View-collaborative fuzzy soft subspace clustering for automatic medical image segmentation
With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feat...
Uložené v:
| Vydané v: | Multimedia tools and applications Ročník 79; číslo 13-14; s. 9523 - 9542 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feature map extracted from an MR image describes the patient’s condition from one perspective. By effectively using all feature maps from various MR images, it is possible to completely describe the intrinsic characteristics of the patient’s condition to facilitate a diagnosis. Facing such a scenario, classic machine learning algorithms typically stack these feature maps for unified processing and do not explore the importance of each feature within a single feature map or the relationships among feature maps. To address these challenges, both multiview and subspace learning scenarios are considered in this study, and the
multiview collaboration-based fuzzy soft subspace clustering
(MVC-FSSC) algorithm is proposed. The MVC-FSSC algorithm not only strives to exploit the agreement of decisions across all views via collaborative learning but also strives to utilize the soft subspace-based weighting mechanism to automatically evaluate the contribution of each dimensional feature to each estimated cluster within a single view. Our experimental results indicate that the proposed MVC-FSSC algorithm can effectively explore the collaborative relations among all views and the importance of features in their respective views. Additionally, our MVC-FSSC method has substantial advantages over traditional clustering algorithms in MR image segmentation. Applying the MVC-FSSC algorithm to five patients’ MR images, the average mean absolute prediction deviation (MAPD) is 98.62 ± 8.34, which is significantly better than the score of 131.90 ± 16.03 that was obtained using the collaborative fuzzy k-means (CO-FKM) algorithm and the score of 128.87 ± 11.32 that was obtained using the quadratic weights and Gini-Simpson diversity-based fuzzy clustering (QWGSD-FC) algorithm. |
|---|---|
| AbstractList | With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feature map extracted from an MR image describes the patient’s condition from one perspective. By effectively using all feature maps from various MR images, it is possible to completely describe the intrinsic characteristics of the patient’s condition to facilitate a diagnosis. Facing such a scenario, classic machine learning algorithms typically stack these feature maps for unified processing and do not explore the importance of each feature within a single feature map or the relationships among feature maps. To address these challenges, both multiview and subspace learning scenarios are considered in this study, and the multiview collaboration-based fuzzy soft subspace clustering (MVC-FSSC) algorithm is proposed. The MVC-FSSC algorithm not only strives to exploit the agreement of decisions across all views via collaborative learning but also strives to utilize the soft subspace-based weighting mechanism to automatically evaluate the contribution of each dimensional feature to each estimated cluster within a single view. Our experimental results indicate that the proposed MVC-FSSC algorithm can effectively explore the collaborative relations among all views and the importance of features in their respective views. Additionally, our MVC-FSSC method has substantial advantages over traditional clustering algorithms in MR image segmentation. Applying the MVC-FSSC algorithm to five patients’ MR images, the average mean absolute prediction deviation (MAPD) is 98.62 ± 8.34, which is significantly better than the score of 131.90 ± 16.03 that was obtained using the collaborative fuzzy k-means (CO-FKM) algorithm and the score of 128.87 ± 11.32 that was obtained using the quadratic weights and Gini-Simpson diversity-based fuzzy clustering (QWGSD-FC) algorithm. With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feature map extracted from an MR image describes the patient’s condition from one perspective. By effectively using all feature maps from various MR images, it is possible to completely describe the intrinsic characteristics of the patient’s condition to facilitate a diagnosis. Facing such a scenario, classic machine learning algorithms typically stack these feature maps for unified processing and do not explore the importance of each feature within a single feature map or the relationships among feature maps. To address these challenges, both multiview and subspace learning scenarios are considered in this study, and the multiview collaboration-based fuzzy soft subspace clustering (MVC-FSSC) algorithm is proposed. The MVC-FSSC algorithm not only strives to exploit the agreement of decisions across all views via collaborative learning but also strives to utilize the soft subspace-based weighting mechanism to automatically evaluate the contribution of each dimensional feature to each estimated cluster within a single view. Our experimental results indicate that the proposed MVC-FSSC algorithm can effectively explore the collaborative relations among all views and the importance of features in their respective views. Additionally, our MVC-FSSC method has substantial advantages over traditional clustering algorithms in MR image segmentation. Applying the MVC-FSSC algorithm to five patients’ MR images, the average mean absolute prediction deviation (MAPD) is 98.62 ± 8.34, which is significantly better than the score of 131.90 ± 16.03 that was obtained using the collaborative fuzzy k-means (CO-FKM) algorithm and the score of 128.87 ± 11.32 that was obtained using the quadratic weights and Gini-Simpson diversity-based fuzzy clustering (QWGSD-FC) algorithm. |
| Author | Xu, Ke Zhou, Leyuan Xia, Kaijian Zhao, Kaifa Chen, Yangyang Qian, Pengjiang Jiang, Yizhang |
| Author_xml | – sequence: 1 givenname: Kaifa surname: Zhao fullname: Zhao, Kaifa organization: School of Digital Media, Jiangnan University – sequence: 2 givenname: Yizhang surname: Jiang fullname: Jiang, Yizhang organization: School of Digital Media, Jiangnan University – sequence: 3 givenname: Kaijian surname: Xia fullname: Xia, Kaijian organization: Changshu No.1 People’s Hospital – sequence: 4 givenname: Leyuan surname: Zhou fullname: Zhou, Leyuan organization: Affiliated Hospital, Jiangnan University – sequence: 5 givenname: Yangyang surname: Chen fullname: Chen, Yangyang organization: School of Digital Media, Jiangnan University – sequence: 6 givenname: Ke surname: Xu fullname: Xu, Ke organization: School of Digital Media, Jiangnan University – sequence: 7 givenname: Pengjiang surname: Qian fullname: Qian, Pengjiang email: qianpjiang@jiangnan.edu.cn organization: School of Digital Media, Jiangnan University |
| BookMark | eNp9kE9LwzAYh4NMcJt-AU8Bz9E3SdO0Rxn-g4EX9eAlpOnb0dE1M2mV7dPbWUHwsNMbeH9P8sszI5PWt0jIJYdrDqBvIueQCAY8Z6BznTB9QqZcacm0FnwynGUGTCvgZ2QW4xqAp0okU_L-VuMXc75pbOGD7epPpFW_3-9o9FVHY1_ErXVIXdPHDkPdrmjlA7V95zdD2tENlrWzDa03doU04mqDbTdsfHtOTivbRLz4nXPyen_3snhky-eHp8XtkjnJ845lIk-l4AWiBCkyBZkShVapRHRZmQsnXal0IXMoE6sUpuDSMq-AF1klrM3lnFyN926D_-gxdmbt-9AOTxohUglcp6CGlBhTLvgYA1ZmG4bOYWc4mINDMzo0g0Pz49DoAcr-Qa4eP9cFWzfHUTmicXuwhuGv1RHqGwmUiSs |
| CitedBy_id | crossref_primary_10_1016_j_ins_2025_122483 crossref_primary_10_1007_s11042_022_12133_6 crossref_primary_10_1007_s10462_022_10325_y crossref_primary_10_1007_s11042_024_19080_4 crossref_primary_10_1108_EC_08_2023_0403 crossref_primary_10_1166_jmihi_2021_3705 |
| Cites_doi | 10.1007/s10618-012-0258-x 10.1016/j.patcog.2009.09.010 10.1016/j.artmed.2018.07.001 10.1016/0098-3004(84)90020-7 10.3390/a8020234 10.1007/s10618-006-0060-8 10.1109/TCYB.2014.2334595 10.1016/j.patcog.2015.08.009 10.1142/S0219720012500035 10.1093/bioinformatics/btl185 10.1145/304181.304188 10.1007/s00500-015-1756-8 10.1145/1007730.1007731 10.1118/1.4926756 10.1002/jmri.24775 10.1016/S0893-6080(01)00108-3 10.1088/0031-9155/56/10/013 10.1007/BF00227423 10.1109/TSMCB.2011.2161607 10.1109/TMI.2018.2791721 10.3115/1273073.1273144 10.1109/ICDM.2012.43 10.1166/jmihi.2019.2749 10.1007/978-0-387-09823-4_14 10.1109/ICDM.2009.138 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-019-07974-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 9542 |
| ExternalDocumentID | 10_1007_s11042_019_07974_7 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61702225 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61772241 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-8296321bee3032850852b7563eec8d92c3cd57b390d4a55e60c6d9f01b8f2aa93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524950600066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Tue Nov 04 23:02:03 EST 2025 Sat Nov 29 03:26:11 EST 2025 Tue Nov 18 22:31:32 EST 2025 Fri Feb 21 02:37:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13-14 |
| Keywords | Collaborative learning Multiview clustering Soft subspace clustering Medical image segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-8296321bee3032850852b7563eec8d92c3cd57b390d4a55e60c6d9f01b8f2aa93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2263017605 |
| PQPubID | 54626 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2263017605 crossref_primary_10_1007_s11042_019_07974_7 crossref_citationtrail_10_1007_s11042_019_07974_7 springer_journals_10_1007_s11042_019_07974_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20200400 2020-4-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Li, Mukaidono (CR16) 1995; 4 Qian, Sun, Jiang (CR23) 2016; 50 Miyamoto, Umayahara (CR20) 1998; 2 Gao, Maggs (CR12) 2005; 1 CR19 Xiaopeng, Shihe, Hui, Wen (CR31) 2014; 6 Deng, Choi, Chung, Wang (CR9) 2010; 43 CR34 CR10 CR32 Zaidi, Ojha, Morich (CR33) 2011; 56 Parsons, Haque, Liu (CR22) 2004; 6 Chitsaz, Jahromi (CR6) 2016; 20 Liang, Qian, Su (CR17) 2018; 90 Hooijmans, Dzyubachyk, Nehrke (CR13) 2015; 42 Su, Hu, Stehning (CR27) 2015; 42 Aggarwal, Wolf, Yu (CR1) 1999; 28 Liu, Mohammed, Carter (CR18) 2006; 22 Wang, Liu, Xiong (CR30) 2015; 8 Domeniconi, Gunopulos, Ma (CR11) 2007; 14 Aggarwal, Yu (CR2) 2000; 29 CR7 Hotho, Maedche, Staab (CR14) 2002; 16 CR28 CR24 Sim, Gopalkrishnan, Zimek, Cong (CR26) 2013; 26 Wang, Li, Zuluaga (CR29) 2018; 37 Roth, Shen, Oda (CR25) 2018; 36 Batuwita, Palade (CR3) 2012; 10 Bezdek, Ehrlich, Full (CR4) 1984; 10 Jiang, Chung, Wang (CR15) 2015; 45 Cao, Wu (CR5) 2002; 15 Nie, Xu, Li (CR21) 2012; 42 De Soete (CR8) 1986; 20 KH Su (7974_CR27) 2015; 42 G Wang (7974_CR29) 2018; 37 S Miyamoto (7974_CR20) 1998; 2 P Qian (7974_CR23) 2016; 50 F Liang (7974_CR17) 2018; 90 R Batuwita (7974_CR3) 2012; 10 A Hotho (7974_CR14) 2002; 16 F Nie (7974_CR21) 2012; 42 L Parsons (7974_CR22) 2004; 6 Y Jiang (7974_CR15) 2015; 45 Z Deng (7974_CR9) 2010; 43 7974_CR24 E Chitsaz (7974_CR6) 2016; 20 MT Hooijmans (7974_CR13) 2015; 42 7974_CR28 J Liu (7974_CR18) 2006; 22 Y Gao (7974_CR12) 2005; 1 C Domeniconi (7974_CR11) 2007; 14 W Xiaopeng (7974_CR31) 2014; 6 G De Soete (7974_CR8) 1986; 20 CC Aggarwal (7974_CR2) 2000; 29 7974_CR10 7974_CR32 Y Cao (7974_CR5) 2002; 15 JC Bezdek (7974_CR4) 1984; 10 7974_CR7 RP Li (7974_CR16) 1995; 4 K Sim (7974_CR26) 2013; 26 H Zaidi (7974_CR33) 2011; 56 7974_CR34 7974_CR19 G Wang (7974_CR30) 2015; 8 CC Aggarwal (7974_CR1) 1999; 28 HR Roth (7974_CR25) 2018; 36 |
| References_xml | – volume: 26 start-page: 332 issue: 2 year: 2013 end-page: 397 ident: CR26 article-title: A survey on enhanced subspace clustering publication-title: Data Min Knowl Disc doi: 10.1007/s10618-012-0258-x – volume: 2 start-page: 1394 year: 1998 end-page: 1399 ident: CR20 article-title: Fuzzy clustering by quadratic regularization publication-title: IEEE World Congress Comput Intell – volume: 43 start-page: 767 issue: 3 year: 2010 end-page: 781 ident: CR9 article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.09.010 – ident: CR10 – volume: 90 start-page: 34 year: 2018 end-page: 41 ident: CR17 article-title: Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: an intelligent, multi-level fusion approach publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.07.001 – volume: 10 start-page: 191 issue: 2 year: 1984 end-page: 203 ident: CR4 article-title: FCM: the fuzzy c -means clustering algorithm publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 8 start-page: 234 issue: 2 year: 2015 end-page: 247 ident: CR30 article-title: An optimization clustering algorithm based on texture feature fusion for color image segmentation publication-title: Algorithms doi: 10.3390/a8020234 – volume: 16 start-page: 48 issue: 4 year: 2002 end-page: 54 ident: CR14 article-title: Ontology-based text document clustering publication-title: KI – volume: 4 start-page: 2227 year: 1995 end-page: 2232 ident: CR16 article-title: A maximum-entropy approach to fuzzy clustering publication-title: IEEE Int Conf Fuzzy Syst – volume: 14 start-page: 63 issue: 1 year: 2007 end-page: 97 ident: CR11 article-title: Locally adaptive metrics for clustering high dimensional data publication-title: Data Min Knowl Disc doi: 10.1007/s10618-006-0060-8 – volume: 45 start-page: 688 issue: 4 year: 2015 end-page: 701 ident: CR15 article-title: Collaborative fuzzy clustering from multiple weighted views publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2334595 – volume: 1 start-page: 468 year: 2005 end-page: 473 ident: CR12 article-title: Feature-level fusion in personal identification publication-title: Comput Soc Conf Comput Vis Pattern Recognit – volume: 50 start-page: 155 year: 2016 end-page: 177 ident: CR23 article-title: Cross-domain, soft-partition clustering with diversity measure and knowledge reference publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.08.009 – volume: 10 start-page: 1250003 issue: 04 year: 2012 ident: CR3 article-title: Adjusted geometric-mean: a novel performance measure for imbalanced bioinformatics datasets learning publication-title: J Bioinforma Comput Biol doi: 10.1142/S0219720012500035 – ident: CR19 – volume: 22 start-page: 1971 issue: 16 year: 2006 end-page: 1978 ident: CR18 article-title: Distance-based clustering of CGH data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl185 – volume: 29 start-page: 70 issue: 2 year: 2000 end-page: 81 ident: CR2 article-title: Finding generalized projected clusters in high dimensional spaces publication-title: ACM – ident: CR32 – ident: CR34 – volume: 28 start-page: 61 issue: 2 year: 1999 end-page: 72 ident: CR1 article-title: Fast algorithms for projected clustering publication-title: ACM SIGMOD Rec doi: 10.1145/304181.304188 – volume: 20 start-page: 4463 issue: 11 year: 2016 end-page: 4472 ident: CR6 article-title: A novel soft subspace clustering algorithm with noise detection for high dimensional datasets publication-title: Soft Comput doi: 10.1007/s00500-015-1756-8 – volume: 6 start-page: 90 issue: 1 year: 2004 end-page: 105 ident: CR22 article-title: Subspace clustering for high dimensional data: a review publication-title: ACM Sigkdd Explor Newsl doi: 10.1145/1007730.1007731 – volume: 42 start-page: 4974 issue: 8 year: 2015 end-page: 4986 ident: CR27 article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering publication-title: Med Phys doi: 10.1118/1.4926756 – ident: CR7 – volume: 42 start-page: 217 issue: 1 year: 2015 end-page: 223 ident: CR13 article-title: Fast multistation water/fat imaging at 3T using DREAM-based RF shimming publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24775 – volume: 6 start-page: 2008 issue: 7 year: 2014 end-page: 2014 ident: CR31 article-title: The design of medical image transfer function using multi-feature fusion and improved k-means clustering publication-title: J Chem Pharm Res – volume: 15 start-page: 105 issue: 1 year: 2002 end-page: 120 ident: CR5 article-title: Projective ART for clustering data sets in high dimensional spaces publication-title: Neural Netw doi: 10.1016/S0893-6080(01)00108-3 – ident: CR28 – ident: CR24 – volume: 36 start-page: 63 issue: 2 year: 2018 end-page: 71 ident: CR25 article-title: Deep learning and its application to medical image segmentation publication-title: Med Imaging Technol – volume: 56 start-page: 3091 issue: 10 year: 2011 ident: CR33 article-title: Design and performance evaluation of a whole-body ingenuity TF PET–MRI system publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/10/013 – volume: 20 start-page: 169 issue: 2-3 year: 1986 end-page: 180 ident: CR8 article-title: Optimal variable weighting for ultrametric and additive tree clustering publication-title: Qual Quant doi: 10.1007/BF00227423 – volume: 42 start-page: 17 issue: 1 year: 2012 end-page: 27 ident: CR21 article-title: Initialization independent clustering with actively self-training method publication-title: IEEE Trans Syst Man Cybern Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2161607 – volume: 37 start-page: 1562 issue: 7 year: 2018 end-page: 1573 ident: CR29 article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2791721 – volume: 20 start-page: 4463 issue: 11 year: 2016 ident: 7974_CR6 publication-title: Soft Comput doi: 10.1007/s00500-015-1756-8 – volume: 50 start-page: 155 year: 2016 ident: 7974_CR23 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.08.009 – volume: 20 start-page: 169 issue: 2-3 year: 1986 ident: 7974_CR8 publication-title: Qual Quant doi: 10.1007/BF00227423 – volume: 42 start-page: 4974 issue: 8 year: 2015 ident: 7974_CR27 publication-title: Med Phys doi: 10.1118/1.4926756 – ident: 7974_CR32 – volume: 14 start-page: 63 issue: 1 year: 2007 ident: 7974_CR11 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-006-0060-8 – ident: 7974_CR19 doi: 10.3115/1273073.1273144 – volume: 37 start-page: 1562 issue: 7 year: 2018 ident: 7974_CR29 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2791721 – volume: 10 start-page: 191 issue: 2 year: 1984 ident: 7974_CR4 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 22 start-page: 1971 issue: 16 year: 2006 ident: 7974_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl185 – volume: 2 start-page: 1394 year: 1998 ident: 7974_CR20 publication-title: IEEE World Congress Comput Intell – volume: 45 start-page: 688 issue: 4 year: 2015 ident: 7974_CR15 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2334595 – volume: 36 start-page: 63 issue: 2 year: 2018 ident: 7974_CR25 publication-title: Med Imaging Technol – volume: 90 start-page: 34 year: 2018 ident: 7974_CR17 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.07.001 – volume: 42 start-page: 17 issue: 1 year: 2012 ident: 7974_CR21 publication-title: IEEE Trans Syst Man Cybern Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2161607 – volume: 56 start-page: 3091 issue: 10 year: 2011 ident: 7974_CR33 publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/10/013 – volume: 28 start-page: 61 issue: 2 year: 1999 ident: 7974_CR1 publication-title: ACM SIGMOD Rec doi: 10.1145/304181.304188 – volume: 15 start-page: 105 issue: 1 year: 2002 ident: 7974_CR5 publication-title: Neural Netw doi: 10.1016/S0893-6080(01)00108-3 – volume: 16 start-page: 48 issue: 4 year: 2002 ident: 7974_CR14 publication-title: KI – volume: 43 start-page: 767 issue: 3 year: 2010 ident: 7974_CR9 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.09.010 – ident: 7974_CR28 doi: 10.1109/ICDM.2012.43 – volume: 8 start-page: 234 issue: 2 year: 2015 ident: 7974_CR30 publication-title: Algorithms doi: 10.3390/a8020234 – volume: 6 start-page: 90 issue: 1 year: 2004 ident: 7974_CR22 publication-title: ACM Sigkdd Explor Newsl doi: 10.1145/1007730.1007731 – volume: 10 start-page: 1250003 issue: 04 year: 2012 ident: 7974_CR3 publication-title: J Bioinforma Comput Biol doi: 10.1142/S0219720012500035 – volume: 4 start-page: 2227 year: 1995 ident: 7974_CR16 publication-title: IEEE Int Conf Fuzzy Syst – volume: 29 start-page: 70 issue: 2 year: 2000 ident: 7974_CR2 publication-title: ACM – ident: 7974_CR10 – ident: 7974_CR34 doi: 10.1166/jmihi.2019.2749 – ident: 7974_CR24 doi: 10.1007/978-0-387-09823-4_14 – volume: 42 start-page: 217 issue: 1 year: 2015 ident: 7974_CR13 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24775 – volume: 6 start-page: 2008 issue: 7 year: 2014 ident: 7974_CR31 publication-title: J Chem Pharm Res – volume: 1 start-page: 468 year: 2005 ident: 7974_CR12 publication-title: Comput Soc Conf Comput Vis Pattern Recognit – volume: 26 start-page: 332 issue: 2 year: 2013 ident: 7974_CR26 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-012-0258-x – ident: 7974_CR7 doi: 10.1109/ICDM.2009.138 |
| SSID | ssj0016524 |
| Score | 2.238681 |
| Snippet | With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9523 |
| SubjectTerms | Algorithms Clustering Collaboration Computer Communication Networks Computer Science Data Structures and Information Theory Feature extraction Feature maps Image acquisition Image segmentation Machine learning Magnetic resonance imaging Medical imaging Multimedia Information Systems Positron emission Special Purpose and Application-Based Systems Subspaces Tomography |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-LqKjl402CTNG16EhEXQVg8qCxeSptkRdiX262gv95JN3VV0IvntqHwzeNLJjMfwDGPTJjoUFLMbpaGPDBUsVjQPOghIdfICWReiU3EnY7qdpNbf-BW-GuVdUysArUZaXdGfoY0AW0xRvZ9Pn6hTjXKVVe9hMYiLDHOmbPzm5h-VhEi6UVtVUAxMzLfNDNrnWOuMSWoWngSdyfxe2Kas80fBdIq77TX__vHG7DmGSe5mJnIJizY4Ras12oOxDv3Fqx-GU24DY8PuDj9YiWvlvTK9_c3UmDgJgXGG9xtW6L7pRu1gN8QpL8kK6ejaggsGcwqQOR5gBGLFPZp4Luchjtw3766u7ymXoeBanTQKVUcvZSz3Frhpu8hpZM8j2UkrNXKJFwLbWSciyQwYSaljQIdmQSxzlWPZ1kidqExHA3tHpBERT1pWC4MbuSEypTNslCFGllmLrRlTWA1CKn2Q8qdVkY_nY9XdsClCFxaAZfGTTj5_GY8G9Hx59utGq3Uu2uRzqFqwmmN9_zx76vt_73aAaxwtz-vbvq0oDGdlPYQlvXr9LmYHFXG-gEV-u3g priority: 102 providerName: ProQuest |
| Title | View-collaborative fuzzy soft subspace clustering for automatic medical image segmentation |
| URI | https://link.springer.com/article/10.1007/s11042-019-07974-7 https://www.proquest.com/docview/2263017605 |
| Volume | 79 |
| WOSCitedRecordID | wos000524950600066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9EEf_Bbnx8iDbxpok6ZNH1UUQZxj6tS9lDbNZLBNsdvE_fVeutSpqKAvgdKklEvu7ndc7ncAe8xPvVB5gqJ309RjTkqlG3CaOG0E5AoxgUjyZhNBrSbv7sK6LQrLitvuRUoyt9TTYjfXlJI4edFNaG4RlmAW3Z006ti4ar7nDnxhW9lKh6I_dG2pzPff-OyOphjzS1o09zanS__7z2VYtOiSHE6OwwrM6P4qLBWdG4hV5FVY-EBDuAatZke_0A8nYqRJezgev5IMjTTJ0LZgZK2J6g4NrQKuIQh1STwcPOaEr6Q3yfaQTg-tE8n0Q89WNPXX4eb05Pr4jNqeC1ShMg6oZKiRzE205oZpD-GbYEkgfK61kmnIFFepCBIeOqkXC6F9R_lpiPuayDaL45BvQLn_2NebQELpt0XqJjzFoI3LWOo49qSnEFEmXGm3Am4h-khZQnLTF6MbTamUjSgjFGWUizIKKrD_vuZpQsfx6-ydYkcjq5pZhHgTjVqAYVwFDoodnL7--Wtbf5u-DfPMxOb5LZ8dKA-eh3oX5tRo0Mmeq1AKbu-rMHt0Uqs38Ok8oDheOMdmZJc41kWrmh_sN-Vs6qA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hQAIOLAVEWX2AE1gkTpw4B4QQUIEoFQdAiEtIbBdVogukLSofxTcyzkILEtw4cE5sxfGbmWfPBrDNPOUG0uUUrZumLrMUFbbv0NiqIyGXyAl4nDab8Gs1cXcXXI3Be5ELY8IqC52YKmrVluaOfB9pAmLRR_Z92HmmpmuU8a4WLTQyWFzowSse2ZKD8xPc3x3GKqfXx2c07ypAJcKtSwVDzDE71toxteSQoHAW-9xztJZCBUw6UnE_dgJLuRHn2rOkpwL88ljUWRSZ4kuo8idcF8XBhApax59eC4_nTXSFRdES23mSTpaqZ5tEGCtNGQpMDORXQzhkt98csqmdq8z9tz80D7M5oyZHmQgswJhulWCu6FZBcuVVgpmR0ouLcH-Li6EjUtDXpN57exuQBA0TSVCfdiKpiXzqmVISOIYgvSdRr9tOi9ySZubhIo0mamSS6MdmnsXVWoKbP1nvMoy32i29AiQQXp0rO3YUHlQdEQkdRa5wJbLo2JHaLoNdbHoo8yLsphfIUzgsH22AEiJQwhQooV-G3c8xnawEya9vrxfoCHN1lIRDaJRhr8DX8PHPs63-PtsWTJ1dX1bD6nntYg2mmbmLSKOa1mG8-9LTGzAp-91G8rKZCgqBh7_G3Qclckmc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5ERfTgW1yfOehJg23atOlBRNRFWVk8qIiX2iapCO5Du6voT_PXOWlTVwW9efDcJpD2m5kvycw3ABssUH4kfU4xumnqM0dR4YYeTZ0MCblETsDTotlE2GyKq6vobAjeqloYk1ZZ-cTCUauONGfkO0gTEIshsu-dzKZFnB3W97oP1HSQMjetVTuNEiIN_fKM27d89-QQ__UmY_Wj84NjajsMUInQ61HBEH_MTbX2jK4ckhXO0pAHntZSqIhJTyoepl7kKD_hXAeODFSEq0hFxpLECDGh-x_BKMyNjTVC-nGDEXDbUFc4FKOyawt2yrI91xTFOEX5UGTyIb8GxQHT_XY5W8S8-tR__lrTMGmZNtkvTWMGhnR7FqaqLhbEOrVZmPgkyTgH15e4MPrJOp40yfqvry8kx4BFcvSz3URqIu_7RmICxxCk_STp9zqF-C1plTdf5K6Fnprk-rZlq7va83DxJ-tdgOF2p60XgUQiyLhyU0_hBtYTidBJ4gtfIrtOPandGrgVAGJpxdlNj5D7eCArbUATI2jiAjRxWIOtjzHdUprk17dXKqTE1k3l8QAmNdiusDZ4_PNsS7_Ptg5jCLf49KTZWIZxZo4oimSnFRjuPfb1KozKp95d_rhW2AyBm7-G3TuOrVJC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-collaborative+fuzzy+soft+subspace+clustering+for+automatic+medical+image+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhao%2C+Kaifa&rft.au=Jiang%2C+Yizhang&rft.au=Xia%2C+Kaijian&rft.au=Zhou%2C+Leyuan&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=13-14&rft.spage=9523&rft.epage=9542&rft_id=info:doi/10.1007%2Fs11042-019-07974-7&rft.externalDocID=10_1007_s11042_019_07974_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |