FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection

With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 9; číslo 9; s. 1356
Hlavní autoři: Chen, Suting, Shao, Dongwei, Shu, Xiao, Zhang, Chuang, Wang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2020
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector.
AbstractList With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector.
Author Zhang, Chuang
Wang, Jun
Shu, Xiao
Chen, Suting
Shao, Dongwei
Author_xml – sequence: 1
  givenname: Suting
  surname: Chen
  fullname: Chen, Suting
– sequence: 2
  givenname: Dongwei
  surname: Shao
  fullname: Shao, Dongwei
– sequence: 3
  givenname: Xiao
  surname: Shu
  fullname: Shu, Xiao
– sequence: 4
  givenname: Chuang
  surname: Zhang
  fullname: Zhang, Chuang
– sequence: 5
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BookMark eNp9kEtLAzEUhYNUsNb-AVcB16N5dCYTd2W0KhQLVnE5ZDJ3StrppCZppf_elLoQBe_m3MV37uOco15nO0DokpJrziW5gRZ0cLYz2ksiKU-zE9RnRMhEMsl6P_ozNPR-SWJFLOekj-pJUSTPEG7xGE-2bZsUdgdOLQAXtm1VZZ0KZgc4Ip_WrXBjHX4HtWr3eL7dgNsZDzV-gbUNgOfQedMt8KxaxovwHYQoxnYX6LRRrYfhtw7Q2-T-tXhMprOHp2I8TTSnMiQ5qygVIHiayopwTbMqk4wyraGhnNcgCW-IaLK0Emmma5Zz1og6lyNWV1TXfICujnM3zn5swYdyabeuiytLNuKCCR4lUuxIaWe9d9CUG2fWyu1LSspDoOXfQKMp_2XSJqjDc8Ep0_5n_QKu_ID5
CitedBy_id crossref_primary_10_3390_electronics12132758
crossref_primary_10_3390_rs14102385
crossref_primary_10_3390_s21155002
crossref_primary_10_1007_s11042_023_16973_8
crossref_primary_10_1049_ipr2_12264
crossref_primary_10_3390_rs14215362
crossref_primary_10_1007_s11042_023_17237_1
crossref_primary_10_1109_MGRS_2023_3312347
Cites_doi 10.1109/CVPR.2017.326
10.1109/TGRS.2016.2601622
10.1080/2150704X.2017.1415473
10.1109/TGRS.2017.2702596
10.1007/s11390-019-1975-z
10.3390/rs9111198
10.1109/ICCV.2015.169
10.3390/rs11030286
10.1109/CVPR.2018.00525
10.1109/LGRS.2019.2930462
10.1109/ACCESS.2019.2928522
10.1109/WACV.2018.00163
10.3390/rs71114680
10.1109/LGRS.2011.2161569
10.1109/CVPR.2016.91
10.1007/978-94-017-2035-9
10.1158/0008-5472.CAN-18-2791
10.1007/978-3-030-01264-9_45
10.1109/TPAMI.2016.2577031
10.1016/j.isprsjprs.2013.12.011
10.3390/s19153336
10.1016/j.rser.2015.03.099
10.3390/s17020336
10.1109/CVPR.2016.311
10.1109/SiPS.2012.57
10.1109/TPAMI.2019.2898858
10.1109/IGARSS.2018.8517436
10.1109/ICCV.1999.790410
10.1117/12.2539663
10.3390/rs11091062
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00230
10.1016/j.procs.2016.07.144
10.1109/CVPR.2018.00103
10.1109/CVPR.2017.690
10.1016/j.isprsjprs.2018.05.005
10.1007/s11045-015-0370-3
10.1016/j.isprsjprs.2014.10.002
10.3390/rs10010124
10.1109/CVPR.2014.81
10.1038/srep38099
10.24963/ijcai.2018/135
10.3390/rs12010143
10.1007/s11263-013-0620-5
10.1002/jbio.201960097
10.34133/2021/9805389
10.1109/TPAMI.2018.2876304
10.1016/j.isprsjprs.2019.11.023
10.1109/LGRS.2019.2909541
10.1109/TGRS.2016.2569141
10.1109/TGRS.2019.2900302
10.1109/LGRS.2018.2882778
10.1109/CVPR.2017.75
10.1609/aaai.v34i07.6999
10.1109/ICCV.2017.324
10.1109/TGRS.2014.2374218
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics9091356
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics9091356
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-82b117e73559b03c16b69212ccef133de903f07f65b756cd2832f7d8942db1cd3
IEDL.DBID P5Z
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579993400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 07:06:52 EST 2025
Sat Nov 29 07:12:05 EST 2025
Tue Nov 18 21:49:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-82b117e73559b03c16b69212ccef133de903f07f65b756cd2832f7d8942db1cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2437273243?pq-origsite=%requestingapplication%
PQID 2437273243
PQPubID 2032404
ParticipantIDs proquest_journals_2437273243
crossref_primary_10_3390_electronics9091356
crossref_citationtrail_10_3390_electronics9091356
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_58
ref_13
ref_57
Tang (ref_42) 2018; 42
ref_56
ref_11
Qiu (ref_38) 2018; 9
ref_55
ref_10
Liu (ref_29) 2018; 16
ref_54
ref_53
ref_52
ref_19
Li (ref_21) 2020; 159
ref_15
ref_59
Liu (ref_5) 2016; 91
Shtenberg (ref_7) 2016; 6
Gherboudj (ref_3) 2016; 55
Ying (ref_34) 2019; 7
Chen (ref_35) 2019; 17
ref_60
Deng (ref_28) 2018; 47
ref_25
Chintalacheruvu (ref_6) 2012; 2
ref_24
ref_68
ref_23
Ren (ref_18) 2017; 39
ref_22
Han (ref_49) 2014; 53
ref_63
ref_62
Hu (ref_16) 2015; 7
Xu (ref_12) 2009; 7
ref_27
Uijlings (ref_61) 2013; 104
ref_26
Zhou (ref_50) 2015; 27
Turani (ref_9) 2019; 79
Cheng (ref_66) 2014; 98
Wang (ref_48) 2019; 34
ref_36
ref_33
ref_31
Ji (ref_32) 2019; 16
Han (ref_65) 2014; 89
Sun (ref_64) 2012; 9
ref_39
ref_37
Zhang (ref_20) 2019; 57
Ding (ref_30) 2018; 141
Peicheng (ref_67) 2016; 54
Jalilian (ref_8) 2020; 13
ref_47
ref_46
ref_45
Zhang (ref_51) 2016; 54
ref_44
Lu (ref_17) 2017; 55
ref_41
ref_40
ref_1
Wan (ref_43) 2019; 41
ref_2
ref_4
References_xml – ident: ref_41
  doi: 10.1109/CVPR.2017.326
– volume: 54
  start-page: 7405
  year: 2016
  ident: ref_67
  article-title: Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2601622
– volume: 9
  start-page: 237
  year: 2018
  ident: ref_38
  article-title: Accurate non-maximum suppression for object detection in high-resolution remote sensing images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1415473
– volume: 55
  start-page: 5148
  year: 2017
  ident: ref_17
  article-title: Remote sensing scene classification by unsupervised representation learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2702596
– volume: 34
  start-page: 1269
  year: 2019
  ident: ref_48
  article-title: Weakly-and Semi-Supervised Fast Region-Based CNN for Object Detection
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-019-1975-z
– ident: ref_55
  doi: 10.3390/rs9111198
– ident: ref_23
  doi: 10.1109/ICCV.2015.169
– ident: ref_36
  doi: 10.3390/rs11030286
– ident: ref_44
  doi: 10.1109/CVPR.2018.00525
– volume: 17
  start-page: 681
  year: 2019
  ident: ref_35
  article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2930462
– ident: ref_1
– volume: 7
  start-page: 94508
  year: 2019
  ident: ref_34
  article-title: Multi-attention object detection model in remote sensing images based on multi-scale
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928522
– ident: ref_59
  doi: 10.1109/WACV.2018.00163
– ident: ref_58
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_16
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 9
  start-page: 109
  year: 2012
  ident: ref_64
  article-title: Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/LGRS.2011.2161569
– ident: ref_24
  doi: 10.1109/CVPR.2016.91
– ident: ref_4
  doi: 10.1007/978-94-017-2035-9
– volume: 79
  start-page: 2021
  year: 2019
  ident: ref_9
  article-title: Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-2791
– ident: ref_26
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref_52
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_18
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 89
  start-page: 37
  year: 2014
  ident: ref_65
  article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.12.011
– ident: ref_57
  doi: 10.3390/s19153336
– volume: 55
  start-page: 1210
  year: 2016
  ident: ref_3
  article-title: Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.03.099
– ident: ref_13
– ident: ref_62
– volume: 2
  start-page: 305
  year: 2012
  ident: ref_6
  article-title: Video Based Vehicle Detection and its Application in Intelligent Transportation Systems
  publication-title: J. Transp. Technol.
– ident: ref_31
  doi: 10.3390/s17020336
– ident: ref_40
  doi: 10.1109/CVPR.2016.311
– ident: ref_11
  doi: 10.1109/SiPS.2012.57
– volume: 41
  start-page: 2395
  year: 2019
  ident: ref_43
  article-title: Min-Entropy Latent Model for Weakly Supervised Object Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2898858
– ident: ref_27
  doi: 10.1109/IGARSS.2018.8517436
– ident: ref_10
  doi: 10.1109/ICCV.1999.790410
– ident: ref_53
  doi: 10.1117/12.2539663
– ident: ref_39
  doi: 10.3390/rs11091062
– ident: ref_19
  doi: 10.1109/CVPR.2017.106
– ident: ref_45
  doi: 10.1109/CVPR.2019.00230
– volume: 91
  start-page: 566
  year: 2016
  ident: ref_5
  article-title: Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.144
– ident: ref_46
  doi: 10.1109/CVPR.2018.00103
– ident: ref_68
  doi: 10.1109/CVPR.2017.690
– volume: 141
  start-page: 208
  year: 2018
  ident: ref_30
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.005
– volume: 27
  start-page: 925
  year: 2015
  ident: ref_50
  article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping
  publication-title: Multidim. Syst. Sign. Process.
  doi: 10.1007/s11045-015-0370-3
– volume: 98
  start-page: 119
  year: 2014
  ident: ref_66
  article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.10.002
– ident: ref_56
  doi: 10.3390/rs10010124
– ident: ref_14
– ident: ref_22
  doi: 10.1109/CVPR.2014.81
– volume: 6
  start-page: 38099
  year: 2016
  ident: ref_7
  article-title: Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry
  publication-title: Sci. Rep.
  doi: 10.1038/srep38099
– volume: 47
  start-page: 1216
  year: 2018
  ident: ref_28
  article-title: Object Detection in Remote Sensing Imagery with Multi-scale Deformable Convolutional Networks
  publication-title: Acta Geod. Et Cartogr. Sin.
– ident: ref_47
  doi: 10.24963/ijcai.2018/135
– ident: ref_37
  doi: 10.3390/rs12010143
– volume: 7
  start-page: 366
  year: 2009
  ident: ref_12
  article-title: Object classification of aerial images with bag-of-visual words
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 104
  start-page: 154
  year: 2013
  ident: ref_61
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– volume: 13
  start-page: e201960097
  year: 2020
  ident: ref_8
  article-title: Contrast-enhanced optical coherence tomography for melanoma detection: An in vitro study
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201960097
– ident: ref_33
  doi: 10.34133/2021/9805389
– volume: 42
  start-page: 176
  year: 2018
  ident: ref_42
  article-title: PCL: Proposal Cluster Learning for Weakly Supervised Object Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2876304
– ident: ref_54
– volume: 159
  start-page: 296
  year: 2020
  ident: ref_21
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: ref_2
– volume: 16
  start-page: 1761
  year: 2019
  ident: ref_32
  article-title: Improved faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2909541
– ident: ref_15
– volume: 54
  start-page: 5553
  year: 2016
  ident: ref_51
  article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2569141
– volume: 57
  start-page: 5535
  year: 2019
  ident: ref_20
  article-title: Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2900302
– volume: 16
  start-page: 791
  year: 2018
  ident: ref_29
  article-title: Detection of multiclass objects in optical remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2882778
– ident: ref_60
  doi: 10.1109/CVPR.2017.75
– ident: ref_63
  doi: 10.1609/aaai.v34i07.6999
– ident: ref_25
  doi: 10.1109/ICCV.2017.324
– volume: 53
  start-page: 3325
  year: 2014
  ident: ref_49
  article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2374218
SSID ssj0000913830
Score 2.2277007
Snippet With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1356
SubjectTerms Ablation
Accuracy
Algorithms
Boxes
Classification
Collaboration
Datasets
Detection
Feature extraction
Ground truth
High resolution
Image resolution
Interdisciplinary subjects
Labels
Machine learning
Neural networks
Object recognition
Remote sensing
Scale invariance
Semantics
Sensors
Training
Title FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection
URI https://www.proquest.com/docview/2437273243
Volume 9
WOSCitedRecordID wos000579993400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS9xAFH_40UN70Gor2uoyh95kMF-bZHoRjbtUqDFoS20vYWfmjYgStyYKXvzb-1426yqCl54CmSSEvO83L78fwJcoQO4sKElll5XRyFNSBbGRkR7FaAMXad2CuH5P8jw9O1NF13Cru7HKqU9sHbW9Ntwj32HgPAq1dNgd_5XMGsW7qx2FxjwsMkoCUzcU_T-PPRbGvExDb_KvTEjV_c6MW6ZWvMq81U_j0XN33MaY4fL_vt17WOqyS7E3UYcVmMNqFd49wRz8AHaYZTLH5qvYE1x_yoyHOMmriGymEnco8sl8uKCkVvzC0eXVvTi9HbNnqdGKEyQRozjl8ffqXBxrbueIA2zaya7qI_wcDn5k32RHtSAN2WAj00D7foIJZR9Ke6HxYx0rimrGoKMq1qLyQuclLu7rpB8bywRHLrGpIglr39hwDRaq6wrXQVAG6DAYBSolU_f6qVZxhPRop51xlP1sgD_94KXpcMiZDuOqpHqEhVS-FNIGbD_eM56gcLx69eZUSGVnkXU5k9Cn15c_w9uAa-p2jmwTFpqbW9yCN-auuahverC4P8iLkx7MHz0Meq260bni8Kj4_Q_3a-Ex
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4NmKQgEf4ISs5rVJjISqKmXVVbdhRYsop7C2xwhRpUuTFvVP8Rs7k0e3CKm3Hjjl4NiS40_fPDKeD-B1FCBnFpSksMvKaOYpqYLYyEjPYrSBi7RumrhOkjxPDw_VdAn-9HdhuKyy58SGqO2x4Rz5BjfOI1NLj835L8mqUfx3tZfQaGGxi-e_KWSr3o-36XzfBMHow0G2IztVAWkIbrVMA-37CSZkaJX2QuPHOlZE4Mago4DNovJC5yUuHupkGBvLWj4usamizWjf2JDWvQXLEYN9AMvT8d7062VWh7tspqHX3s4JQ-VtLNRsKsWjrJR91QL-bQAaqzZ68L99j4dwv_OfxVYL-EewhOVjuHelq-ITsKMskznW78SW4AhbZlymSrwpsgXoz1DkbQW8ILddfMHZz6NzsX86Z-6s0IpPSCBGsc8F_uV38VFzwkpsY93UrpUr8PlGtrkKg_K4xKcgyMd1GMwClRKZecNUqzhCWtppZxz5d2vg9wdcmK7TOgt-HBUUcTEoin9BsQZvL-fM2z4j17693oOi6DinKhaIeHb98Cu4s3OwNykm43z3OdwNOIPQVM2tw6A-OcUXcNuc1T-qk5cdvAV8u2kEXQDYHzm2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMKBXyAE7I2cbJJjIRQlWVF1SqsKIiKS7q2x6hqlS5NWtS_xq9jJo9uEVJvPXDKwYmlxJ_nlc_zAbyKFXJlQUtKu5yM54GWWiVWxmaeoFM-NqZt4rqdFkW2u6tnK_B7OAvDtMrBJraG2h1ZrpGPuHEeuVq6jHxPi5hNpu8XPyUrSPGf1kFOo4PIFp79ovStfrc5obV-rdT0w5f8o-wVBqQl6DUyUyYMU0zJ6WoTRDZMTKLJmFuLnpI3hzqIfJD6ZGzScWId6_r41GWaXsyE1kU07zW4nlKOyXTC2fj7eX2H-21mUdCd04kiHYyWuja15lHWzL7oC_92Ba1_m979n7_MPbjTR9Vio9sG92EFqwdw-0KvxYfgpnkuC2zeig3BebfMmbxK1lTky61wiqLoePGCgnnxDecHh2di52TBFrVGJz4jQRvFDtP-qx_ik-Eylphg0zLaqkfw9Upe8zGsVkcVPgFBka9HNVc6IxMXjDOjkxhpam-89RT1rUE4LHZp-_7rLANyWFIexgAp_wXIGrw5f2bRdR-59O71ASBlb4nqcomOp5cPv4SbBJtye7PYega3FJcVWirdOqw2xyf4HG7Y02a_Pn7R4lzA3lXD5w_YBUEZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCC-Net%3A+A+Full-Coverage+Collaborative+Network+for+Weakly+Supervised+Remote+Sensing+Object+Detection&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Suting&rft.au=Shao%2C+Dongwei&rft.au=Shu%2C+Xiao&rft.au=Zhang%2C+Chuang&rft.date=2020-09-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=9&rft.spage=1356&rft_id=info:doi/10.3390%2Felectronics9091356&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9091356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon