Moving objects detection in thermal scene videos using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm

In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm. It consists of the following steps: the first contains of classify and estimate the motion vectors between successive frames us...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 83; no. 2; pp. 6335 - 6350
Main Author: Kerfa, Djoudi
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2024
Springer Nature B.V
Subjects:
ISSN:1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm. It consists of the following steps: the first contains of classify and estimate the motion vectors between successive frames using the Star diamond search algorithm based on unsupervised Bayesian classifier with Gaussian Expectation of Maximization algorithm, this step serves also to detect the static and dynamic blocks. In the second step, the dynamic blocks are compensated with the white pixels value and the stationary are compensated by black pixels value. In the third step, the morphological opening and closing filters are used for refining the object detected. The proposed approach is trained and evaluated using available infrared (FLIR_ADAS_v2) dataset. The results demonstrate the effectiveness of the proposed method.
AbstractList In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm. It consists of the following steps: the first contains of classify and estimate the motion vectors between successive frames using the Star diamond search algorithm based on unsupervised Bayesian classifier with Gaussian Expectation of Maximization algorithm, this step serves also to detect the static and dynamic blocks. In the second step, the dynamic blocks are compensated with the white pixels value and the stationary are compensated by black pixels value. In the third step, the morphological opening and closing filters are used for refining the object detected. The proposed approach is trained and evaluated using available infrared (FLIR_ADAS_v2) dataset. The results demonstrate the effectiveness of the proposed method.
Author Kerfa, Djoudi
Author_xml – sequence: 1
  givenname: Djoudi
  orcidid: 0000-0002-0615-9464
  surname: Kerfa
  fullname: Kerfa, Djoudi
  email: dj.kerfa@yahoo.fr
  organization: National Polytechnic School of Oran Maurice Audin (Ex- Enset)
BookMark eNp9kcFu1DAQhi1UJNrCC3CyxDngsZN1coQKClIRFzhbjj3ZepXYwZMsbR-DJ8bdICFx6Gls6fv8j_VfsLOYIjL2GsRbEEK_IwBRy0pIVUHT1l0Fz9g5NFpVWks4K2fViko3Al6wC6KDELBrZH3Ofn9NxxD3PPUHdAtxj0uZIUUeIl9uMU925OQwIj8Gj4n4So_8GmmdMR8Doecf7D1SsJG70RKFIWDmv8Jyy_uUFlqynfm1XemE4N1cAuwpYrJ3YQoP28WO-5SLNL1kzwc7Er76Oy_Zj08fv199rm6-XX-5en9TOQXdUrWqaVvvetc3SqpetALRamtrrf3Oe-n1DuwAQ1fXXS1QCHTYKdt4jzh0g1SX7M327pzTzxVpMYe05lgijewAoJZ6pwvVbpTLiSjjYFzY1i__CqMBYR4bMFsDpjRgTg0YKKr8T51zmGy-f1pSm0QFjnvM_7Z6wvoDo6mgLA
CitedBy_id crossref_primary_10_1007_s10044_023_01193_5
crossref_primary_10_1016_j_aej_2025_05_082
crossref_primary_10_1109_TIFS_2024_3447237
Cites_doi 10.1109/CCDC.2019.8832900
10.1007/s11042-018-6353-2
10.1109/76.499840
10.1109/CVPR.2017.660
10.1109/TPAMI.2017.2699184
10.1016/j.patrec.2018.08.002
10.1016/j.neunet.2019.04.024
10.1109/SECON.2011.5752971
10.3390/s17091945
10.1109/WACV45572.2020.9093464
10.1007/s11042-020-09040-z
10.1007/s10044-019-00845-9
10.1007/s11042-014-2428-x
10.1007/s11042-018-6157-4
10.1109/CVPR.2015.7298965
10.1109/TMM.2014.2298377
10.1109/TPAMI.2006.68
10.1109/ICAEE47123.2019.9015144
10.1007/s00138-018-0993-0
10.1109/TIP.2000.826791
10.1109/ICECS49266.2020.9294806
10.1007/978-981-13-1927-3_5
10.1109/31.44347
10.1109/ICCET.2010.5485814
10.1109/76.313138
10.1109/CCWC51732.2021.9375959
10.1109/ICASSP.1993.319893
10.1109/ICECTE48615.2019.9303552
10.1002/9780470989418
10.1109/SDF.2017.8126361
10.1109/ICME.2017.8019397
10.1007/s00779-017-1058-5
10.1109/ACCESS.2021.3071163
10.1109/SSD52085.2021.9429516
10.1109/CSPIS.2018.8642743
10.1109/PRIMEASIA.2010.5604955
10.1109/ACCESS.2019.2927211
10.1109/CVPRW.2019.00049
10.1109/76.564122
10.1109/TCSVT.2013.2241352
10.1007/978-981-16-6328-4_81
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-15849-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 6350
ExternalDocumentID 10_1007_s11042_023_15849_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-83588dcbcb5323b080eea7aa477d6dd2d761af1f944940e00ece93a5ddeef9f23
IEDL.DBID M0C
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995787000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 02:24:27 EST 2025
Tue Nov 18 22:13:28 EST 2025
Sat Nov 29 06:20:29 EST 2025
Fri Feb 21 02:40:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gaussian expectation of maximization
Unsupervised bayesian classifier
Block matching algorithm
Infrared video sequences
Moving object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-83588dcbcb5323b080eea7aa477d6dd2d761af1f944940e00ece93a5ddeef9f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0615-9464
PQID 2911142767
PQPubID 54626
PageCount 16
ParticipantIDs proquest_journals_2911142767
crossref_citationtrail_10_1007_s11042_023_15849_1
crossref_primary_10_1007_s11042_023_15849_1
springer_journals_10_1007_s11042_023_15849_1
PublicationCentury 2000
PublicationDate 20240100
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YaoGLeiTZhongJJiangPJiaWComparative evaluation of background subtraction algorithms in remote scene videos capturedby mwir sensorsSensors20171713110.3390/s17091945
PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl20197822447246410.1007/s11042-018-6353-2
El Rai MC, Aburaed N, Al-Saad M, Al-Ahmad H, Al Mansouri S, Marshall S (2020) Integrating deep learning with active contour modelsin remote sensing image segmentation. In: IEEE 27th International Conference on Electronics, Circuits and Systems (ICECS), pp.1–4
LimLAYalim KelesHForeground segmentation using convolutional neural networks for multiscale feature encodingPattern Recogn Lett201811225626210.1016/j.patrec.2018.08.002
ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFsIEEE Trans Pattern Anal Mach Intell201840483484810.1109/TPAMI.2017.2699184
Zhou Y, Maskell S (2017) Moving object detection using background subtraction for a moving camera with pronounced parallax. In: 2017 IEEE Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6
Ghorbel F, Derrode S, Alata O (2012) Récentes avancées en reconnaissance de formes statistique. ARTS-PI éditions
RichardsonIEGH.264 and MPEG-4 Video Compression20102John Wiley & Sons10.1002/9780470989418
ZhuSMaKKA new diamond search algorithm for fast block-matching motion estimationIEEE Trans Image Processing2000928729010.1109/TIP.2000.826791
Basher HA (March 2011) Two Minimum Three-Step Search Algorithm for Motion Estimation of Images from Moving IR Camera. Proceedings of IEEE Southeastcon, pp. 384–389
GangodkarDKumarPKumarPMittalAReal-time motion detection using block matching algorithms on multicore processorsInt J Inf Commun Technol201132131
Koga T (1981) Motion Compensated Inter Frame Coding for Video Conferencing. In: National Telecommunication. Conference, G5.3.1–5, New Orleans
LiRZengBLiouMLA new three-step search algorithm for block motion estimationIEEE Trans Circuits Syst Video Technol1994443844210.1109/76.313138
KurmashaHTRAliIHThreshold adaptation and XOR accumulation algorithm for objects detectionInt J Electr Comput Eng (2088–8708)20221232517
SultanaMMahmoodAJavedSJungSKUnsupervised deep context prediction for background estimation and foreground segmentationMach Vis Appl201930337539510.1007/s00138-018-0993-0
Tezcan MO, Ishwar P, Konrad J (2020) BSUV-Net: A Fully-Convolutional Neural Network for Background Subtraction of Unseen Videos, Snowmass Village CO, USA, Mar 2763 2772 https://doi.org/10.1109/WACV45572.2020.9093464
TezcanMOIshwarPKonradJBSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised Background SubtractionIEEE Access20219538495386010.1109/ACCESS.2021.3071163
KerfaDFaouzi BelbachirMStar diamond: an efficient algorithm for fast block matching motion estimation in H264/AVC video codecMultimed Tools Appl20167563161317510.1007/s11042-014-2428-x
KerfaDSaidaneAAn efficient algorithm for fast block matching motion estimation using an adaptive threshold schemeMultimed Tools Appl20207933241732418410.1007/s11042-020-09040-z
SahaALeeY-WHwangY-SContext-aware block-based motion estimation algorithm for multimedia internet of things (IoT) platformPers Ubiquit Comput201822116317210.1007/s00779-017-1058-5
Rifat R, Mou JR, Shahariar R, Ahsan A (2019) A new approach of moving object detection using background subtraction method. In: IEEE 3rd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE), pp. 256–259
YasakethuSLPHewageCTEREfficient decoding algorithm for 3D video over wireless channelsMultimed Tools Appl201877306833070110.1007/s11042-018-6157-4
Banga C, Ghorbel F (1993) Optimal bootstrap sampling for fast image segmentation: application to retina image. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, Vol. 5
Long J, Shelhamer E, Darrell T (Jun. 2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965
Manap RA, Ranjit SSS, Basari AA, Ahmad BH (2010) Performance Analysis of Hexagon-Diamond Search Algorithm for Motion Estimation. 2nd International Conference on Computer Engineering and Technology, pp.155–159
ShanablehTPeixotoEIMPEG-2 to HEVC video transcoding with content-based modelingIEEE Trans Circuits Syst Video Technol2013231191119610.1109/TCSVT.2013.2241352
PandianSIAAnithaJAn Unvarying Orthogonal Search with Small Triangle Pattern for Video CodingSmart Intelligent Computing and Applications2019SingaporeSpringer435210.1007/978-981-13-1927-3_5
Dou J, Qin Q, Tu Z (2019) Deep convolutional neural networks featuresfor robust foreground segmentation. In: 2019 IEEE Chinese Control and Decision Conference (CCDC), pp. 3576–3581
LimLAKelesHYLearning Multi-scale Features for Foreground SegmentationPattern Anal Applic20202331369138010.1007/s10044-019-00845-9
LiCWangXZhangLTangJWuHLinLWeighted lowrank decomposition for robust grayscale-thermal foreground detectionIEEE Trans Circuits Syst Video Technol201727725738
Lu J, Liou ML A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation. IEEE Trans Circuits Syst Video Technol 7:429–433
Amine M, Djoudi K (2019, November) Vehicles detection using the MLP and the correlation measurement. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE) IEEE, pp. 1–5
Alsaqre FE, Baozong Y (2003) Moving object segmentation for videosurveillance and conferencing applications. In: IEEE International Conference on Communication Technology Proceedings ICCT 2003, vol. 2, pp. 1856–1859
De VosLStegherrMParameterizable VLSI Architectures for the Full-Search Block-Matching AlgorithmIEEE Trans Circ and Syst198936101309131610.1109/31.44347
BouwmansTJavedSSultanaMJungSKDeep neuralnetwork concepts for background subtraction: a systematic review and comparative evaluationNeural Netw201911786610.1016/j.neunet.2019.04.024
Fu H, Ma Z, Zhao B, Yang Z, Jiang Y, Zhu M (2022) Lightweight Convolutional Neural Network for Foreground Segmentation, In: Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 811–819. https://doi.org/10.1007/978-981-16-6328-4_81
Zhao H, Shi J, Qi X, Wang X, Jia J (Jul. 2017) Pyramid Scene Parsing Network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 6230–6239. https://doi.org/10.1109/CVPR.2017.660
PoLMMaWCA novel four-step search algorithm for fast block motion estimationIEEE Trans Circuits Syst Video Technol1996631331710.1109/76.499840
Chen B, Huang S (2014) An advanced moving object detection algorithm or automatic traffic monitoring in real-world limited bandwidth networks. IEEE Trans Multimed 16:837–847
PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl2018782447246410.1007/s11042-018-6353-2
Zhao X, Chen Y, Tang M, Wang J (Jul. 2017) Joint Background Reconstruction and Foreground Segmentation via A Two-stage Convolutional Neural Network. arXiv:1707.07584 [cs], [Online]. Available: http://arxiv.org/abs/1707.07584. Accessed 10 Jun 2021
LimLAKelesHYForeground segmentation using convolutional neural networks for multiscale feature encodingJ Pattern Recognit Lett201811225626210.1016/j.patrec.2018.08.002
Boufares O, Boussif M, Aloui N (2021) Moving object detection system based on the modified temporal difference and otsu algorithm. In: 18thIEEE International Multi-Conference on Systems, Signals and Devices(SSD), pp. 1378–1382
Kerfa D, Belbachir MF (2014) An Efficient Real Time Moving Object Detection Scheme Using Diamond Search Algorithm and Mathematical Morphology. Computers and Software, 744
Rashed H, El Sallab A, Yogamani S, ElHelw M (2019) Motion and depth augmented semantic segmentation for autonomous navigation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 364–370
Zha Y, Wu M, Qiu Z, Dong S, Yang F, Zhang P (2019) Distractor aware visual tracking by online Siamese network. IEEE Access 7:89777–89788
Wang X, Wan W, Zhang J, Ma Y (Sept. 2010) Research on the Motion Estimation with a Novel Octagon Cross Diamond Search Algorithm. Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 89–92
Pham TT (2021) Motion detection with segmentation of optical flowsfor infrared images. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0347–0354
Talal M, Panthakkan A, Mukhtar H, Mansour W, Almansouri S, Alahmad H (2018) Detection of water-bodies using semantic segmentation. In: 2018 IEEE International Conference on Signal Processing and Information Security (ICSPIS), pp. 1–4
HeikkilaMPietikainenMA texture-based method for modelingthe background and detecting moving objectsIEEE Trans Pattern Anal Mach Intell20062865766210.1109/TPAMI.2006.68
Z Pan (15849_CR29) 2018; 78
C Li (15849_CR22) 2017; 27
15849_CR27
15849_CR28
15849_CR26
A Saha (15849_CR37) 2018; 22
G Yao (15849_CR44) 2017; 17
S Zhu (15849_CR50) 2000; 9
LM Po (15849_CR33) 1996; 6
D Kerfa (15849_CR18) 2020; 79
15849_CR7
15849_CR5
Z Pan (15849_CR30) 2019; 78
L-C Chen (15849_CR8) 2018; 40
15849_CR36
15849_CR34
SLP Yasakethu (15849_CR45) 2018; 77
15849_CR32
T Shanableh (15849_CR38) 2013; 23
LA Lim (15849_CR24) 2020; 23
LA Lim (15849_CR25) 2018; 112
HTR Kurmasha (15849_CR20) 2022; 12
D Gangodkar (15849_CR13) 2011; 3
LA Lim (15849_CR23) 2018; 112
M Heikkila (15849_CR15) 2006; 28
15849_CR49
15849_CR47
15849_CR48
15849_CR46
IEG Richardson (15849_CR35) 2010
15849_CR43
15849_CR41
R Li (15849_CR21) 1994; 4
15849_CR40
M Sultana (15849_CR39) 2019; 30
15849_CR4
SIA Pandian (15849_CR31) 2019
15849_CR3
15849_CR2
15849_CR1
15849_CR19
15849_CR16
15849_CR14
15849_CR12
15849_CR10
15849_CR11
MO Tezcan (15849_CR42) 2021; 9
L De Vos (15849_CR9) 1989; 36
D Kerfa (15849_CR17) 2016; 75
T Bouwmans (15849_CR6) 2019; 117
References_xml – reference: Basher HA (March 2011) Two Minimum Three-Step Search Algorithm for Motion Estimation of Images from Moving IR Camera. Proceedings of IEEE Southeastcon, pp. 384–389
– reference: De VosLStegherrMParameterizable VLSI Architectures for the Full-Search Block-Matching AlgorithmIEEE Trans Circ and Syst198936101309131610.1109/31.44347
– reference: Banga C, Ghorbel F (1993) Optimal bootstrap sampling for fast image segmentation: application to retina image. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, Vol. 5
– reference: Tezcan MO, Ishwar P, Konrad J (2020) BSUV-Net: A Fully-Convolutional Neural Network for Background Subtraction of Unseen Videos, Snowmass Village CO, USA, Mar 2763 2772 https://doi.org/10.1109/WACV45572.2020.9093464
– reference: Long J, Shelhamer E, Darrell T (Jun. 2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965
– reference: Fu H, Ma Z, Zhao B, Yang Z, Jiang Y, Zhu M (2022) Lightweight Convolutional Neural Network for Foreground Segmentation, In: Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 811–819. https://doi.org/10.1007/978-981-16-6328-4_81
– reference: LiCWangXZhangLTangJWuHLinLWeighted lowrank decomposition for robust grayscale-thermal foreground detectionIEEE Trans Circuits Syst Video Technol201727725738
– reference: Zhou Y, Maskell S (2017) Moving object detection using background subtraction for a moving camera with pronounced parallax. In: 2017 IEEE Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6
– reference: Zhao X, Chen Y, Tang M, Wang J (Jul. 2017) Joint Background Reconstruction and Foreground Segmentation via A Two-stage Convolutional Neural Network. arXiv:1707.07584 [cs], [Online]. Available: http://arxiv.org/abs/1707.07584. Accessed 10 Jun 2021
– reference: ShanablehTPeixotoEIMPEG-2 to HEVC video transcoding with content-based modelingIEEE Trans Circuits Syst Video Technol2013231191119610.1109/TCSVT.2013.2241352
– reference: SahaALeeY-WHwangY-SContext-aware block-based motion estimation algorithm for multimedia internet of things (IoT) platformPers Ubiquit Comput201822116317210.1007/s00779-017-1058-5
– reference: ZhuSMaKKA new diamond search algorithm for fast block-matching motion estimationIEEE Trans Image Processing2000928729010.1109/TIP.2000.826791
– reference: YasakethuSLPHewageCTEREfficient decoding algorithm for 3D video over wireless channelsMultimed Tools Appl201877306833070110.1007/s11042-018-6157-4
– reference: Wang X, Wan W, Zhang J, Ma Y (Sept. 2010) Research on the Motion Estimation with a Novel Octagon Cross Diamond Search Algorithm. Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 89–92
– reference: Amine M, Djoudi K (2019, November) Vehicles detection using the MLP and the correlation measurement. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE) IEEE, pp. 1–5
– reference: PoLMMaWCA novel four-step search algorithm for fast block motion estimationIEEE Trans Circuits Syst Video Technol1996631331710.1109/76.499840
– reference: KerfaDSaidaneAAn efficient algorithm for fast block matching motion estimation using an adaptive threshold schemeMultimed Tools Appl20207933241732418410.1007/s11042-020-09040-z
– reference: ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFsIEEE Trans Pattern Anal Mach Intell201840483484810.1109/TPAMI.2017.2699184
– reference: Lu J, Liou ML A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation. IEEE Trans Circuits Syst Video Technol 7:429–433
– reference: Kerfa D, Belbachir MF (2014) An Efficient Real Time Moving Object Detection Scheme Using Diamond Search Algorithm and Mathematical Morphology. Computers and Software, 744
– reference: Zha Y, Wu M, Qiu Z, Dong S, Yang F, Zhang P (2019) Distractor aware visual tracking by online Siamese network. IEEE Access 7:89777–89788
– reference: BouwmansTJavedSSultanaMJungSKDeep neuralnetwork concepts for background subtraction: a systematic review and comparative evaluationNeural Netw201911786610.1016/j.neunet.2019.04.024
– reference: LimLAKelesHYForeground segmentation using convolutional neural networks for multiscale feature encodingJ Pattern Recognit Lett201811225626210.1016/j.patrec.2018.08.002
– reference: Pham TT (2021) Motion detection with segmentation of optical flowsfor infrared images. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0347–0354
– reference: Manap RA, Ranjit SSS, Basari AA, Ahmad BH (2010) Performance Analysis of Hexagon-Diamond Search Algorithm for Motion Estimation. 2nd International Conference on Computer Engineering and Technology, pp.155–159
– reference: PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl20197822447246410.1007/s11042-018-6353-2
– reference: HeikkilaMPietikainenMA texture-based method for modelingthe background and detecting moving objectsIEEE Trans Pattern Anal Mach Intell20062865766210.1109/TPAMI.2006.68
– reference: El Rai MC, Aburaed N, Al-Saad M, Al-Ahmad H, Al Mansouri S, Marshall S (2020) Integrating deep learning with active contour modelsin remote sensing image segmentation. In: IEEE 27th International Conference on Electronics, Circuits and Systems (ICECS), pp.1–4
– reference: Rifat R, Mou JR, Shahariar R, Ahsan A (2019) A new approach of moving object detection using background subtraction method. In: IEEE 3rd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE), pp. 256–259
– reference: Zhao H, Shi J, Qi X, Wang X, Jia J (Jul. 2017) Pyramid Scene Parsing Network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 6230–6239. https://doi.org/10.1109/CVPR.2017.660
– reference: Ghorbel F, Derrode S, Alata O (2012) Récentes avancées en reconnaissance de formes statistique. ARTS-PI éditions
– reference: Koga T (1981) Motion Compensated Inter Frame Coding for Video Conferencing. In: National Telecommunication. Conference, G5.3.1–5, New Orleans
– reference: LiRZengBLiouMLA new three-step search algorithm for block motion estimationIEEE Trans Circuits Syst Video Technol1994443844210.1109/76.313138
– reference: YaoGLeiTZhongJJiangPJiaWComparative evaluation of background subtraction algorithms in remote scene videos capturedby mwir sensorsSensors20171713110.3390/s17091945
– reference: SultanaMMahmoodAJavedSJungSKUnsupervised deep context prediction for background estimation and foreground segmentationMach Vis Appl201930337539510.1007/s00138-018-0993-0
– reference: TezcanMOIshwarPKonradJBSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised Background SubtractionIEEE Access20219538495386010.1109/ACCESS.2021.3071163
– reference: RichardsonIEGH.264 and MPEG-4 Video Compression20102John Wiley & Sons10.1002/9780470989418
– reference: GangodkarDKumarPKumarPMittalAReal-time motion detection using block matching algorithms on multicore processorsInt J Inf Commun Technol201132131
– reference: KerfaDFaouzi BelbachirMStar diamond: an efficient algorithm for fast block matching motion estimation in H264/AVC video codecMultimed Tools Appl20167563161317510.1007/s11042-014-2428-x
– reference: Alsaqre FE, Baozong Y (2003) Moving object segmentation for videosurveillance and conferencing applications. In: IEEE International Conference on Communication Technology Proceedings ICCT 2003, vol. 2, pp. 1856–1859
– reference: Boufares O, Boussif M, Aloui N (2021) Moving object detection system based on the modified temporal difference and otsu algorithm. In: 18thIEEE International Multi-Conference on Systems, Signals and Devices(SSD), pp. 1378–1382
– reference: KurmashaHTRAliIHThreshold adaptation and XOR accumulation algorithm for objects detectionInt J Electr Comput Eng (2088–8708)20221232517
– reference: LimLAKelesHYLearning Multi-scale Features for Foreground SegmentationPattern Anal Applic20202331369138010.1007/s10044-019-00845-9
– reference: Chen B, Huang S (2014) An advanced moving object detection algorithm or automatic traffic monitoring in real-world limited bandwidth networks. IEEE Trans Multimed 16:837–847
– reference: Dou J, Qin Q, Tu Z (2019) Deep convolutional neural networks featuresfor robust foreground segmentation. In: 2019 IEEE Chinese Control and Decision Conference (CCDC), pp. 3576–3581
– reference: LimLAYalim KelesHForeground segmentation using convolutional neural networks for multiscale feature encodingPattern Recogn Lett201811225626210.1016/j.patrec.2018.08.002
– reference: Rashed H, El Sallab A, Yogamani S, ElHelw M (2019) Motion and depth augmented semantic segmentation for autonomous navigation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 364–370
– reference: PandianSIAAnithaJAn Unvarying Orthogonal Search with Small Triangle Pattern for Video CodingSmart Intelligent Computing and Applications2019SingaporeSpringer435210.1007/978-981-13-1927-3_5
– reference: Talal M, Panthakkan A, Mukhtar H, Mansour W, Almansouri S, Alahmad H (2018) Detection of water-bodies using semantic segmentation. In: 2018 IEEE International Conference on Signal Processing and Information Security (ICSPIS), pp. 1–4
– reference: PanZZhangRKuWAdaptive pattern selection strategy for diamond search algorithm in fast motion estimationMultimed Tools Appl2018782447246410.1007/s11042-018-6353-2
– ident: 15849_CR10
  doi: 10.1109/CCDC.2019.8832900
– ident: 15849_CR16
– volume: 78
  start-page: 2447
  year: 2018
  ident: 15849_CR29
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6353-2
– volume: 6
  start-page: 313
  year: 1996
  ident: 15849_CR33
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/76.499840
– ident: 15849_CR48
  doi: 10.1109/CVPR.2017.660
– volume: 78
  start-page: 2447
  issue: 2
  year: 2019
  ident: 15849_CR30
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6353-2
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 15849_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– volume: 27
  start-page: 725
  year: 2017
  ident: 15849_CR22
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 112
  start-page: 256
  year: 2018
  ident: 15849_CR25
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.08.002
– volume: 117
  start-page: 8
  year: 2019
  ident: 15849_CR6
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.04.024
– volume: 3
  start-page: 131
  issue: 2
  year: 2011
  ident: 15849_CR13
  publication-title: Int J Inf Commun Technol
– ident: 15849_CR4
  doi: 10.1109/SECON.2011.5752971
– volume: 17
  start-page: 1
  year: 2017
  ident: 15849_CR44
  publication-title: Sensors
  doi: 10.3390/s17091945
– ident: 15849_CR41
  doi: 10.1109/WACV45572.2020.9093464
– volume: 79
  start-page: 24173
  issue: 33
  year: 2020
  ident: 15849_CR18
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09040-z
– ident: 15849_CR1
– volume: 23
  start-page: 1369
  issue: 3
  year: 2020
  ident: 15849_CR24
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-019-00845-9
– volume: 75
  start-page: 3161
  issue: 6
  year: 2016
  ident: 15849_CR17
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-014-2428-x
– volume: 77
  start-page: 30683
  year: 2018
  ident: 15849_CR45
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6157-4
– ident: 15849_CR26
  doi: 10.1109/CVPR.2015.7298965
– ident: 15849_CR7
  doi: 10.1109/TMM.2014.2298377
– volume: 28
  start-page: 657
  year: 2006
  ident: 15849_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.68
– ident: 15849_CR2
  doi: 10.1109/ICAEE47123.2019.9015144
– volume: 30
  start-page: 375
  issue: 3
  year: 2019
  ident: 15849_CR39
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-018-0993-0
– volume: 9
  start-page: 287
  year: 2000
  ident: 15849_CR50
  publication-title: IEEE Trans Image Processing
  doi: 10.1109/TIP.2000.826791
– ident: 15849_CR14
– ident: 15849_CR11
  doi: 10.1109/ICECS49266.2020.9294806
– start-page: 43
  volume-title: Smart Intelligent Computing and Applications
  year: 2019
  ident: 15849_CR31
  doi: 10.1007/978-981-13-1927-3_5
– volume: 36
  start-page: 1309
  issue: 10
  year: 1989
  ident: 15849_CR9
  publication-title: IEEE Trans Circ and Syst
  doi: 10.1109/31.44347
– ident: 15849_CR28
  doi: 10.1109/ICCET.2010.5485814
– volume: 4
  start-page: 438
  year: 1994
  ident: 15849_CR21
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/76.313138
– ident: 15849_CR32
  doi: 10.1109/CCWC51732.2021.9375959
– ident: 15849_CR3
  doi: 10.1109/ICASSP.1993.319893
– ident: 15849_CR36
  doi: 10.1109/ICECTE48615.2019.9303552
– volume-title: H.264 and MPEG-4 Video Compression
  year: 2010
  ident: 15849_CR35
  doi: 10.1002/9780470989418
– volume: 112
  start-page: 256
  year: 2018
  ident: 15849_CR23
  publication-title: J Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.08.002
– ident: 15849_CR49
  doi: 10.1109/SDF.2017.8126361
– ident: 15849_CR47
  doi: 10.1109/ICME.2017.8019397
– ident: 15849_CR19
– volume: 22
  start-page: 163
  issue: 1
  year: 2018
  ident: 15849_CR37
  publication-title: Pers Ubiquit Comput
  doi: 10.1007/s00779-017-1058-5
– volume: 9
  start-page: 53849
  year: 2021
  ident: 15849_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071163
– volume: 12
  start-page: 2517
  issue: 3
  year: 2022
  ident: 15849_CR20
  publication-title: Int J Electr Comput Eng (2088–8708)
– ident: 15849_CR5
  doi: 10.1109/SSD52085.2021.9429516
– ident: 15849_CR40
  doi: 10.1109/CSPIS.2018.8642743
– ident: 15849_CR43
  doi: 10.1109/PRIMEASIA.2010.5604955
– ident: 15849_CR46
  doi: 10.1109/ACCESS.2019.2927211
– ident: 15849_CR34
  doi: 10.1109/CVPRW.2019.00049
– ident: 15849_CR27
  doi: 10.1109/76.564122
– volume: 23
  start-page: 1191
  year: 2013
  ident: 15849_CR38
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2013.2241352
– ident: 15849_CR12
  doi: 10.1007/978-981-16-6328-4_81
SSID ssj0016524
Score 2.3505511
Snippet In this paper, a new algorithm for moving object detection is proposed by using unsupervised Bayesian classifier with bootstrap Gaussian expectation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6335
SubjectTerms Algorithms
Bayesian analysis
Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Diamonds
Maximization
Morphology
Moving object recognition
Multimedia
Multimedia Information Systems
Optimization
Pixels
Search algorithms
Special Purpose and Application-Based Systems
Surveillance
Track 6: Computer Vision for Multimedia Applications
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQ4QCHFlpQC0s1B27UUvyxsX0EROHSCkFb9RY5_qhW6mZXm2wFf4NfzDjr7ELVIsE5tmVpPH4v43kzhLzxNkjHmKOlY4ZKxQW1mkfKnY46jE1hi9g3m1Cnp_ry0nzJorB2yHYfniT7m3ojdmNJSoIYQxmipqH4z_MQ4U6nhg1fv12s3w7KcW5lqwuKeMiyVObuNf6Eow3HvPUs2qPN8c7_7fMp2c7sEt6tjsMz8iA0u2Rn6NwA2ZF3yZPfyhDukZ8nfVgBZnUKyrTgQ9cnaDUwaSARxCmumao-BUiqvVkLKVv-CpZNu5ynu6YNHt7bHyEJMsElPj6JCLeQgryANL5L8ZQ5fLLLth-S2gq4VQ4ATO33yTSLQcFeX80WOGn6nJwffzz78JnmXg3UoRN3FImc1t7Vrh4LLmrkoSFYZa1Uypfec69KZiOLRkoji1AUwQUj7Bhv1xBN5OIF2WpmTdgnEKzxQseI5MlKV4qaOyO9sk4IXxZeHRA2mKxyuZB56qdxXW1KMCcTVGiCqjdBxQ7I2_Wc-aqMx19Hj4aTUGWXbiueYEFyVeIGjgbLbz7fv9rLfxv-ijzmSJxWYZ4R2eoWy_CaPHI33aRdHPZH_Rfa7vyY
  priority: 102
  providerName: Springer Nature
Title Moving objects detection in thermal scene videos using unsupervised Bayesian classifier with bootstrap Gaussian expectation maximization algorithm
URI https://link.springer.com/article/10.1007/s11042-023-15849-1
https://www.proquest.com/docview/2911142767
Volume 83
WOSCitedRecordID wos000995787000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest Business/Economics) (LUT)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKBQqFsrKB25gEdtJHJ8QrVqQUJdVeRUukeNHWambXZosgr_BL8aTOF1AohculqI4VqzxzHwaz8wH8NhqlxrGDM0NUzSVXFBdcE-5KXzhMpXoxHdkE3IyKU5P1TQG3JqYVjnYxM5Q24XBGPkzjlqZcpnL58uvFFmj8HY1UmhswBYiG0zpO04OLm8R8iyS2hYJDZ6RxaKZvnSOYWFK8FiUBR-sKPvTMa3R5l8XpJ3fOdr-3z--Dbci4iQv-iNyB665ege2BzYHEpV7B27-1prwLvw87kINZFFhoKYh1rVd0lZNZjVB0DgPa2InKEewkm_REMygPyOrulkt0f40zpJ9_cNhkSYxiNFnPrhggoFfEqB9izGWJXmpV003BakGTJ8XQOb6-2weC0SJPj8Lu2q_zO_B-6PDdwevaORvoCYodksDuCsKaypTZYKLKmBT57TUOpXS5tZyK3OmPfMqTVWauCRxximhs2BxnVeei13YrBe1uw_EaWVF4X0AVDo1uai4UamV2ghh88TKEbBBeKWJzc2RY-O8XLdlRoGXQeBlJ_CSjeDJ5TfLvrXHlbP3BimXUc2bci3iETwdzsn69b9Xe3D1ag_hBg_gqQ_17MFme7Fyj-C6-dbOmosxbMiPn8awtX84mZ6Ep9eSjruDjyN_E8Zp9jmMJ28__AIgQg0F
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UCggFgr4ACewiB8bxweEyqO02nbFoUi9BcePslI3uzTZlv4Nfgi_sZ48uoBEbz1wTuKD883MN2PPfADPnfHSMmZpapmmUnFBTcYD5TYLmR_qxCShEZtQ43F2cKA_r8CvvhcGr1X2PrFx1G5msUb-mqNVSq5S9Xb-naJqFJ6u9hIaLSxG_uw0pmzVm50P8f--4Hzr4_77bdqpClAb4VbTSDmyzNnCFkPBRREZk_dGGSOVcqlz3MXE3gQWtJRaJj5JvPVamGH0Az7ogIMOosu_JkWm0K5Gil6cWqTDTkQ3S2iMxKxr0mlb9Rg2wsQISVmM-ZqyPwPhkt3-dSDbxLmttf9th-7A7Y5Rk83WBO7Cii_XYa1XqyCd81qHW7-NXrwHP_eaUgqZFViIqojzdXMprSSTkiApnsY1cdKVJ9ipOKsIdggckkVZLeboXyvvyDtz5rEJlVjMQSYhUgyChW0SU5caa0hz8sksquYVlFKw7b0HMjU_JtOuAZaYo8O4i_W36X34ciX79ABWy1npHwLxRjuRhRAJo5E2FQW3WjplrBAuTZwaAOvBkttueDtqiBzly7HTCLA8AixvAJazAby8-Gbeji659O2NHlV558aqfAmpAbzqcbl8_O_VHl2-2jO4sb2_t5vv7oxHj-Emj0SxLWttwGp9vPBP4Lo9qSfV8dPGwAh8vWq8ngP1-WXu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBSE4UCggthTwAU5gNXaycXxACCgLVWG1B5AqLsHxR1mpm902WaB_g5_Dr2MmH11AorceOCfxwXmeeTOeNwPwyBmfWCEsT63QPFEy5iaTgUubhcwPdWSi0AybUONxdnCgJ2vws9fCUFllbxMbQ-3mlnLkO5JOZSJVqnZCVxYx2R09XxxzmiBFN639OI0WIvv-9BuGb9WzvV3814-lHL3-8Oot7yYMcIvQqznSjyxztrDFMJZxgezJe6OMSZRyqXPSYZBvggg6SXQS-Sjy1uvYDNEm-KADNT1A839JYYxJ5YST4aezG4x02A3UzSKOXll0gp1WtidIFIPekgv0_5qLP53iiun-dTnb-LzRxv-8Wzfgese02Yv2aNyENV9uwkY_xYJ1Rm0Trv3WkvEW_HjfpFjYvKAEVcWcr5titZJNS0ZkeYZrUgcsz0jBOK8YKQcO2bKslguyu5V37KU59SROZZZik2lA6sEo4c0wpKkpt7Rgb8yyal6hEQu2rYdgM_N9OuuEscwcHeIu1l9mt-HjhezTHVgv56W_C8wb7eIsBCSSJrFpXEirE6eMjWOXRk4NQPTAyW3X1J1mixzlq3bUBLYcwZY3YMvFAJ6cfbNoW5qc-_Z2j7C8M29VvoLXAJ72GF09_vdqW-ev9hCuIEzzd3vj_XtwVSJ_bLNd27Benyz9fbhsv9bT6uRBc9YYfL5ouP4CaWZvEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+objects+detection+in+thermal+scene+videos+using+unsupervised+Bayesian+classifier+with+bootstrap+Gaussian+expectation+maximization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kerfa%2C+Djoudi&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=2&rft.spage=6335&rft.epage=6350&rft_id=info:doi/10.1007%2Fs11042-023-15849-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15849_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon