View-collaborative fuzzy soft subspace clustering for automatic medical image segmentation

With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 79; číslo 13-14; s. 9523 - 9542
Hlavní autori: Zhao, Kaifa, Jiang, Yizhang, Xia, Kaijian, Zhou, Leyuan, Chen, Yangyang, Xu, Ke, Qian, Pengjiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2020
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feature map extracted from an MR image describes the patient’s condition from one perspective. By effectively using all feature maps from various MR images, it is possible to completely describe the intrinsic characteristics of the patient’s condition to facilitate a diagnosis. Facing such a scenario, classic machine learning algorithms typically stack these feature maps for unified processing and do not explore the importance of each feature within a single feature map or the relationships among feature maps. To address these challenges, both multiview and subspace learning scenarios are considered in this study, and the multiview collaboration-based fuzzy soft subspace clustering (MVC-FSSC) algorithm is proposed. The MVC-FSSC algorithm not only strives to exploit the agreement of decisions across all views via collaborative learning but also strives to utilize the soft subspace-based weighting mechanism to automatically evaluate the contribution of each dimensional feature to each estimated cluster within a single view. Our experimental results indicate that the proposed MVC-FSSC algorithm can effectively explore the collaborative relations among all views and the importance of features in their respective views. Additionally, our MVC-FSSC method has substantial advantages over traditional clustering algorithms in MR image segmentation. Applying the MVC-FSSC algorithm to five patients’ MR images, the average mean absolute prediction deviation (MAPD) is 98.62 ± 8.34, which is significantly better than the score of 131.90 ± 16.03 that was obtained using the collaborative fuzzy k-means (CO-FKM) algorithm and the score of 128.87 ± 11.32 that was obtained using the quadratic weights and Gini-Simpson diversity-based fuzzy clustering (QWGSD-FC) algorithm.
AbstractList With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feature map extracted from an MR image describes the patient’s condition from one perspective. By effectively using all feature maps from various MR images, it is possible to completely describe the intrinsic characteristics of the patient’s condition to facilitate a diagnosis. Facing such a scenario, classic machine learning algorithms typically stack these feature maps for unified processing and do not explore the importance of each feature within a single feature map or the relationships among feature maps. To address these challenges, both multiview and subspace learning scenarios are considered in this study, and the multiview collaboration-based fuzzy soft subspace clustering (MVC-FSSC) algorithm is proposed. The MVC-FSSC algorithm not only strives to exploit the agreement of decisions across all views via collaborative learning but also strives to utilize the soft subspace-based weighting mechanism to automatically evaluate the contribution of each dimensional feature to each estimated cluster within a single view. Our experimental results indicate that the proposed MVC-FSSC algorithm can effectively explore the collaborative relations among all views and the importance of features in their respective views. Additionally, our MVC-FSSC method has substantial advantages over traditional clustering algorithms in MR image segmentation. Applying the MVC-FSSC algorithm to five patients’ MR images, the average mean absolute prediction deviation (MAPD) is 98.62 ± 8.34, which is significantly better than the score of 131.90 ± 16.03 that was obtained using the collaborative fuzzy k-means (CO-FKM) algorithm and the score of 128.87 ± 11.32 that was obtained using the quadratic weights and Gini-Simpson diversity-based fuzzy clustering (QWGSD-FC) algorithm.
With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR images, which are acquired using inconsistent MR pulse sequences on the same patient, have been applied in medical-image-based diagnoses. A feature map extracted from an MR image describes the patient’s condition from one perspective. By effectively using all feature maps from various MR images, it is possible to completely describe the intrinsic characteristics of the patient’s condition to facilitate a diagnosis. Facing such a scenario, classic machine learning algorithms typically stack these feature maps for unified processing and do not explore the importance of each feature within a single feature map or the relationships among feature maps. To address these challenges, both multiview and subspace learning scenarios are considered in this study, and the multiview collaboration-based fuzzy soft subspace clustering (MVC-FSSC) algorithm is proposed. The MVC-FSSC algorithm not only strives to exploit the agreement of decisions across all views via collaborative learning but also strives to utilize the soft subspace-based weighting mechanism to automatically evaluate the contribution of each dimensional feature to each estimated cluster within a single view. Our experimental results indicate that the proposed MVC-FSSC algorithm can effectively explore the collaborative relations among all views and the importance of features in their respective views. Additionally, our MVC-FSSC method has substantial advantages over traditional clustering algorithms in MR image segmentation. Applying the MVC-FSSC algorithm to five patients’ MR images, the average mean absolute prediction deviation (MAPD) is 98.62 ± 8.34, which is significantly better than the score of 131.90 ± 16.03 that was obtained using the collaborative fuzzy k-means (CO-FKM) algorithm and the score of 128.87 ± 11.32 that was obtained using the quadratic weights and Gini-Simpson diversity-based fuzzy clustering (QWGSD-FC) algorithm.
Author Xu, Ke
Zhou, Leyuan
Xia, Kaijian
Zhao, Kaifa
Chen, Yangyang
Qian, Pengjiang
Jiang, Yizhang
Author_xml – sequence: 1
  givenname: Kaifa
  surname: Zhao
  fullname: Zhao, Kaifa
  organization: School of Digital Media, Jiangnan University
– sequence: 2
  givenname: Yizhang
  surname: Jiang
  fullname: Jiang, Yizhang
  organization: School of Digital Media, Jiangnan University
– sequence: 3
  givenname: Kaijian
  surname: Xia
  fullname: Xia, Kaijian
  organization: Changshu No.1 People’s Hospital
– sequence: 4
  givenname: Leyuan
  surname: Zhou
  fullname: Zhou, Leyuan
  organization: Affiliated Hospital, Jiangnan University
– sequence: 5
  givenname: Yangyang
  surname: Chen
  fullname: Chen, Yangyang
  organization: School of Digital Media, Jiangnan University
– sequence: 6
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
  organization: School of Digital Media, Jiangnan University
– sequence: 7
  givenname: Pengjiang
  surname: Qian
  fullname: Qian, Pengjiang
  email: qianpjiang@jiangnan.edu.cn
  organization: School of Digital Media, Jiangnan University
BookMark eNp9kE9LwzAYh4NMcJt-AU8Bz9E3SdO0Rxn-g4EX9eAlpOnb0dE1M2mV7dPbWUHwsNMbeH9P8sszI5PWt0jIJYdrDqBvIueQCAY8Z6BznTB9QqZcacm0FnwynGUGTCvgZ2QW4xqAp0okU_L-VuMXc75pbOGD7epPpFW_3-9o9FVHY1_ErXVIXdPHDkPdrmjlA7V95zdD2tENlrWzDa03doU04mqDbTdsfHtOTivbRLz4nXPyen_3snhky-eHp8XtkjnJ845lIk-l4AWiBCkyBZkShVapRHRZmQsnXal0IXMoE6sUpuDSMq-AF1klrM3lnFyN926D_-gxdmbt-9AOTxohUglcp6CGlBhTLvgYA1ZmG4bOYWc4mINDMzo0g0Pz49DoAcr-Qa4eP9cFWzfHUTmicXuwhuGv1RHqGwmUiSs
CitedBy_id crossref_primary_10_1016_j_ins_2025_122483
crossref_primary_10_1007_s11042_022_12133_6
crossref_primary_10_1007_s10462_022_10325_y
crossref_primary_10_1007_s11042_024_19080_4
crossref_primary_10_1108_EC_08_2023_0403
crossref_primary_10_1166_jmihi_2021_3705
Cites_doi 10.1007/s10618-012-0258-x
10.1016/j.patcog.2009.09.010
10.1016/j.artmed.2018.07.001
10.1016/0098-3004(84)90020-7
10.3390/a8020234
10.1007/s10618-006-0060-8
10.1109/TCYB.2014.2334595
10.1016/j.patcog.2015.08.009
10.1142/S0219720012500035
10.1093/bioinformatics/btl185
10.1145/304181.304188
10.1007/s00500-015-1756-8
10.1145/1007730.1007731
10.1118/1.4926756
10.1002/jmri.24775
10.1016/S0893-6080(01)00108-3
10.1088/0031-9155/56/10/013
10.1007/BF00227423
10.1109/TSMCB.2011.2161607
10.1109/TMI.2018.2791721
10.3115/1273073.1273144
10.1109/ICDM.2012.43
10.1166/jmihi.2019.2749
10.1007/978-0-387-09823-4_14
10.1109/ICDM.2009.138
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-07974-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 9542
ExternalDocumentID 10_1007_s11042_019_07974_7
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61702225
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61772241
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-8296321bee3032850852b7563eec8d92c3cd57b390d4a55e60c6d9f01b8f2aa93
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524950600066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 23:02:03 EST 2025
Sat Nov 29 03:26:11 EST 2025
Tue Nov 18 22:31:32 EST 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13-14
Keywords Collaborative learning
Multiview clustering
Soft subspace clustering
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8296321bee3032850852b7563eec8d92c3cd57b390d4a55e60c6d9f01b8f2aa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2263017605
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2263017605
crossref_primary_10_1007_s11042_019_07974_7
crossref_citationtrail_10_1007_s11042_019_07974_7
springer_journals_10_1007_s11042_019_07974_7
PublicationCentury 2000
PublicationDate 20200400
2020-4-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Mukaidono (CR16) 1995; 4
Qian, Sun, Jiang (CR23) 2016; 50
Miyamoto, Umayahara (CR20) 1998; 2
Gao, Maggs (CR12) 2005; 1
CR19
Xiaopeng, Shihe, Hui, Wen (CR31) 2014; 6
Deng, Choi, Chung, Wang (CR9) 2010; 43
CR34
CR10
CR32
Zaidi, Ojha, Morich (CR33) 2011; 56
Parsons, Haque, Liu (CR22) 2004; 6
Chitsaz, Jahromi (CR6) 2016; 20
Liang, Qian, Su (CR17) 2018; 90
Hooijmans, Dzyubachyk, Nehrke (CR13) 2015; 42
Su, Hu, Stehning (CR27) 2015; 42
Aggarwal, Wolf, Yu (CR1) 1999; 28
Liu, Mohammed, Carter (CR18) 2006; 22
Wang, Liu, Xiong (CR30) 2015; 8
Domeniconi, Gunopulos, Ma (CR11) 2007; 14
Aggarwal, Yu (CR2) 2000; 29
CR7
Hotho, Maedche, Staab (CR14) 2002; 16
CR28
CR24
Sim, Gopalkrishnan, Zimek, Cong (CR26) 2013; 26
Wang, Li, Zuluaga (CR29) 2018; 37
Roth, Shen, Oda (CR25) 2018; 36
Batuwita, Palade (CR3) 2012; 10
Bezdek, Ehrlich, Full (CR4) 1984; 10
Jiang, Chung, Wang (CR15) 2015; 45
Cao, Wu (CR5) 2002; 15
Nie, Xu, Li (CR21) 2012; 42
De Soete (CR8) 1986; 20
KH Su (7974_CR27) 2015; 42
G Wang (7974_CR29) 2018; 37
S Miyamoto (7974_CR20) 1998; 2
P Qian (7974_CR23) 2016; 50
F Liang (7974_CR17) 2018; 90
R Batuwita (7974_CR3) 2012; 10
A Hotho (7974_CR14) 2002; 16
F Nie (7974_CR21) 2012; 42
L Parsons (7974_CR22) 2004; 6
Y Jiang (7974_CR15) 2015; 45
Z Deng (7974_CR9) 2010; 43
7974_CR24
E Chitsaz (7974_CR6) 2016; 20
MT Hooijmans (7974_CR13) 2015; 42
7974_CR28
J Liu (7974_CR18) 2006; 22
Y Gao (7974_CR12) 2005; 1
C Domeniconi (7974_CR11) 2007; 14
W Xiaopeng (7974_CR31) 2014; 6
G De Soete (7974_CR8) 1986; 20
CC Aggarwal (7974_CR2) 2000; 29
7974_CR10
7974_CR32
Y Cao (7974_CR5) 2002; 15
JC Bezdek (7974_CR4) 1984; 10
7974_CR7
RP Li (7974_CR16) 1995; 4
K Sim (7974_CR26) 2013; 26
H Zaidi (7974_CR33) 2011; 56
7974_CR34
7974_CR19
G Wang (7974_CR30) 2015; 8
CC Aggarwal (7974_CR1) 1999; 28
HR Roth (7974_CR25) 2018; 36
References_xml – volume: 26
  start-page: 332
  issue: 2
  year: 2013
  end-page: 397
  ident: CR26
  article-title: A survey on enhanced subspace clustering
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-012-0258-x
– volume: 2
  start-page: 1394
  year: 1998
  end-page: 1399
  ident: CR20
  article-title: Fuzzy clustering by quadratic regularization
  publication-title: IEEE World Congress Comput Intell
– volume: 43
  start-page: 767
  issue: 3
  year: 2010
  end-page: 781
  ident: CR9
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.09.010
– ident: CR10
– volume: 90
  start-page: 34
  year: 2018
  end-page: 41
  ident: CR17
  article-title: Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: an intelligent, multi-level fusion approach
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.07.001
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  end-page: 203
  ident: CR4
  article-title: FCM: the fuzzy c -means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 8
  start-page: 234
  issue: 2
  year: 2015
  end-page: 247
  ident: CR30
  article-title: An optimization clustering algorithm based on texture feature fusion for color image segmentation
  publication-title: Algorithms
  doi: 10.3390/a8020234
– volume: 16
  start-page: 48
  issue: 4
  year: 2002
  end-page: 54
  ident: CR14
  article-title: Ontology-based text document clustering
  publication-title: KI
– volume: 4
  start-page: 2227
  year: 1995
  end-page: 2232
  ident: CR16
  article-title: A maximum-entropy approach to fuzzy clustering
  publication-title: IEEE Int Conf Fuzzy Syst
– volume: 14
  start-page: 63
  issue: 1
  year: 2007
  end-page: 97
  ident: CR11
  article-title: Locally adaptive metrics for clustering high dimensional data
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-006-0060-8
– volume: 45
  start-page: 688
  issue: 4
  year: 2015
  end-page: 701
  ident: CR15
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2334595
– volume: 1
  start-page: 468
  year: 2005
  end-page: 473
  ident: CR12
  article-title: Feature-level fusion in personal identification
  publication-title: Comput Soc Conf Comput Vis Pattern Recognit
– volume: 50
  start-page: 155
  year: 2016
  end-page: 177
  ident: CR23
  article-title: Cross-domain, soft-partition clustering with diversity measure and knowledge reference
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.08.009
– volume: 10
  start-page: 1250003
  issue: 04
  year: 2012
  ident: CR3
  article-title: Adjusted geometric-mean: a novel performance measure for imbalanced bioinformatics datasets learning
  publication-title: J Bioinforma Comput Biol
  doi: 10.1142/S0219720012500035
– ident: CR19
– volume: 22
  start-page: 1971
  issue: 16
  year: 2006
  end-page: 1978
  ident: CR18
  article-title: Distance-based clustering of CGH data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl185
– volume: 29
  start-page: 70
  issue: 2
  year: 2000
  end-page: 81
  ident: CR2
  article-title: Finding generalized projected clusters in high dimensional spaces
  publication-title: ACM
– ident: CR32
– ident: CR34
– volume: 28
  start-page: 61
  issue: 2
  year: 1999
  end-page: 72
  ident: CR1
  article-title: Fast algorithms for projected clustering
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/304181.304188
– volume: 20
  start-page: 4463
  issue: 11
  year: 2016
  end-page: 4472
  ident: CR6
  article-title: A novel soft subspace clustering algorithm with noise detection for high dimensional datasets
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1756-8
– volume: 6
  start-page: 90
  issue: 1
  year: 2004
  end-page: 105
  ident: CR22
  article-title: Subspace clustering for high dimensional data: a review
  publication-title: ACM Sigkdd Explor Newsl
  doi: 10.1145/1007730.1007731
– volume: 42
  start-page: 4974
  issue: 8
  year: 2015
  end-page: 4986
  ident: CR27
  article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering
  publication-title: Med Phys
  doi: 10.1118/1.4926756
– ident: CR7
– volume: 42
  start-page: 217
  issue: 1
  year: 2015
  end-page: 223
  ident: CR13
  article-title: Fast multistation water/fat imaging at 3T using DREAM-based RF shimming
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24775
– volume: 6
  start-page: 2008
  issue: 7
  year: 2014
  end-page: 2014
  ident: CR31
  article-title: The design of medical image transfer function using multi-feature fusion and improved k-means clustering
  publication-title: J Chem Pharm Res
– volume: 15
  start-page: 105
  issue: 1
  year: 2002
  end-page: 120
  ident: CR5
  article-title: Projective ART for clustering data sets in high dimensional spaces
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(01)00108-3
– ident: CR28
– ident: CR24
– volume: 36
  start-page: 63
  issue: 2
  year: 2018
  end-page: 71
  ident: CR25
  article-title: Deep learning and its application to medical image segmentation
  publication-title: Med Imaging Technol
– volume: 56
  start-page: 3091
  issue: 10
  year: 2011
  ident: CR33
  article-title: Design and performance evaluation of a whole-body ingenuity TF PET–MRI system
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/10/013
– volume: 20
  start-page: 169
  issue: 2-3
  year: 1986
  end-page: 180
  ident: CR8
  article-title: Optimal variable weighting for ultrametric and additive tree clustering
  publication-title: Qual Quant
  doi: 10.1007/BF00227423
– volume: 42
  start-page: 17
  issue: 1
  year: 2012
  end-page: 27
  ident: CR21
  article-title: Initialization independent clustering with actively self-training method
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2161607
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  end-page: 1573
  ident: CR29
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791721
– volume: 20
  start-page: 4463
  issue: 11
  year: 2016
  ident: 7974_CR6
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1756-8
– volume: 50
  start-page: 155
  year: 2016
  ident: 7974_CR23
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.08.009
– volume: 20
  start-page: 169
  issue: 2-3
  year: 1986
  ident: 7974_CR8
  publication-title: Qual Quant
  doi: 10.1007/BF00227423
– volume: 42
  start-page: 4974
  issue: 8
  year: 2015
  ident: 7974_CR27
  publication-title: Med Phys
  doi: 10.1118/1.4926756
– ident: 7974_CR32
– volume: 14
  start-page: 63
  issue: 1
  year: 2007
  ident: 7974_CR11
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-006-0060-8
– ident: 7974_CR19
  doi: 10.3115/1273073.1273144
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  ident: 7974_CR29
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791721
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  ident: 7974_CR4
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 22
  start-page: 1971
  issue: 16
  year: 2006
  ident: 7974_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl185
– volume: 2
  start-page: 1394
  year: 1998
  ident: 7974_CR20
  publication-title: IEEE World Congress Comput Intell
– volume: 45
  start-page: 688
  issue: 4
  year: 2015
  ident: 7974_CR15
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2334595
– volume: 36
  start-page: 63
  issue: 2
  year: 2018
  ident: 7974_CR25
  publication-title: Med Imaging Technol
– volume: 90
  start-page: 34
  year: 2018
  ident: 7974_CR17
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.07.001
– volume: 42
  start-page: 17
  issue: 1
  year: 2012
  ident: 7974_CR21
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2161607
– volume: 56
  start-page: 3091
  issue: 10
  year: 2011
  ident: 7974_CR33
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/10/013
– volume: 28
  start-page: 61
  issue: 2
  year: 1999
  ident: 7974_CR1
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/304181.304188
– volume: 15
  start-page: 105
  issue: 1
  year: 2002
  ident: 7974_CR5
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(01)00108-3
– volume: 16
  start-page: 48
  issue: 4
  year: 2002
  ident: 7974_CR14
  publication-title: KI
– volume: 43
  start-page: 767
  issue: 3
  year: 2010
  ident: 7974_CR9
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.09.010
– ident: 7974_CR28
  doi: 10.1109/ICDM.2012.43
– volume: 8
  start-page: 234
  issue: 2
  year: 2015
  ident: 7974_CR30
  publication-title: Algorithms
  doi: 10.3390/a8020234
– volume: 6
  start-page: 90
  issue: 1
  year: 2004
  ident: 7974_CR22
  publication-title: ACM Sigkdd Explor Newsl
  doi: 10.1145/1007730.1007731
– volume: 10
  start-page: 1250003
  issue: 04
  year: 2012
  ident: 7974_CR3
  publication-title: J Bioinforma Comput Biol
  doi: 10.1142/S0219720012500035
– volume: 4
  start-page: 2227
  year: 1995
  ident: 7974_CR16
  publication-title: IEEE Int Conf Fuzzy Syst
– volume: 29
  start-page: 70
  issue: 2
  year: 2000
  ident: 7974_CR2
  publication-title: ACM
– ident: 7974_CR10
– ident: 7974_CR34
  doi: 10.1166/jmihi.2019.2749
– ident: 7974_CR24
  doi: 10.1007/978-0-387-09823-4_14
– volume: 42
  start-page: 217
  issue: 1
  year: 2015
  ident: 7974_CR13
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24775
– volume: 6
  start-page: 2008
  issue: 7
  year: 2014
  ident: 7974_CR31
  publication-title: J Chem Pharm Res
– volume: 1
  start-page: 468
  year: 2005
  ident: 7974_CR12
  publication-title: Comput Soc Conf Comput Vis Pattern Recognit
– volume: 26
  start-page: 332
  issue: 2
  year: 2013
  ident: 7974_CR26
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-012-0258-x
– ident: 7974_CR7
  doi: 10.1109/ICDM.2009.138
SSID ssj0016524
Score 2.238681
Snippet With the rapid development of medical imaging methodologies, such as magnetic resonance (MR) and positron emission tomography (PET)/MR, various types of MR...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9523
SubjectTerms Algorithms
Clustering
Collaboration
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Feature extraction
Feature maps
Image acquisition
Image segmentation
Machine learning
Magnetic resonance imaging
Medical imaging
Multimedia Information Systems
Positron emission
Special Purpose and Application-Based Systems
Subspaces
Tomography
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-LqKjl402CTNG16EhEXQVg8qCxeSptkRdiX262gv95JN3VV0IvntqHwzeNLJjMfwDGPTJjoUFLMbpaGPDBUsVjQPOghIdfICWReiU3EnY7qdpNbf-BW-GuVdUysArUZaXdGfoY0AW0xRvZ9Pn6hTjXKVVe9hMYiLDHOmbPzm5h-VhEi6UVtVUAxMzLfNDNrnWOuMSWoWngSdyfxe2Kas80fBdIq77TX__vHG7DmGSe5mJnIJizY4Ras12oOxDv3Fqx-GU24DY8PuDj9YiWvlvTK9_c3UmDgJgXGG9xtW6L7pRu1gN8QpL8kK6ejaggsGcwqQOR5gBGLFPZp4Luchjtw3766u7ymXoeBanTQKVUcvZSz3Frhpu8hpZM8j2UkrNXKJFwLbWSciyQwYSaljQIdmQSxzlWPZ1kidqExHA3tHpBERT1pWC4MbuSEypTNslCFGllmLrRlTWA1CKn2Q8qdVkY_nY9XdsClCFxaAZfGTTj5_GY8G9Hx59utGq3Uu2uRzqFqwmmN9_zx76vt_73aAaxwtz-vbvq0oDGdlPYQlvXr9LmYHFXG-gEV-u3g
  priority: 102
  providerName: ProQuest
Title View-collaborative fuzzy soft subspace clustering for automatic medical image segmentation
URI https://link.springer.com/article/10.1007/s11042-019-07974-7
https://www.proquest.com/docview/2263017605
Volume 79
WOSCitedRecordID wos000524950600066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9EEf_Bbnx8iDbxpok6ZNH1UUQZxj6tS9lDbNZLBNsdvE_fVeutSpqKAvgdKklEvu7ndc7ncAe8xPvVB5gqJ309RjTkqlG3CaOG0E5AoxgUjyZhNBrSbv7sK6LQrLitvuRUoyt9TTYjfXlJI4edFNaG4RlmAW3Z006ti4ar7nDnxhW9lKh6I_dG2pzPff-OyOphjzS1o09zanS__7z2VYtOiSHE6OwwrM6P4qLBWdG4hV5FVY-EBDuAatZke_0A8nYqRJezgev5IMjTTJ0LZgZK2J6g4NrQKuIQh1STwcPOaEr6Q3yfaQTg-tE8n0Q89WNPXX4eb05Pr4jNqeC1ShMg6oZKiRzE205oZpD-GbYEkgfK61kmnIFFepCBIeOqkXC6F9R_lpiPuayDaL45BvQLn_2NebQELpt0XqJjzFoI3LWOo49qSnEFEmXGm3Am4h-khZQnLTF6MbTamUjSgjFGWUizIKKrD_vuZpQsfx6-ydYkcjq5pZhHgTjVqAYVwFDoodnL7--Wtbf5u-DfPMxOb5LZ8dKA-eh3oX5tRo0Mmeq1AKbu-rMHt0Uqs38Ok8oDheOMdmZJc41kWrmh_sN-Vs6qA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hQAIOLAVEWX2AE1gkTpw4B4QQUIEoFQdAiEtIbBdVogukLSofxTcyzkILEtw4cE5sxfGbmWfPBrDNPOUG0uUUrZumLrMUFbbv0NiqIyGXyAl4nDab8Gs1cXcXXI3Be5ELY8IqC52YKmrVluaOfB9pAmLRR_Z92HmmpmuU8a4WLTQyWFzowSse2ZKD8xPc3x3GKqfXx2c07ypAJcKtSwVDzDE71toxteSQoHAW-9xztJZCBUw6UnE_dgJLuRHn2rOkpwL88ljUWRSZ4kuo8idcF8XBhApax59eC4_nTXSFRdES23mSTpaqZ5tEGCtNGQpMDORXQzhkt98csqmdq8z9tz80D7M5oyZHmQgswJhulWCu6FZBcuVVgpmR0ouLcH-Li6EjUtDXpN57exuQBA0TSVCfdiKpiXzqmVISOIYgvSdRr9tOi9ySZubhIo0mamSS6MdmnsXVWoKbP1nvMoy32i29AiQQXp0rO3YUHlQdEQkdRa5wJbLo2JHaLoNdbHoo8yLsphfIUzgsH22AEiJQwhQooV-G3c8xnawEya9vrxfoCHN1lIRDaJRhr8DX8PHPs63-PtsWTJ1dX1bD6nntYg2mmbmLSKOa1mG8-9LTGzAp-91G8rKZCgqBh7_G3Qclckmc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5ERfTgW1yfOehJg23atOlBRNRFWVk8qIiX2iapCO5Du6voT_PXOWlTVwW9efDcJpD2m5kvycw3ABssUH4kfU4xumnqM0dR4YYeTZ0MCblETsDTotlE2GyKq6vobAjeqloYk1ZZ-cTCUauONGfkO0gTEIshsu-dzKZFnB3W97oP1HSQMjetVTuNEiIN_fKM27d89-QQ__UmY_Wj84NjajsMUInQ61HBEH_MTbX2jK4ckhXO0pAHntZSqIhJTyoepl7kKD_hXAeODFSEq0hFxpLECDGh-x_BKMyNjTVC-nGDEXDbUFc4FKOyawt2yrI91xTFOEX5UGTyIb8GxQHT_XY5W8S8-tR__lrTMGmZNtkvTWMGhnR7FqaqLhbEOrVZmPgkyTgH15e4MPrJOp40yfqvry8kx4BFcvSz3URqIu_7RmICxxCk_STp9zqF-C1plTdf5K6Fnprk-rZlq7va83DxJ-tdgOF2p60XgUQiyLhyU0_hBtYTidBJ4gtfIrtOPandGrgVAGJpxdlNj5D7eCArbUATI2jiAjRxWIOtjzHdUprk17dXKqTE1k3l8QAmNdiusDZ4_PNsS7_Ptg5jCLf49KTZWIZxZo4oimSnFRjuPfb1KozKp95d_rhW2AyBm7-G3TuOrVJC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-collaborative+fuzzy+soft+subspace+clustering+for+automatic+medical+image+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhao%2C+Kaifa&rft.au=Jiang%2C+Yizhang&rft.au=Xia%2C+Kaijian&rft.au=Zhou%2C+Leyuan&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=13-14&rft.spage=9523&rft.epage=9542&rft_id=info:doi/10.1007%2Fs11042-019-07974-7&rft.externalDocID=10_1007_s11042_019_07974_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon