2763 2772 https://doi.org/10.1109/WACV45572.2020.9093464 TezcanMOIshwarPKonradJBSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised Background SubtractionIEEE Access20219538495386010.1109/ACCESS.2021.3071163 KerfaDFaouzi BelbachirMStar diamond: an efficient algorithm for fast block matching motion estimation in H264/AVC video codecMultimed Tools Appl20167563161317510.1007/s11042-014-2428-x KerfaDSaidaneAAn efficient algorithm for fast block matching motion estimation using an adaptive threshold schemeMultimed Tools Appl20207933241732418410.1007/s11042-020-09040-z SahaALeeY-WHwangY-SContext-aware block-based motion estimation algorithm for multimedia internet of things (IoT) platformPers Ubiquit Comput201822116317210.1007/s00779-017-1058-5 Rifat R, Mou JR, Shahariar R, Ahsan A (2019) A new approach of moving object detection using background subtraction method. In: IEEE 3rd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE), pp. 256–259 YasakethuSLPHewageCTEREfficient decoding algorithm for 3D video over wireless channelsMultimed Tools Appl201877306833070110.1007/s11042-018-6157-4 Banga C, Ghorbel F (1993) Optimal bootstrap sampling for fast image segmentation: application to retina image. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, Vol. 5 Long J, Shelhamer E, Darrell T (Jun. 2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965 Manap RA, Ranjit SSS, Basari AA, Ahmad BH (2010) Performance Analysis of Hexagon-Diamond Search Algorithm for Motion Estimation. 2nd International Conference on Computer Engineering and Technology, pp.155–159 ShanablehTPeixotoEIMPEG-2 to HEVC video transcoding with content-based modelingIEEE Trans Circuits Syst Video Technol2013231191119610.1109/TCSVT.2013.2241352 PandianSIAAnithaJAn Unvarying Orthogonal Search with Small Triangle Pattern for Video CodingSmart Intelligent Computing and Applications2019SingaporeSpringer435210.1007/978-981-13-1927-3_5 Dou J, Qin Q, Tu Z (2019) Deep convolutional neural networks featuresfor robust foreground segmentation. In: 2019 IEEE Chinese Control and Decision Conference (CCDC), pp. 3576–3581 LimLAKelesHYLearning Multi-scale Features for Foreground SegmentationPattern Anal Applic20202331369138010.1007/s10044-019-00845-9 LiCWangXZhangLTangJWuHLinLWeighted lowrank decomposition for robust grayscale-thermal foreground detectionIEEE Trans Circuits Syst Video Technol201727725738 Lu J, Liou ML A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation. IEEE Trans Circuits Syst Video Technol 7:429–433 Amine M, Djoudi K (2019, November) Vehicles detection using the MLP and the correlation measurement. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE) IEEE, pp. 1–5 Alsaqre FE, Baozong Y (2003) Moving object segmentation for videosurveillance and conferencing applications. In: IEEE International Conference on Communication Technology Proceedings ICCT 2003, vol. 2, pp. 1856–1859 De VosLStegherrMParameterizable VLSI Architectures for the Full-Search Block-Matching AlgorithmIEEE Trans Circ and Syst198936101309131610.1109/31.44347 BouwmansTJavedSSultanaMJungSKDeep neuralnetwork concepts for background subtraction: a systematic review and comparative evaluationNeural Netw201911786610.1016/j.neunet.2019.04.024 Fu H, Ma Z, Zhao B, Yang Z, Jiang Y, Zhu M (2022) Lightweight Convolutional Neural Network for Foreground Segmentation, In: Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 811–819. https://doi.org/10.1007/978-981-16-6328-4_81 Zhao H, Shi J, Qi X, Wang X, Jia J (Jul. 2017) Pyramid Scene Parsing Network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 6230–6239. https://doi.org/10.1109/CVPR.2017.660 PoLMMaWCA novel four-step search algorithm for fast block motion estimationIEEE Trans Circuits Syst Video Technol1996631331710.1109/76.499840 Chen B, Huang S (2014) An advanced moving object detection algorithm or automatic traffic monitoring in real-world limited bandwidth networks. IEEE Trans Multimed 16:837–847 PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl2018782447246410.1007/s11042-018-6353-2 Zhao X, Chen Y, Tang M, Wang J (Jul. 2017) Joint Background Reconstruction and Foreground Segmentation via A Two-stage Convolutional Neural Network. arXiv:1707.07584 [cs], [Online]. Available: http://arxiv.org/abs/1707.07584. Accessed 10 Jun 2021 LimLAKelesHYForeground segmentation using convolutional neural networks for multiscale feature encodingJ Pattern Recognit Lett201811225626210.1016/j.patrec.2018.08.002 Boufares O, Boussif M, Aloui N (2021) Moving object detection system based on the modified temporal difference and otsu algorithm. In: 18thIEEE International Multi-Conference on Systems, Signals and Devices(SSD), pp. 1378–1382 Kerfa D, Belbachir MF (2014) An Efficient Real Time Moving Object Detection Scheme Using Diamond Search Algorithm and Mathematical Morphology. Computers and Software, 744 Rashed H, El Sallab A, Yogamani S, ElHelw M (2019) Motion and depth augmented semantic segmentation for autonomous navigation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 364–370 Zha Y, Wu M, Qiu Z, Dong S, Yang F, Zhang P (2019) Distractor aware visual tracking by online Siamese network. IEEE Access 7:89777–89788 Wang X, Wan W, Zhang J, Ma Y (Sept. 2010) Research on the Motion Estimation with a Novel Octagon Cross Diamond Search Algorithm. Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 89–92 Pham TT (2021) Motion detection with segmentation of optical flowsfor infrared images. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0347–0354 Talal M, Panthakkan A, Mukhtar H, Mansour W, Almansouri S, Alahmad H (2018) Detection of water-bodies using semantic segmentation. In: 2018 IEEE International Conference on Signal Processing and Information Security (ICSPIS), pp. 1–4 HeikkilaMPietikainenMA texture-based method for modelingthe background and detecting moving objectsIEEE Trans Pattern Anal Mach Intell20062865766210.1109/TPAMI.2006.68 Z Pan (15849_CR29) 2018; 78 C Li (15849_CR22) 2017; 27 15849_CR27 15849_CR28 15849_CR26 A Saha (15849_CR37) 2018; 22 G Yao (15849_CR44) 2017; 17 S Zhu (15849_CR50) 2000; 9 LM Po (15849_CR33) 1996; 6 D Kerfa (15849_CR18) 2020; 79 15849_CR7 15849_CR5 Z Pan (15849_CR30) 2019; 78 L-C Chen (15849_CR8) 2018; 40 15849_CR36 15849_CR34 SLP Yasakethu (15849_CR45) 2018; 77 15849_CR32 T Shanableh (15849_CR38) 2013; 23 LA Lim (15849_CR24) 2020; 23 LA Lim (15849_CR25) 2018; 112 HTR Kurmasha (15849_CR20) 2022; 12 D Gangodkar (15849_CR13) 2011; 3 LA Lim (15849_CR23) 2018; 112 M Heikkila (15849_CR15) 2006; 28 15849_CR49 15849_CR47 15849_CR48 15849_CR46 IEG Richardson (15849_CR35) 2010 15849_CR43 15849_CR41 R Li (15849_CR21) 1994; 4 15849_CR40 M Sultana (15849_CR39) 2019; 30 15849_CR4 SIA Pandian (15849_CR31) 2019 15849_CR3 15849_CR2 15849_CR1 15849_CR19 15849_CR16 15849_CR14 15849_CR12 15849_CR10 15849_CR11 MO Tezcan (15849_CR42) 2021; 9 L De Vos (15849_CR9) 1989; 36 D Kerfa (15849_CR17) 2016; 75 T Bouwmans (15849_CR6) 2019; 117 |
| References_xml | – reference: Basher HA (March 2011) Two Minimum Three-Step Search Algorithm for Motion Estimation of Images from Moving IR Camera. Proceedings of IEEE Southeastcon, pp. 384–389 – reference: De VosLStegherrMParameterizable VLSI Architectures for the Full-Search Block-Matching AlgorithmIEEE Trans Circ and Syst198936101309131610.1109/31.44347 – reference: Banga C, Ghorbel F (1993) Optimal bootstrap sampling for fast image segmentation: application to retina image. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, Vol. 5 – reference: Tezcan MO, Ishwar P, Konrad J (2020) BSUV-Net: A Fully-Convolutional Neural Network for Background Subtraction of Unseen Videos, Snowmass Village CO, USA, Mar 2763 2772 https://doi.org/10.1109/WACV45572.2020.9093464 – reference: Long J, Shelhamer E, Darrell T (Jun. 2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965 – reference: Fu H, Ma Z, Zhao B, Yang Z, Jiang Y, Zhu M (2022) Lightweight Convolutional Neural Network for Foreground Segmentation, In: Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 811–819. https://doi.org/10.1007/978-981-16-6328-4_81 – reference: LiCWangXZhangLTangJWuHLinLWeighted lowrank decomposition for robust grayscale-thermal foreground detectionIEEE Trans Circuits Syst Video Technol201727725738 – reference: Zhou Y, Maskell S (2017) Moving object detection using background subtraction for a moving camera with pronounced parallax. In: 2017 IEEE Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6 – reference: Zhao X, Chen Y, Tang M, Wang J (Jul. 2017) Joint Background Reconstruction and Foreground Segmentation via A Two-stage Convolutional Neural Network. arXiv:1707.07584 [cs], [Online]. Available: http://arxiv.org/abs/1707.07584. Accessed 10 Jun 2021 – reference: ShanablehTPeixotoEIMPEG-2 to HEVC video transcoding with content-based modelingIEEE Trans Circuits Syst Video Technol2013231191119610.1109/TCSVT.2013.2241352 – reference: SahaALeeY-WHwangY-SContext-aware block-based motion estimation algorithm for multimedia internet of things (IoT) platformPers Ubiquit Comput201822116317210.1007/s00779-017-1058-5 – reference: ZhuSMaKKA new diamond search algorithm for fast block-matching motion estimationIEEE Trans Image Processing2000928729010.1109/TIP.2000.826791 – reference: YasakethuSLPHewageCTEREfficient decoding algorithm for 3D video over wireless channelsMultimed Tools Appl201877306833070110.1007/s11042-018-6157-4 – reference: Wang X, Wan W, Zhang J, Ma Y (Sept. 2010) Research on the Motion Estimation with a Novel Octagon Cross Diamond Search Algorithm. Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 89–92 – reference: Amine M, Djoudi K (2019, November) Vehicles detection using the MLP and the correlation measurement. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE) IEEE, pp. 1–5 – reference: PoLMMaWCA novel four-step search algorithm for fast block motion estimationIEEE Trans Circuits Syst Video Technol1996631331710.1109/76.499840 – reference: KerfaDSaidaneAAn efficient algorithm for fast block matching motion estimation using an adaptive threshold schemeMultimed Tools Appl20207933241732418410.1007/s11042-020-09040-z – reference: ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFsIEEE Trans Pattern Anal Mach Intell201840483484810.1109/TPAMI.2017.2699184 – reference: Lu J, Liou ML A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation. IEEE Trans Circuits Syst Video Technol 7:429–433 – reference: Kerfa D, Belbachir MF (2014) An Efficient Real Time Moving Object Detection Scheme Using Diamond Search Algorithm and Mathematical Morphology. Computers and Software, 744 – reference: Zha Y, Wu M, Qiu Z, Dong S, Yang F, Zhang P (2019) Distractor aware visual tracking by online Siamese network. IEEE Access 7:89777–89788 – reference: BouwmansTJavedSSultanaMJungSKDeep neuralnetwork concepts for background subtraction: a systematic review and comparative evaluationNeural Netw201911786610.1016/j.neunet.2019.04.024 – reference: LimLAKelesHYForeground segmentation using convolutional neural networks for multiscale feature encodingJ Pattern Recognit Lett201811225626210.1016/j.patrec.2018.08.002 – reference: Pham TT (2021) Motion detection with segmentation of optical flowsfor infrared images. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0347–0354 – reference: Manap RA, Ranjit SSS, Basari AA, Ahmad BH (2010) Performance Analysis of Hexagon-Diamond Search Algorithm for Motion Estimation. 2nd International Conference on Computer Engineering and Technology, pp.155–159 – reference: PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl20197822447246410.1007/s11042-018-6353-2 – reference: HeikkilaMPietikainenMA texture-based method for modelingthe background and detecting moving objectsIEEE Trans Pattern Anal Mach Intell20062865766210.1109/TPAMI.2006.68 – reference: El Rai MC, Aburaed N, Al-Saad M, Al-Ahmad H, Al Mansouri S, Marshall S (2020) Integrating deep learning with active contour modelsin remote sensing image segmentation. In: IEEE 27th International Conference on Electronics, Circuits and Systems (ICECS), pp.1–4 – reference: Rifat R, Mou JR, Shahariar R, Ahsan A (2019) A new approach of moving object detection using background subtraction method. In: IEEE 3rd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE), pp. 256–259 – reference: Zhao H, Shi J, Qi X, Wang X, Jia J (Jul. 2017) Pyramid Scene Parsing Network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 6230–6239. https://doi.org/10.1109/CVPR.2017.660 – reference: Ghorbel F, Derrode S, Alata O (2012) Récentes avancées en reconnaissance de formes statistique. ARTS-PI éditions – reference: Koga T (1981) Motion Compensated Inter Frame Coding for Video Conferencing. In: National Telecommunication. Conference, G5.3.1–5, New Orleans – reference: LiRZengBLiouMLA new three-step search algorithm for block motion estimationIEEE Trans Circuits Syst Video Technol1994443844210.1109/76.313138 – reference: YaoGLeiTZhongJJiangPJiaWComparative evaluation of background subtraction algorithms in remote scene videos capturedby mwir sensorsSensors20171713110.3390/s17091945 – reference: SultanaMMahmoodAJavedSJungSKUnsupervised deep context prediction for background estimation and foreground segmentationMach Vis Appl201930337539510.1007/s00138-018-0993-0 – reference: TezcanMOIshwarPKonradJBSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised Background SubtractionIEEE Access20219538495386010.1109/ACCESS.2021.3071163 – reference: RichardsonIEGH.264 and MPEG-4 Video Compression20102John Wiley & Sons10.1002/9780470989418 – reference: GangodkarDKumarPKumarPMittalAReal-time motion detection using block matching algorithms on multicore processorsInt J Inf Commun Technol201132131 – reference: KerfaDFaouzi BelbachirMStar diamond: an efficient algorithm for fast block matching motion estimation in H264/AVC video codecMultimed Tools Appl20167563161317510.1007/s11042-014-2428-x – reference: Alsaqre FE, Baozong Y (2003) Moving object segmentation for videosurveillance and conferencing applications. In: IEEE International Conference on Communication Technology Proceedings ICCT 2003, vol. 2, pp. 1856–1859 – reference: Boufares O, Boussif M, Aloui N (2021) Moving object detection system based on the modified temporal difference and otsu algorithm. In: 18thIEEE International Multi-Conference on Systems, Signals and Devices(SSD), pp. 1378–1382 – reference: KurmashaHTRAliIHThreshold adaptation and XOR accumulation algorithm for objects detectionInt J Electr Comput Eng (2088–8708)20221232517 – reference: LimLAKelesHYLearning Multi-scale Features for Foreground SegmentationPattern Anal Applic20202331369138010.1007/s10044-019-00845-9 – reference: Chen B, Huang S (2014) An advanced moving object detection algorithm or automatic traffic monitoring in real-world limited bandwidth networks. IEEE Trans Multimed 16:837–847 – reference: Dou J, Qin Q, Tu Z (2019) Deep convolutional neural networks featuresfor robust foreground segmentation. In: 2019 IEEE Chinese Control and Decision Conference (CCDC), pp. 3576–3581 – reference: LimLAYalim KelesHForeground segmentation using convolutional neural networks for multiscale feature encodingPattern Recogn Lett201811225626210.1016/j.patrec.2018.08.002 – reference: Rashed H, El Sallab A, Yogamani S, ElHelw M (2019) Motion and depth augmented semantic segmentation for autonomous navigation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 364–370 – reference: PandianSIAAnithaJAn Unvarying Orthogonal Search with Small Triangle Pattern for Video CodingSmart Intelligent Computing and Applications2019SingaporeSpringer435210.1007/978-981-13-1927-3_5 – reference: Talal M, Panthakkan A, Mukhtar H, Mansour W, Almansouri S, Alahmad H (2018) Detection of water-bodies using semantic segmentation. In: 2018 IEEE International Conference on Signal Processing and Information Security (ICSPIS), pp. 1–4 – reference: PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl2018782447246410.1007/s11042-018-6353-2 – ident: 15849_CR10 doi: 10.1109/CCDC.2019.8832900 – ident: 15849_CR16 – volume: 78 start-page: 2447 year: 2018 ident: 15849_CR29 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6353-2 – volume: 6 start-page: 313 year: 1996 ident: 15849_CR33 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/76.499840 – ident: 15849_CR48 doi: 10.1109/CVPR.2017.660 – volume: 78 start-page: 2447 issue: 2 year: 2019 ident: 15849_CR30 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6353-2 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 15849_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – volume: 27 start-page: 725 year: 2017 ident: 15849_CR22 publication-title: IEEE Trans Circuits Syst Video Technol – volume: 112 start-page: 256 year: 2018 ident: 15849_CR25 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.08.002 – volume: 117 start-page: 8 year: 2019 ident: 15849_CR6 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.04.024 – volume: 3 start-page: 131 issue: 2 year: 2011 ident: 15849_CR13 publication-title: Int J Inf Commun Technol – ident: 15849_CR4 doi: 10.1109/SECON.2011.5752971 – volume: 17 start-page: 1 year: 2017 ident: 15849_CR44 publication-title: Sensors doi: 10.3390/s17091945 – ident: 15849_CR41 doi: 10.1109/WACV45572.2020.9093464 – volume: 79 start-page: 24173 issue: 33 year: 2020 ident: 15849_CR18 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09040-z – ident: 15849_CR1 – volume: 23 start-page: 1369 issue: 3 year: 2020 ident: 15849_CR24 publication-title: Pattern Anal Applic doi: 10.1007/s10044-019-00845-9 – volume: 75 start-page: 3161 issue: 6 year: 2016 ident: 15849_CR17 publication-title: Multimed Tools Appl doi: 10.1007/s11042-014-2428-x – volume: 77 start-page: 30683 year: 2018 ident: 15849_CR45 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6157-4 – ident: 15849_CR26 doi: 10.1109/CVPR.2015.7298965 – ident: 15849_CR7 doi: 10.1109/TMM.2014.2298377 – volume: 28 start-page: 657 year: 2006 ident: 15849_CR15 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.68 – ident: 15849_CR2 doi: 10.1109/ICAEE47123.2019.9015144 – volume: 30 start-page: 375 issue: 3 year: 2019 ident: 15849_CR39 publication-title: Mach Vis Appl doi: 10.1007/s00138-018-0993-0 – volume: 9 start-page: 287 year: 2000 ident: 15849_CR50 publication-title: IEEE Trans Image Processing doi: 10.1109/TIP.2000.826791 – ident: 15849_CR14 – ident: 15849_CR11 doi: 10.1109/ICECS49266.2020.9294806 – start-page: 43 volume-title: Smart Intelligent Computing and Applications year: 2019 ident: 15849_CR31 doi: 10.1007/978-981-13-1927-3_5 – volume: 36 start-page: 1309 issue: 10 year: 1989 ident: 15849_CR9 publication-title: IEEE Trans Circ and Syst doi: 10.1109/31.44347 – ident: 15849_CR28 doi: 10.1109/ICCET.2010.5485814 – volume: 4 start-page: 438 year: 1994 ident: 15849_CR21 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/76.313138 – ident: 15849_CR32 doi: 10.1109/CCWC51732.2021.9375959 – ident: 15849_CR3 doi: 10.1109/ICASSP.1993.319893 – ident: 15849_CR36 doi: 10.1109/ICECTE48615.2019.9303552 – volume-title: H.264 and MPEG-4 Video Compression year: 2010 ident: 15849_CR35 doi: 10.1002/9780470989418 – volume: 112 start-page: 256 year: 2018 ident: 15849_CR23 publication-title: J Pattern Recognit Lett doi: 10.1016/j.patrec.2018.08.002 – ident: 15849_CR49 doi: 10.1109/SDF.2017.8126361 – ident: 15849_CR47 doi: 10.1109/ICME.2017.8019397 – ident: 15849_CR19 – volume: 22 start-page: 163 issue: 1 year: 2018 ident: 15849_CR37 publication-title: Pers Ubiquit Comput doi: 10.1007/s00779-017-1058-5 – volume: 9 start-page: 53849 year: 2021 ident: 15849_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071163 – volume: 12 start-page: 2517 issue: 3 year: 2022 ident: 15849_CR20 publication-title: Int J Electr Comput Eng (2088–8708) – ident: 15849_CR5 doi: 10.1109/SSD52085.2021.9429516 – ident: 15849_CR40 doi: 10.1109/CSPIS.2018.8642743 – ident: 15849_CR43 doi: 10.1109/PRIMEASIA.2010.5604955 – ident: 15849_CR46 doi: 10.1109/ACCESS.2019.2927211 – ident: 15849_CR34 doi: 10.1109/CVPRW.2019.00049 – ident: 15849_CR27 doi: 10.1109/76.564122 – volume: 23 start-page: 1191 year: 2013 ident: 15849_CR38 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2013.2241352 – ident: 15849_CR12 doi: 10.1007/978-981-16-6328-4_81 |
| SSID | ssj0016524 |
| Score | 2.3505511 |
| Snippet | In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6335 |
| SubjectTerms | Algorithms Bayesian analysis Classifiers Computer Communication Networks Computer Science Data Structures and Information Theory Diamonds Maximization Morphology Moving object recognition Multimedia Multimedia Information Systems Optimization Pixels Search algorithms Special Purpose and Application-Based Systems Surveillance Track 6: Computer Vision for Multimedia Applications |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQ4QCHFlpQC0s1B27UUvyxsX0EROHSCkFb9RY5_qhW6mZXm2wFf4NfzDjr7ELVIsE5tmVpPH4v43kzhLzxNkjHmKOlY4ZKxQW1mkfKnY46jE1hi9g3m1Cnp_ry0nzJorB2yHYfniT7m3ojdmNJSoIYQxmipqH4z_MQ4U6nhg1fv12s3w7KcW5lqwuKeMiyVObuNf6Eow3HvPUs2qPN8c7_7fMp2c7sEt6tjsMz8iA0u2Rn6NwA2ZF3yZPfyhDukZ8nfVgBZnUKyrTgQ9cnaDUwaSARxCmumao-BUiqvVkLKVv-CpZNu5ynu6YNHt7bHyEJMsElPj6JCLeQgryANL5L8ZQ5fLLLth-S2gq4VQ4ATO33yTSLQcFeX80WOGn6nJwffzz78JnmXg3UoRN3FImc1t7Vrh4LLmrkoSFYZa1Uypfec69KZiOLRkoji1AUwQUj7Bhv1xBN5OIF2WpmTdgnEKzxQseI5MlKV4qaOyO9sk4IXxZeHRA2mKxyuZB56qdxXW1KMCcTVGiCqjdBxQ7I2_Wc-aqMx19Hj4aTUGWXbiueYEFyVeIGjgbLbz7fv9rLfxv-ijzmSJxWYZ4R2eoWy_CaPHI33aRdHPZH_Rfa7vyY priority: 102 providerName: Springer Nature |
| Title | Moving objects detection in thermal scene videos using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm |
| URI | https://link.springer.com/article/10.1007/s11042-023-15849-1 https://www.proquest.com/docview/2911142767 |
| Volume | 83 |
| WOSCitedRecordID | wos000995787000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest Business/Economics) (LUT) customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKBQqFsrKB25gEdtJHJ8QrVqQUJdVeRUukeNHWambXZosgr_BL8aTOF1AohculqI4VqzxzHwaz8wH8NhqlxrGDM0NUzSVXFBdcE-5KXzhMpXoxHdkE3IyKU5P1TQG3JqYVjnYxM5Q24XBGPkzjlqZcpnL58uvFFmj8HY1UmhswBYiG0zpO04OLm8R8iyS2hYJDZ6RxaKZvnSOYWFK8FiUBR-sKPvTMa3R5l8XpJ3fOdr-3z--Dbci4iQv-iNyB665ege2BzYHEpV7B27-1prwLvw87kINZFFhoKYh1rVd0lZNZjVB0DgPa2InKEewkm_REMygPyOrulkt0f40zpJ9_cNhkSYxiNFnPrhggoFfEqB9izGWJXmpV003BakGTJ8XQOb6-2weC0SJPj8Lu2q_zO_B-6PDdwevaORvoCYodksDuCsKaypTZYKLKmBT57TUOpXS5tZyK3OmPfMqTVWauCRxximhs2BxnVeei13YrBe1uw_EaWVF4X0AVDo1uai4UamV2ghh88TKEbBBeKWJzc2RY-O8XLdlRoGXQeBlJ_CSjeDJ5TfLvrXHlbP3BimXUc2bci3iETwdzsn69b9Xe3D1ag_hBg_gqQ_17MFme7Fyj-C6-dbOmosxbMiPn8awtX84mZ6Ep9eSjruDjyN_E8Zp9jmMJ28__AIgQg0F |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UCggFgr4ACewiB8bxweEyqO02nbFoUi9BcePslI3uzTZlv4Nfgi_sZ48uoBEbz1wTuKD883MN2PPfADPnfHSMmZpapmmUnFBTcYD5TYLmR_qxCShEZtQ43F2cKA_r8CvvhcGr1X2PrFx1G5msUb-mqNVSq5S9Xb-naJqFJ6u9hIaLSxG_uw0pmzVm50P8f--4Hzr4_77bdqpClAb4VbTSDmyzNnCFkPBRREZk_dGGSOVcqlz3MXE3gQWtJRaJj5JvPVamGH0Az7ogIMOosu_JkWm0K5Gil6cWqTDTkQ3S2iMxKxr0mlb9Rg2wsQISVmM-ZqyPwPhkt3-dSDbxLmttf9th-7A7Y5Rk83WBO7Cii_XYa1XqyCd81qHW7-NXrwHP_eaUgqZFViIqojzdXMprSSTkiApnsY1cdKVJ9ipOKsIdggckkVZLeboXyvvyDtz5rEJlVjMQSYhUgyChW0SU5caa0hz8sksquYVlFKw7b0HMjU_JtOuAZaYo8O4i_W36X34ciX79ABWy1npHwLxRjuRhRAJo5E2FQW3WjplrBAuTZwaAOvBkttueDtqiBzly7HTCLA8AixvAJazAby8-Gbeji659O2NHlV558aqfAmpAbzqcbl8_O_VHl2-2jO4sb2_t5vv7oxHj-Emj0SxLWttwGp9vPBP4Lo9qSfV8dPGwAh8vWq8ngP1-WXu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBSE4UCggthTwAU5gNXaycXxACCgLVWG1B5AqLsHxR1mpm902WaB_g5_Dr2MmH11AorceOCfxwXmeeTOeNwPwyBmfWCEsT63QPFEy5iaTgUubhcwPdWSi0AybUONxdnCgJ2vws9fCUFllbxMbQ-3mlnLkO5JOZSJVqnZCVxYx2R09XxxzmiBFN639OI0WIvv-9BuGb9WzvV3814-lHL3-8Oot7yYMcIvQqznSjyxztrDFMJZxgezJe6OMSZRyqXPSYZBvggg6SXQS-Sjy1uvYDNEm-KADNT1A839JYYxJ5YST4aezG4x02A3UzSKOXll0gp1WtidIFIPekgv0_5qLP53iiun-dTnb-LzRxv-8Wzfgese02Yv2aNyENV9uwkY_xYJ1Rm0Trv3WkvEW_HjfpFjYvKAEVcWcr5titZJNS0ZkeYZrUgcsz0jBOK8YKQcO2bKslguyu5V37KU59SROZZZik2lA6sEo4c0wpKkpt7Rgb8yyal6hEQu2rYdgM_N9OuuEscwcHeIu1l9mt-HjhezTHVgv56W_C8wb7eIsBCSSJrFpXEirE6eMjWOXRk4NQPTAyW3X1J1mixzlq3bUBLYcwZY3YMvFAJ6cfbNoW5qc-_Z2j7C8M29VvoLXAJ72GF09_vdqW-ev9hCuIEzzd3vj_XtwVSJ_bLNd27Benyz9fbhsv9bT6uRBc9YYfL5ouP4CaWZvEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+objects+detection+in+thermal+scene+videos+using+unsupervised+Bayesian+classifier+with+bootstrap+Gaussian+expectation+maximization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kerfa%2C+Djoudi&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=2&rft.spage=6335&rft.epage=6350&rft_id=info:doi/10.1007%2Fs11042-023-15849-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15849_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |