Three-Term Hager–Zhang Projection Method for Monotone Nonlinear Equations

In this paper, a conjugate gradient method combined with the projection technique of Solodov and Svaiter (Kluwer Academic Publishers, pp. 355–369, 1998 ) to solve monotone nonlinear equations is presented. The proposed method improved the numerical performance of the Hager–Zhang (HZ) method proposed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Vietnam journal of mathematics Ročník 53; číslo 1; s. 109 - 130
Hlavní autoři: Halilu, Abubakar Sani, Majumder, Arunava, Waziri, Mohammed Yusuf, Ahmed, Kabiru, Murtala, Salisu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.01.2025
Springer Nature B.V
Témata:
ISSN:2305-221X, 2305-2228
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a conjugate gradient method combined with the projection technique of Solodov and Svaiter (Kluwer Academic Publishers, pp. 355–369, 1998 ) to solve monotone nonlinear equations is presented. The proposed method improved the numerical performance of the Hager–Zhang (HZ) method proposed by Waziri et al. (Appl. Math. Comput. 361 , 645–660, 2019 ), by extending its direction to three-term conjugate gradient direction. The proposed method has been shown to be globally convergent under some mild conditions. Numerical experiments show that the proposed method is effective and produces better results than some existing methods.
AbstractList In this paper, a conjugate gradient method combined with the projection technique of Solodov and Svaiter (Kluwer Academic Publishers, pp. 355–369, 1998 ) to solve monotone nonlinear equations is presented. The proposed method improved the numerical performance of the Hager–Zhang (HZ) method proposed by Waziri et al. (Appl. Math. Comput. 361 , 645–660, 2019 ), by extending its direction to three-term conjugate gradient direction. The proposed method has been shown to be globally convergent under some mild conditions. Numerical experiments show that the proposed method is effective and produces better results than some existing methods.
In this paper, a conjugate gradient method combined with the projection technique of Solodov and Svaiter (Kluwer Academic Publishers, pp. 355–369, 1998) to solve monotone nonlinear equations is presented. The proposed method improved the numerical performance of the Hager–Zhang (HZ) method proposed by Waziri et al. (Appl. Math. Comput. 361, 645–660, 2019), by extending its direction to three-term conjugate gradient direction. The proposed method has been shown to be globally convergent under some mild conditions. Numerical experiments show that the proposed method is effective and produces better results than some existing methods.
Author Majumder, Arunava
Halilu, Abubakar Sani
Murtala, Salisu
Ahmed, Kabiru
Waziri, Mohammed Yusuf
Author_xml – sequence: 1
  givenname: Abubakar Sani
  orcidid: 0000-0002-9680-266X
  surname: Halilu
  fullname: Halilu, Abubakar Sani
  email: abubakars.halilu@slu.edu.ng
  organization: Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Department of Mathematics, Sule Lamido University, Numerical Optimization Research Group, Bayero University
– sequence: 2
  givenname: Arunava
  surname: Majumder
  fullname: Majumder, Arunava
  organization: Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University
– sequence: 3
  givenname: Mohammed Yusuf
  surname: Waziri
  fullname: Waziri, Mohammed Yusuf
  organization: Numerical Optimization Research Group, Bayero University, Department of Mathematical Sciences, Bayero University
– sequence: 4
  givenname: Kabiru
  surname: Ahmed
  fullname: Ahmed, Kabiru
  organization: Numerical Optimization Research Group, Bayero University, Department of Mathematical Sciences, Bayero University
– sequence: 5
  givenname: Salisu
  surname: Murtala
  fullname: Murtala, Salisu
  organization: Numerical Optimization Research Group, Bayero University, Department of Mathematics, Federal University
BookMark eNp9kM1OAjEYRRuDiYC-gKsmrqv9kZnO0hAUI6gLTIybpjP9BoZAC-2Q4M538A19EgtjNHHBoj-Lc3q_3g5qWWcBoXNGLxml6VWIOxOE8rhoIjKyPUJtLmiPcM5l6_fOXk9QJ4Q5jZRM0jZ6mMw8AJmAX-KhnoL_-vh8m2k7xc_ezaGoK2fxGOqZM7h0Ho-ddXXMxo_OLioL2uPBeqN3WDhFx6VeBDj7Obvo5XYw6Q_J6Onuvn8zIoVgWU2kEFQaoyHThuYsK-PUkMqcQp7o5LroaVEAY6ngImeaZcaInBvBe1xHHzLRRRfNuyvv1hsItZq7jbcxUkUqSSWXkkeKN1ThXQgeSrXy1VL7d8Wo2pWmmtJUjFf70tQ2SvKfVFT1_ne119XisCoaNcQcG5v8m-qA9Q08TYSG
CitedBy_id crossref_primary_10_1007_s12190_024_02121_4
crossref_primary_10_1109_ACCESS_2024_3393555
Cites_doi 10.1007/s40324-020-00228-9
10.1016/j.matcom.2021.03.020
10.1016/0041-5553(69)90035-4
10.1142/S0219876220500437
10.1080/10556788.2013.833199
10.1090/S0025-5718-1974-0343581-1
10.1080/02331934.2014.938072
10.1137/S1052623497318992
10.1007/s101070100263
10.1093/comjnl/7.2.149
10.1007/978-1-4757-6388-1_18
10.1007/s002450010019
10.1016/j.apnum.2020.02.017
10.1080/02331934.2020.1808647
10.14419/ijamr.v6i4.8072
10.1007/s11590-014-0736-8
10.6028/jres.049.044
10.1007/s11075-018-0541-z
10.1007/s40065-019-0264-6
10.1016/j.camwa.2015.09.014
10.1016/j.camwa.2006.12.081
10.1137/030601880
10.1016/j.jmaa.2013.04.017
10.2306/scienceasia1513-1874.2014.40.295
10.19139/soic-2310-5070-532
10.1186/s13660-016-1239-1
10.1080/10556788.2017.1338288
10.1007/s40314-021-01624-1
10.1155/2019/5976595
10.1137/S0036142998335704
ContentType Journal Article
Copyright Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2023.
Copyright_xml – notice: Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2023.
DBID AAYXX
CITATION
DOI 10.1007/s10013-023-00639-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2305-2228
EndPage 130
ExternalDocumentID 10_1007_s10013_023_00639_x
GroupedDBID -EM
06D
0R~
123
203
29Q
2LR
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KWQ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-83308ddae9ad0b19f023e78b0eb6a64c5a3ce117323b1a19dd3b2d3252a319e93
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001043351200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2305-221X
IngestDate Mon Oct 06 18:37:28 EDT 2025
Sat Nov 29 03:56:08 EST 2025
Tue Nov 18 20:54:59 EST 2025
Fri Feb 21 02:37:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Conjugate gradient method
Primary 65K05
90C53
Hager–Zhang parameter
Global convergence
Numerical experiment
Secondary 90C30
Monotone nonlinear equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-83308ddae9ad0b19f023e78b0eb6a64c5a3ce117323b1a19dd3b2d3252a319e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9680-266X
PQID 3256782882
PQPubID 2043694
PageCount 22
ParticipantIDs proquest_journals_3256782882
crossref_primary_10_1007_s10013_023_00639_x
crossref_citationtrail_10_1007_s10013_023_00639_x
springer_journals_10_1007_s10013_023_00639_x
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Vietnam journal of mathematics
PublicationTitleAbbrev Vietnam J. Math
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Hestenes, Stiefel (CR26) 1952; 49
Halilu, Waziri, Musa (CR24) 2020; 8
Andrei (CR4) 2011; 34
Halilu, Waziri (CR20) 2017; 9
Dennis, Schnabel (CR12) 1983
Dai, Liao (CR10) 2001; 43
Hager, Zhang (CR16) 2005; 16
Halilu, Majumder, Waziri, Ahmed (CR19) 2021; 187
Waziri, Leong, Hassan (CR42) 2011; 5
Babaie-Kafaki, Ghanbari (CR7) 2014; 29
CR36
Sabi’u, Shah, Waziri (CR34) 2020; 153
Abubakar, Kumam, Awwal (CR3) 2019; 2019
Waziri, Ahmed, Sabi’u (CR40) 2020; 9
Liu, Li (CR31) 2015; 70
Sabi’u, Shah, Waziri, Ahmed (CR35) 2021; 18
Hager, Zhang (CR17) 2006; 2
Babaie-Kafaki, Ghanbari (CR9) 2015; 64
Dennis, Moré (CR13) 1974; 28
Polyak (CR33) 1969; 9
Waziri, Ahmad, Halilu (CR41) 2020
Waziri, Ahmed, Sabi’u (CR38) 2019; 361
Liu, Wu (CR30) 2014; 40
Waziri, Leong, Hassan, Monsi (CR39) 2011; 2011
Halilu, Majumder, Waziri, Abdullahi (CR18) 2020; 7
Meintjes, Morgan (CR32) 1987; 22
Arzuka, Abubakar, Leong (CR5) 2016; 2016
Abdullahi, Halilu, Waziri (CR1) 2018; 10
Dai, Yuan (CR11) 1999; 10
Halilu, Waziri (CR21) 2018; 33
Halilu, Waziri (CR22) 2017; 6
Babaie-Kafaki, Ghanbari (CR8) 2014; 8
Liu, Du (CR29) 2019; 2019
Dolan, Moré (CR14) 2002; 91
Yuan, Lu (CR44) 2008; 55
Abubakar, Kumam (CR2) 2019; 81
Li, Fukushima (CR28) 1999; 37
Fletcher, Reeves (CR15) 1964; 7
Halilu, Majumder, Waziri, Awwal, Ahmed (CR23) 2021; 40
Kobayashi, Narushima, Yabe (CR27) 2017; 32
Halilu, Waziri (CR25) 2020; 39
Awwal, Kumam, Mohammad, Watthayu, Abubakar (CR6) 2021; 70
Sun, Tian, Wang (CR37) 2019; 2019
Xiao, Zhu (CR43) 2013; 405
JE Dennis Jr (639_CR12) 1983
AS Halilu (639_CR24) 2020; 8
JE Dennis (639_CR13) 1974; 28
JK Liu (639_CR31) 2015; 70
M Sun (639_CR37) 2019; 2019
AS Halilu (639_CR18) 2020; 7
K Meintjes (639_CR32) 1987; 22
MY Waziri (639_CR38) 2019; 361
J Liu (639_CR29) 2019; 2019
AS Halilu (639_CR20) 2017; 9
AM Awwal (639_CR6) 2021; 70
R Fletcher (639_CR15) 1964; 7
AS Halilu (639_CR22) 2017; 6
D Li (639_CR28) 1999; 37
MY Waziri (639_CR39) 2011; 2011
H Abdullahi (639_CR1) 2018; 10
S Babaie-Kafaki (639_CR7) 2014; 29
S Babaie-Kafaki (639_CR8) 2014; 8
MR Hestenes (639_CR26) 1952; 49
I Arzuka (639_CR5) 2016; 2016
J Sabi’u (639_CR35) 2021; 18
AB Abubakar (639_CR3) 2019; 2019
Y-H Dai (639_CR10) 2001; 43
J Liu (639_CR30) 2014; 40
J Sabi’u (639_CR34) 2020; 153
MY Waziri (639_CR42) 2011; 5
AB Abubakar (639_CR2) 2019; 81
Y-H Dai (639_CR11) 1999; 10
H Kobayashi (639_CR27) 2017; 32
MY Waziri (639_CR41) 2020
BT Polyak (639_CR33) 1969; 9
AS Halilu (639_CR21) 2018; 33
S Babaie-Kafaki (639_CR9) 2015; 64
E Dolan (639_CR14) 2002; 91
AS Halilu (639_CR25) 2020; 39
639_CR36
MY Waziri (639_CR40) 2020; 9
WW Hager (639_CR17) 2006; 2
AS Halilu (639_CR23) 2021; 40
G Yuan (639_CR44) 2008; 55
WW Hager (639_CR16) 2005; 16
AS Halilu (639_CR19) 2021; 187
N Andrei (639_CR4) 2011; 34
YH Xiao (639_CR43) 2013; 405
References_xml – volume: 18
  start-page: 2050043
  year: 2021
  ident: CR35
  article-title: Modified Hager-Zhang conjugate gradient methods via singular value analysis for solving monotone nonlinear equations with convex constraint
  publication-title: Int. J. Comput. Methods
– volume: 2011
  start-page: 46701
  year: 2011
  ident: CR39
  article-title: A low memory solver for integral equations of Chandrasekhar type in the radiative transfer problems
  publication-title: Math. Probl. Eng.
– volume: 70
  start-page: 2442
  year: 2015
  end-page: 2453
  ident: CR31
  article-title: A projection method for convex constrained monotone nonlinear equations with applications
  publication-title: Comput. Math. Appl.
– volume: 187
  start-page: 520
  year: 2021
  end-page: 539
  ident: CR19
  article-title: Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach
  publication-title: Math. Comput. Simul.
– volume: 39
  start-page: 287
  year: 2020
  end-page: 301
  ident: CR25
  article-title: Solving systems of nonlinear equations using improved double direction method
  publication-title: J. Niger. Math. Soc.
– volume: 10
  start-page: 32
  year: 2018
  end-page: 44
  ident: CR1
  article-title: A modified conjugate gradient method via a double direction approach for solving large-scale symmetric nonlinear equations
  publication-title: J. Numer. Math. Stoch.
– volume: 70
  start-page: 1231
  year: 2021
  end-page: 1259
  ident: CR6
  article-title: A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing regularized problem
  publication-title: Optimization
– year: 2020
  ident: CR41
  article-title: Enhanced Dai-Liao conjugate gradient methods for systems of monotone nonlinear equations
  publication-title: SeMA Journal
  doi: 10.1007/s40324-020-00228-9
– volume: 33
  start-page: 75
  year: 2018
  end-page: 89
  ident: CR21
  article-title: An improved derivative-free method via double direction approach for solving systems of nonlinear equations
  publication-title: J. Ramanujan Math. Soc.
– volume: 9
  start-page: 443
  year: 2020
  end-page: 457
  ident: CR40
  article-title: A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations
  publication-title: Arab. J. Math.
– volume: 64
  start-page: 2277
  year: 2015
  end-page: 2287
  ident: CR9
  article-title: Two optimal Dai-Liao conjugate gradient methods
  publication-title: Optimization
– volume: 34
  start-page: 319
  year: 2011
  end-page: 330
  ident: CR4
  article-title: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization
  publication-title: Bull. Malays. Math. Sci. Soc.
– year: 1983
  ident: CR12
  publication-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations
– volume: 37
  start-page: 152
  year: 1999
  end-page: 172
  ident: CR28
  article-title: A global and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations
  publication-title: SIAM J. Numer. Anal.
– volume: 361
  start-page: 645
  year: 2019
  end-page: 660
  ident: CR38
  article-title: A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 28
  start-page: 549
  year: 1974
  end-page: 560
  ident: CR13
  article-title: A characterization of superlinear convergence and its application to quasi-Newton methods
  publication-title: Math. Comput.
– volume: 32
  start-page: 1313
  year: 2017
  end-page: 1329
  ident: CR27
  article-title: Descent three-term conjugate gradient methods based on secant conditions for unconstrained optimization
  publication-title: Optim. Methods Softw.
– volume: 9
  start-page: 20
  year: 2017
  end-page: 32
  ident: CR20
  article-title: A transformed double step length method for solving large-scale systems of nonlinear equations
  publication-title: J. Numer. Math. Stoch.
– volume: 2019
  start-page: 128
  year: 2019
  end-page: 152
  ident: CR3
  article-title: A descent Dai-Liao projection method for convex constrained nonlinear monotone equations with applications
  publication-title: Thai J. Math.
– volume: 2016
  start-page: 325
  year: 2016
  ident: CR5
  article-title: A scaled three-term conjugate gradient method for unconstrained optimization
  publication-title: J. Inequl. Appl.
– volume: 10
  start-page: 177
  year: 1999
  end-page: 182
  ident: CR11
  article-title: A nonlinear conjugate gradient method with a strong global convergence property
  publication-title: SIAM. J. Optim.
– volume: 29
  start-page: 583
  year: 2014
  end-page: 591
  ident: CR7
  article-title: A descent family of Dai-Liao conjugate gradient methods
  publication-title: Optim. Methods Softw.
– volume: 2019
  start-page: 5976595
  year: 2019
  ident: CR29
  article-title: Modified three-term conjugate gradient method and its applications
  publication-title: Math. Probl. Eng.
– volume: 40
  start-page: 295
  year: 2014
  end-page: 300
  ident: CR30
  article-title: New three-term conjugate gradient method for solving unconstrained optimization problems
  publication-title: ScienceAsia
– volume: 5
  start-page: 241
  year: 2011
  end-page: 255
  ident: CR42
  article-title: Jacobian-free diagonal Newton’s method for solving nonlinear systems with singular Jacobian
  publication-title: Malays. J. Math. Sci.
– volume: 2
  start-page: 35
  year: 2006
  end-page: 58
  ident: CR17
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac. J. Optim.
– volume: 8
  start-page: 2285
  year: 2014
  end-page: 2297
  ident: CR8
  article-title: Two modified three-term conjugate gradient methods with sufficient descent property
  publication-title: Optim. Lett.
– volume: 7
  start-page: 3899
  year: 2020
  end-page: 3913
  ident: CR18
  article-title: Double direction and step length method for solving system of nonlinear equations
  publication-title: Eur. J. Mol. Clin. Med.
– volume: 405
  start-page: 310
  year: 2013
  end-page: 319
  ident: CR43
  article-title: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing
  publication-title: J. Math. Anal. Appl.
– volume: 153
  start-page: 217
  year: 2020
  end-page: 233
  ident: CR34
  article-title: Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations
  publication-title: Appl. Numer. Math.
– volume: 81
  start-page: 197
  year: 2019
  end-page: 210
  ident: CR2
  article-title: A descent Dai-Liao conjugate gradient method for nonlinear equations
  publication-title: Numer. Algor.
– volume: 16
  start-page: 170
  year: 2005
  end-page: 192
  ident: CR16
  article-title: A new conjugate gradient method with guaranteed descent and an efficient line search
  publication-title: SIAM J. Optim.
– volume: 43
  start-page: 87
  year: 2001
  end-page: 101
  ident: CR10
  article-title: New conjugacy conditions and related nonlinear conjugate gradient methods
  publication-title: Appl. Math. Optim.
– volume: 22
  start-page: 333
  year: 1987
  end-page: 361
  ident: CR32
  article-title: A methodology for solving chemical equilibrium systems
  publication-title: Appl. Math. Comput.
– volume: 6
  start-page: 147
  year: 2017
  end-page: 156
  ident: CR22
  article-title: Enhanced matrix-free method via double step length approach for solving systems of nonlinear equations
  publication-title: Int. J. Appl. Math. Res.
– volume: 9
  start-page: 94
  year: 1969
  end-page: 112
  ident: CR33
  article-title: The conjugate gradient method in extremal problems
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 55
  start-page: 116
  year: 2008
  end-page: 129
  ident: CR44
  article-title: A new backtracking inexact BFGS method for symmetric nonlinear equations
  publication-title: Comput. Math. Appl.
– ident: CR36
– volume: 40
  start-page: 239
  year: 2021
  ident: CR23
  article-title: On solving double direction methods for convex constrained monotone nonlinear equations with image restoration
  publication-title: Comput. Appl. Math.
– volume: 91
  start-page: 201
  year: 2002
  end-page: 213
  ident: CR14
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
– volume: 2019
  start-page: 4745759
  year: 2019
  ident: CR37
  article-title: Discrete-time Zhang neural networks for time-varying nonlinear optimization
  publication-title: Discrete Dyn. Nat. Soc.
– volume: 7
  start-page: 149
  year: 1964
  end-page: 154
  ident: CR15
  article-title: Function minimization by conjugate gradient
  publication-title: Comput. J.
– volume: 8
  start-page: 165
  year: 2020
  end-page: 174
  ident: CR24
  article-title: Inexact double step length method for solving systems of nonlinear equations
  publication-title: Stat. Optim. Inf. Comput.
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  ident: CR26
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. National Bur. Stand.
– volume: 2011
  start-page: 46701
  year: 2011
  ident: 639_CR39
  publication-title: Math. Probl. Eng.
– volume-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations
  year: 1983
  ident: 639_CR12
– volume: 187
  start-page: 520
  year: 2021
  ident: 639_CR19
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.03.020
– volume: 9
  start-page: 94
  year: 1969
  ident: 639_CR33
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(69)90035-4
– volume: 18
  start-page: 2050043
  year: 2021
  ident: 639_CR35
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876220500437
– volume: 29
  start-page: 583
  year: 2014
  ident: 639_CR7
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2013.833199
– volume: 28
  start-page: 549
  year: 1974
  ident: 639_CR13
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0343581-1
– volume: 9
  start-page: 20
  year: 2017
  ident: 639_CR20
  publication-title: J. Numer. Math. Stoch.
– volume: 64
  start-page: 2277
  year: 2015
  ident: 639_CR9
  publication-title: Optimization
  doi: 10.1080/02331934.2014.938072
– volume: 10
  start-page: 177
  year: 1999
  ident: 639_CR11
  publication-title: SIAM. J. Optim.
  doi: 10.1137/S1052623497318992
– volume: 91
  start-page: 201
  year: 2002
  ident: 639_CR14
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 7
  start-page: 149
  year: 1964
  ident: 639_CR15
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
– ident: 639_CR36
  doi: 10.1007/978-1-4757-6388-1_18
– volume: 7
  start-page: 3899
  year: 2020
  ident: 639_CR18
  publication-title: Eur. J. Mol. Clin. Med.
– volume: 34
  start-page: 319
  year: 2011
  ident: 639_CR4
  publication-title: Bull. Malays. Math. Sci. Soc.
– volume: 43
  start-page: 87
  year: 2001
  ident: 639_CR10
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010019
– volume: 153
  start-page: 217
  year: 2020
  ident: 639_CR34
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2020.02.017
– volume: 70
  start-page: 1231
  year: 2021
  ident: 639_CR6
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1808647
– volume: 6
  start-page: 147
  year: 2017
  ident: 639_CR22
  publication-title: Int. J. Appl. Math. Res.
  doi: 10.14419/ijamr.v6i4.8072
– volume: 8
  start-page: 2285
  year: 2014
  ident: 639_CR8
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-014-0736-8
– volume: 49
  start-page: 409
  year: 1952
  ident: 639_CR26
  publication-title: J. Res. National Bur. Stand.
  doi: 10.6028/jres.049.044
– volume: 2019
  start-page: 128
  year: 2019
  ident: 639_CR3
  publication-title: Thai J. Math.
– volume: 81
  start-page: 197
  year: 2019
  ident: 639_CR2
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-018-0541-z
– volume: 9
  start-page: 443
  year: 2020
  ident: 639_CR40
  publication-title: Arab. J. Math.
  doi: 10.1007/s40065-019-0264-6
– volume: 70
  start-page: 2442
  year: 2015
  ident: 639_CR31
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.09.014
– volume: 361
  start-page: 645
  year: 2019
  ident: 639_CR38
  publication-title: Appl. Math. Comput.
– volume: 55
  start-page: 116
  year: 2008
  ident: 639_CR44
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.081
– volume: 16
  start-page: 170
  year: 2005
  ident: 639_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/030601880
– volume: 39
  start-page: 287
  year: 2020
  ident: 639_CR25
  publication-title: J. Niger. Math. Soc.
– year: 2020
  ident: 639_CR41
  publication-title: SeMA Journal
  doi: 10.1007/s40324-020-00228-9
– volume: 2019
  start-page: 4745759
  year: 2019
  ident: 639_CR37
  publication-title: Discrete Dyn. Nat. Soc.
– volume: 405
  start-page: 310
  year: 2013
  ident: 639_CR43
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.04.017
– volume: 40
  start-page: 295
  year: 2014
  ident: 639_CR30
  publication-title: ScienceAsia
  doi: 10.2306/scienceasia1513-1874.2014.40.295
– volume: 10
  start-page: 32
  year: 2018
  ident: 639_CR1
  publication-title: J. Numer. Math. Stoch.
– volume: 22
  start-page: 333
  year: 1987
  ident: 639_CR32
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 165
  year: 2020
  ident: 639_CR24
  publication-title: Stat. Optim. Inf. Comput.
  doi: 10.19139/soic-2310-5070-532
– volume: 2
  start-page: 35
  year: 2006
  ident: 639_CR17
  publication-title: Pac. J. Optim.
– volume: 2016
  start-page: 325
  year: 2016
  ident: 639_CR5
  publication-title: J. Inequl. Appl.
  doi: 10.1186/s13660-016-1239-1
– volume: 32
  start-page: 1313
  year: 2017
  ident: 639_CR27
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1338288
– volume: 40
  start-page: 239
  year: 2021
  ident: 639_CR23
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-021-01624-1
– volume: 2019
  start-page: 5976595
  year: 2019
  ident: 639_CR29
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/5976595
– volume: 5
  start-page: 241
  year: 2011
  ident: 639_CR42
  publication-title: Malays. J. Math. Sci.
– volume: 33
  start-page: 75
  year: 2018
  ident: 639_CR21
  publication-title: J. Ramanujan Math. Soc.
– volume: 37
  start-page: 152
  year: 1999
  ident: 639_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142998335704
SSID ssj0006867
Score 2.3015394
Snippet In this paper, a conjugate gradient method combined with the projection technique of Solodov and Svaiter (Kluwer Academic Publishers, pp. 355–369, 1998 ) to...
In this paper, a conjugate gradient method combined with the projection technique of Solodov and Svaiter (Kluwer Academic Publishers, pp. 355–369, 1998) to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Algorithms
Conjugate gradient method
Mathematics
Mathematics and Statistics
Methods
Nonlinear equations
Optimization
Original Article
Value analysis
Title Three-Term Hager–Zhang Projection Method for Monotone Nonlinear Equations
URI https://link.springer.com/article/10.1007/s10013-023-00639-x
https://www.proquest.com/docview/3256782882
Volume 53
WOSCitedRecordID wos001043351200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2305-2228
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006867
  issn: 2305-221X
  databaseCode: RSV
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA4yPejBb3E6JQdvGmiStkuPIhsD3Rg6x24lXwVBpq5TPPof_If-Et-k7aaigh56apK-5M370STv8yB0JKPEqixWhAkjSBhKSZTJLFHuzMqGLFCerWF40ez1xGiU9MuisLy67V4dSXpP_aHYzTMRMHhcXCWQOS5CuBOOsOHyajjzv7HwvLGQW0eEMToqS2W-H-NzOJrnmF-ORX20aa_9T851tFpml_i0WA4baMGON9FKdwbNmm-h8wFoz5IBeGTccQAWby-vftcY94tNGVAU7npeaQwJLQajv3OA3bhXgGrICW49FPjg-Ta6brcGZx1SMioQDaY2JYLzQBgjbSJNoGiSgZS2KVRgVSzjUEeSa0tpkzOuqKSJMVwxw1nEJPS3Cd9BtTF8chdhmQVUG5tpaZphRMHudczDLHHA5ybLRB3RamJTXcKNO9aL23QOlOwmKgURUj9R6XMdHc_63BdgG7-2blT6SkvDy1OQFcIvg_-GOjqp9DN__fNoe39rvo-WmWMC9psxDVSbTh7tAVrST9ObfHLoF-Q7bJLb0w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6igvrgXZxOzYNvGmiSXh9FNibbytA59laSJgVBpq5TfPQ_-A_9JZ6k7aaigj70qUl6yMm5NMn5PoSOhRdpmfmSsFCFxHWFIFJlmkhzZqVd5kjL1jDoBHEcDodRrywKy6vb7tWRpPXUH4rdLBMBg8fEVQKZ44ILEcsg5l9eDab-1w8tbyzk1h5hjA7LUpnvx_gcjmY55pdjURttmmv_k3MdrZbZJT4rlsMGmtOjTbTSnUKz5luo3QftadIHj4xbBsDi7eXV7hrjXrEpA4rCXcsrjSGhxWD0dwawG8cFqIYY48ZDgQ-eb6PrZqN_3iIlowJJwdQmJOTcCZUSOhLKkTTKQEodhNLR0he-m3qCp5rSgDMuqaCRUlwyxZnHBPTXEd9B8yP45C7CInNoqnSWChW4HgW7T33uZpEBPldZFtYQrSY2SUu4ccN6cZvMgJLNRCUgQmInKnmuoZNpn_sCbOPX1vVKX0lpeHkCskL4ZfDfUEOnlX5mr38ebe9vzY_QUqvf7SSdi7i9j5aZYQW2GzN1ND8ZP-oDtJg-TW7y8aFdnO_Dl963
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iInrwLVar5uBNQzfJ7nb3KNpS6YOCtfS2JJsEBKm1reLR_-A_9Jc4yW4figriYU957JBJZiaP-T6ETkUQa2lCSVikIuL7QhCpjCbS3llpn3nSsTV0G-VWK-r14vZcFr977T65ksxyGixKU39cGihTmkt8c6wEDD7rYwlEkUu-fUhv9-s33aktDiPHIQtxdkAYo708beb7Pj67plm8-eWK1Hme6sb_Zd5E63nUiS-yabKFFnR_G601p5Ctox1U74BWNemApcY1C2zx_vrmTpNxOzusAQXipuObxhDoYjAGDxbIG7cysA0xxJXHDDd8tItuq5XOZY3kTAskhSU4JhHnXqSU0LFQnqSxASl1OZKelqEI_TQQPNWUljnjkgoaK8UlU5wFTEB7HfM9tNiHX-4jLIxHU6VNKlTZDyjYgzTkvoktILoyJiogOhnkJM1hyC0bxn0yA1C2A5WACIkbqOSlgM6mbQYZCMevtYsT3SX5ghwlICu4ZQb7iQI6n-hqVvxzbwd_q36CVtpX1aRx3aofolVmyYLdeU0RLY6HT_oILafP47vR8NjN0w_mjueb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Term+Hager%E2%80%93Zhang+Projection+Method+for+Monotone+Nonlinear+Equations&rft.jtitle=Vietnam+journal+of+mathematics&rft.au=Halilu%2C+Abubakar+Sani&rft.au=Majumder%2C+Arunava&rft.au=Waziri%2C+Mohammed+Yusuf&rft.au=Ahmed%2C+Kabiru&rft.date=2025-01-01&rft.issn=2305-221X&rft.eissn=2305-2228&rft.volume=53&rft.issue=1&rft.spage=109&rft.epage=130&rft_id=info:doi/10.1007%2Fs10013-023-00639-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10013_023_00639_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-221X&client=summon