FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection
With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a s...
Gespeichert in:
| Veröffentlicht in: | Electronics (Basel) Jg. 9; H. 9; S. 1356 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.09.2020
|
| Schlagworte: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector. |
|---|---|
| AbstractList | With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector. |
| Author | Zhang, Chuang Wang, Jun Shu, Xiao Chen, Suting Shao, Dongwei |
| Author_xml | – sequence: 1 givenname: Suting surname: Chen fullname: Chen, Suting – sequence: 2 givenname: Dongwei surname: Shao fullname: Shao, Dongwei – sequence: 3 givenname: Xiao surname: Shu fullname: Shu, Xiao – sequence: 4 givenname: Chuang surname: Zhang fullname: Zhang, Chuang – sequence: 5 givenname: Jun surname: Wang fullname: Wang, Jun |
| BookMark | eNp9kEtLAzEUhYNUsNb-AVcB16N5dCYTd2W0KhQLVnE5ZDJ3StrppCZppf_elLoQBe_m3MV37uOco15nO0DokpJrziW5gRZ0cLYz2ksiKU-zE9RnRMhEMsl6P_ozNPR-SWJFLOekj-pJUSTPEG7xGE-2bZsUdgdOLQAXtm1VZZ0KZgc4Ip_WrXBjHX4HtWr3eL7dgNsZDzV-gbUNgOfQedMt8KxaxovwHYQoxnYX6LRRrYfhtw7Q2-T-tXhMprOHp2I8TTSnMiQ5qygVIHiayopwTbMqk4wyraGhnNcgCW-IaLK0Emmma5Zz1og6lyNWV1TXfICujnM3zn5swYdyabeuiytLNuKCCR4lUuxIaWe9d9CUG2fWyu1LSspDoOXfQKMp_2XSJqjDc8Ep0_5n_QKu_ID5 |
| CitedBy_id | crossref_primary_10_3390_electronics12132758 crossref_primary_10_3390_rs14102385 crossref_primary_10_3390_s21155002 crossref_primary_10_1007_s11042_023_16973_8 crossref_primary_10_1049_ipr2_12264 crossref_primary_10_3390_rs14215362 crossref_primary_10_1007_s11042_023_17237_1 crossref_primary_10_1109_MGRS_2023_3312347 |
| Cites_doi | 10.1109/CVPR.2017.326 10.1109/TGRS.2016.2601622 10.1080/2150704X.2017.1415473 10.1109/TGRS.2017.2702596 10.1007/s11390-019-1975-z 10.3390/rs9111198 10.1109/ICCV.2015.169 10.3390/rs11030286 10.1109/CVPR.2018.00525 10.1109/LGRS.2019.2930462 10.1109/ACCESS.2019.2928522 10.1109/WACV.2018.00163 10.3390/rs71114680 10.1109/LGRS.2011.2161569 10.1109/CVPR.2016.91 10.1007/978-94-017-2035-9 10.1158/0008-5472.CAN-18-2791 10.1007/978-3-030-01264-9_45 10.1109/TPAMI.2016.2577031 10.1016/j.isprsjprs.2013.12.011 10.3390/s19153336 10.1016/j.rser.2015.03.099 10.3390/s17020336 10.1109/CVPR.2016.311 10.1109/SiPS.2012.57 10.1109/TPAMI.2019.2898858 10.1109/IGARSS.2018.8517436 10.1109/ICCV.1999.790410 10.1117/12.2539663 10.3390/rs11091062 10.1109/CVPR.2017.106 10.1109/CVPR.2019.00230 10.1016/j.procs.2016.07.144 10.1109/CVPR.2018.00103 10.1109/CVPR.2017.690 10.1016/j.isprsjprs.2018.05.005 10.1007/s11045-015-0370-3 10.1016/j.isprsjprs.2014.10.002 10.3390/rs10010124 10.1109/CVPR.2014.81 10.1038/srep38099 10.24963/ijcai.2018/135 10.3390/rs12010143 10.1007/s11263-013-0620-5 10.1002/jbio.201960097 10.34133/2021/9805389 10.1109/TPAMI.2018.2876304 10.1016/j.isprsjprs.2019.11.023 10.1109/LGRS.2019.2909541 10.1109/TGRS.2016.2569141 10.1109/TGRS.2019.2900302 10.1109/LGRS.2018.2882778 10.1109/CVPR.2017.75 10.1609/aaai.v34i07.6999 10.1109/ICCV.2017.324 10.1109/TGRS.2014.2374218 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics9091356 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics9091356 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-82b117e73559b03c16b69212ccef133de903f07f65b756cd2832f7d8942db1cd3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579993400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 07:06:52 EST 2025 Sat Nov 29 07:12:05 EST 2025 Tue Nov 18 21:49:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-82b117e73559b03c16b69212ccef133de903f07f65b756cd2832f7d8942db1cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2437273243?pq-origsite=%requestingapplication% |
| PQID | 2437273243 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2437273243 crossref_primary_10_3390_electronics9091356 crossref_citationtrail_10_3390_electronics9091356 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_14 ref_58 ref_13 ref_57 Tang (ref_42) 2018; 42 ref_56 ref_11 Qiu (ref_38) 2018; 9 ref_55 ref_10 Liu (ref_29) 2018; 16 ref_54 ref_53 ref_52 ref_19 Li (ref_21) 2020; 159 ref_15 ref_59 Liu (ref_5) 2016; 91 Shtenberg (ref_7) 2016; 6 Gherboudj (ref_3) 2016; 55 Ying (ref_34) 2019; 7 Chen (ref_35) 2019; 17 ref_60 Deng (ref_28) 2018; 47 ref_25 Chintalacheruvu (ref_6) 2012; 2 ref_24 ref_68 ref_23 Ren (ref_18) 2017; 39 ref_22 Han (ref_49) 2014; 53 ref_63 ref_62 Hu (ref_16) 2015; 7 Xu (ref_12) 2009; 7 ref_27 Uijlings (ref_61) 2013; 104 ref_26 Zhou (ref_50) 2015; 27 Turani (ref_9) 2019; 79 Cheng (ref_66) 2014; 98 Wang (ref_48) 2019; 34 ref_36 ref_33 ref_31 Ji (ref_32) 2019; 16 Han (ref_65) 2014; 89 Sun (ref_64) 2012; 9 ref_39 ref_37 Zhang (ref_20) 2019; 57 Ding (ref_30) 2018; 141 Peicheng (ref_67) 2016; 54 Jalilian (ref_8) 2020; 13 ref_47 ref_46 ref_45 Zhang (ref_51) 2016; 54 ref_44 Lu (ref_17) 2017; 55 ref_41 ref_40 ref_1 Wan (ref_43) 2019; 41 ref_2 ref_4 |
| References_xml | – ident: ref_41 doi: 10.1109/CVPR.2017.326 – volume: 54 start-page: 7405 year: 2016 ident: ref_67 article-title: Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2601622 – volume: 9 start-page: 237 year: 2018 ident: ref_38 article-title: Accurate non-maximum suppression for object detection in high-resolution remote sensing images publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1415473 – volume: 55 start-page: 5148 year: 2017 ident: ref_17 article-title: Remote sensing scene classification by unsupervised representation learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2702596 – volume: 34 start-page: 1269 year: 2019 ident: ref_48 article-title: Weakly-and Semi-Supervised Fast Region-Based CNN for Object Detection publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-019-1975-z – ident: ref_55 doi: 10.3390/rs9111198 – ident: ref_23 doi: 10.1109/ICCV.2015.169 – ident: ref_36 doi: 10.3390/rs11030286 – ident: ref_44 doi: 10.1109/CVPR.2018.00525 – volume: 17 start-page: 681 year: 2019 ident: ref_35 article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2930462 – ident: ref_1 – volume: 7 start-page: 94508 year: 2019 ident: ref_34 article-title: Multi-attention object detection model in remote sensing images based on multi-scale publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928522 – ident: ref_59 doi: 10.1109/WACV.2018.00163 – ident: ref_58 – volume: 7 start-page: 14680 year: 2015 ident: ref_16 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 9 start-page: 109 year: 2012 ident: ref_64 article-title: Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/LGRS.2011.2161569 – ident: ref_24 doi: 10.1109/CVPR.2016.91 – ident: ref_4 doi: 10.1007/978-94-017-2035-9 – volume: 79 start-page: 2021 year: 2019 ident: ref_9 article-title: Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2791 – ident: ref_26 doi: 10.1007/978-3-030-01264-9_45 – ident: ref_52 – volume: 39 start-page: 1137 year: 2017 ident: ref_18 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 89 start-page: 37 year: 2014 ident: ref_65 article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.12.011 – ident: ref_57 doi: 10.3390/s19153336 – volume: 55 start-page: 1210 year: 2016 ident: ref_3 article-title: Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.03.099 – ident: ref_13 – ident: ref_62 – volume: 2 start-page: 305 year: 2012 ident: ref_6 article-title: Video Based Vehicle Detection and its Application in Intelligent Transportation Systems publication-title: J. Transp. Technol. – ident: ref_31 doi: 10.3390/s17020336 – ident: ref_40 doi: 10.1109/CVPR.2016.311 – ident: ref_11 doi: 10.1109/SiPS.2012.57 – volume: 41 start-page: 2395 year: 2019 ident: ref_43 article-title: Min-Entropy Latent Model for Weakly Supervised Object Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2898858 – ident: ref_27 doi: 10.1109/IGARSS.2018.8517436 – ident: ref_10 doi: 10.1109/ICCV.1999.790410 – ident: ref_53 doi: 10.1117/12.2539663 – ident: ref_39 doi: 10.3390/rs11091062 – ident: ref_19 doi: 10.1109/CVPR.2017.106 – ident: ref_45 doi: 10.1109/CVPR.2019.00230 – volume: 91 start-page: 566 year: 2016 ident: ref_5 article-title: Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.144 – ident: ref_46 doi: 10.1109/CVPR.2018.00103 – ident: ref_68 doi: 10.1109/CVPR.2017.690 – volume: 141 start-page: 208 year: 2018 ident: ref_30 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.005 – volume: 27 start-page: 925 year: 2015 ident: ref_50 article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping publication-title: Multidim. Syst. Sign. Process. doi: 10.1007/s11045-015-0370-3 – volume: 98 start-page: 119 year: 2014 ident: ref_66 article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.10.002 – ident: ref_56 doi: 10.3390/rs10010124 – ident: ref_14 – ident: ref_22 doi: 10.1109/CVPR.2014.81 – volume: 6 start-page: 38099 year: 2016 ident: ref_7 article-title: Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry publication-title: Sci. Rep. doi: 10.1038/srep38099 – volume: 47 start-page: 1216 year: 2018 ident: ref_28 article-title: Object Detection in Remote Sensing Imagery with Multi-scale Deformable Convolutional Networks publication-title: Acta Geod. Et Cartogr. Sin. – ident: ref_47 doi: 10.24963/ijcai.2018/135 – ident: ref_37 doi: 10.3390/rs12010143 – volume: 7 start-page: 366 year: 2009 ident: ref_12 article-title: Object classification of aerial images with bag-of-visual words publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 104 start-page: 154 year: 2013 ident: ref_61 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – volume: 13 start-page: e201960097 year: 2020 ident: ref_8 article-title: Contrast-enhanced optical coherence tomography for melanoma detection: An in vitro study publication-title: J. Biophotonics doi: 10.1002/jbio.201960097 – ident: ref_33 doi: 10.34133/2021/9805389 – volume: 42 start-page: 176 year: 2018 ident: ref_42 article-title: PCL: Proposal Cluster Learning for Weakly Supervised Object Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2876304 – ident: ref_54 – volume: 159 start-page: 296 year: 2020 ident: ref_21 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.023 – ident: ref_2 – volume: 16 start-page: 1761 year: 2019 ident: ref_32 article-title: Improved faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2909541 – ident: ref_15 – volume: 54 start-page: 5553 year: 2016 ident: ref_51 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2569141 – volume: 57 start-page: 5535 year: 2019 ident: ref_20 article-title: Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2900302 – volume: 16 start-page: 791 year: 2018 ident: ref_29 article-title: Detection of multiclass objects in optical remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2882778 – ident: ref_60 doi: 10.1109/CVPR.2017.75 – ident: ref_63 doi: 10.1609/aaai.v34i07.6999 – ident: ref_25 doi: 10.1109/ICCV.2017.324 – volume: 53 start-page: 3325 year: 2014 ident: ref_49 article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2374218 |
| SSID | ssj0000913830 |
| Score | 2.2275996 |
| Snippet | With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1356 |
| SubjectTerms | Ablation Accuracy Algorithms Boxes Classification Collaboration Datasets Detection Feature extraction Ground truth High resolution Image resolution Interdisciplinary subjects Labels Machine learning Neural networks Object recognition Remote sensing Scale invariance Semantics Sensors Training |
| Title | FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection |
| URI | https://www.proquest.com/docview/2437273243 |
| Volume | 9 |
| WOSCitedRecordID | wos000579993400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC3cDnpwF9ehD96kMXunvYjGGRQ0BhdcLsFeIuKQGU1G8OK325XJLCJ48RRIJxDyqqu6qqvfA9gVrspCiSd_Q0dQz7E8Kgz01NdM-g5ntlIVu_45i-Pw_p4ndcGtqNsqBz6xctSqI7FGvo_EeSbUmsth942iahTurtYSGpMwjSwJKN2Q-I_DGgtyXoau1T8r45rsfn-kLVNwHEXd6vF49NMdVzGmtfDfr1uE-Xp1SY765rAEEzpfhrkxzsEVUK0oorEuD8gRwfyTRtjEabwKiUYm8aFJ3O8PJ2ZRS-7002v7k1z3uuhZCq3IlTYQa3KN7e_5M7kUWM4hJ7qsOrvyVbhtNW-iU1pLLVBp5mBJDVC2zTQzqw8uLFfagQi4iWpS6sxksUpzy80slgW-YH4gFQocZUyF3HOUsKVy12Aq7-R6HQiyuXi2sQ1jBZ5wxFNgsYAjZ4z2eeZnG2APfngqax5ylMNopyYfQZDS3yBtwN7wnW6fhePPp7cHIKX1jCzSEUKbfw9vwayDOXXVR7YNU-V7T-_AjPwoX4r3BkwfN-PkqgGTF1_NRmVu5l5ydpE8fAONHeD4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1LT9xADMctulQqPQB9qRQoc6CnakTek0FCFQqsWLGkq0JVekqZRxAChS0JIL4Un7F2HiyoEjcOnHKYJEoyP9ljx_M3wKryTR5r2vkbe4oHnhNwhVPPQyt06EnhGlOr6w9FmsaHh3I0BbfdXhgqq-xsYm2ozbmmHPkaCeehq8XDt_FfTl2j6O9q10KjwWLX3lxjyFZuDLZwfr94Xn_7INnhbVcBrhG3iuMzua6wAh2tVI6v3UhFEg241jbHgM1Y6fi5I_IoVCKMtKFePrkwsQw8o1xtfLzvC5gOCPYeTI8Ge6Pfd1kdUtmMfafZneP70lmbdLMpJY1Sp-z7HvChA6i9Wn_uuX2PeZht189sswH-DUzZ4i28vqeq-A5MP0l4aqt1tskowuYJlami3WTJBPory9KmAp7hsp39skenZzds_3JMtrO0hv2wCLFl-1TgXxyz74oSVmzLVnXtWvEefj7Ja36AXnFe2I_ASK8mcJF-5DxQnjqKHBFJUsWxoczDfAHcboIz3SqtU8OPswwjLoIi-x-KBfh6d8240Rl59OylDoqstTllNiHi0-PDK_Bq52BvmA0H6e4izHiUQair5pagV11c2mV4qa-qk_Lic4s3gz9PTdA_OOQ5fQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS91AEB6sllIf1FrFa92H9kmWk_tmBRHJ8VBR0kOtKH2J7iWlVOLRRMW_5q9zJhePpeCbD33KwyYhyX47szP55huAz8o3eayp8jf2FA88J-AKp56HVujQk8I1plbXPxRpGp-eyuEEPHS1MESr7GxibajNpaYceY-E89DV4qGXt7SIYX-wM7ri1EGK_rR27TQaiBzY-zsM38rt_T7O9RfPG-z9SL7ytsMA1wi9iuPzua6wAp2uVI6v3UhFEo251jbH4M1Y6fi5I_IoVCKMtKG-PrkwsQw8o1xtfLzvG5gSGGMSnXAY_nzK75DeZuw7TZ2O70unN-5rU0oapZ7Zz33h366g9m-D2f_5y8zBTLurZrvNMvgAE7aYh-lnWosfwQyShKe22mK7jOJunhB5Fa0pS8ZL4daytOHFM9zMsxN7_ufinh3djMiiltaw7xahbdkR0f6LX-ybojQW69uqZrQVC3D8Kq-5CJPFZWGXgJGKTeDimkD0B8pT55EjIklaOTaUeZgvg9tNdqZb_XVqA3KRYRxGAMn-BcgybD5dM2rUR148e60DSNZaojIbo2Pl5eENeIewyQ7304NVeO9RWqGm0q3BZHV9Y9fhrb6tfpfXn2qcMzh7bfg8AjZHQOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCC-Net%3A+A+Full-Coverage+Collaborative+Network+for+Weakly+Supervised+Remote+Sensing+Object+Detection&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Suting&rft.au=Shao%2C+Dongwei&rft.au=Xiao+Shu&rft.au=Zhang%2C+Chuang&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=9&rft.issue=9&rft.spage=1356&rft_id=info:doi/10.3390%2Felectronics9091356&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |