On FISTA with a relative error rule
The fast iterative shrinkage/thresholding algorithm (FISTA) is one of the most popular first-order iterations for minimizing the sum of two convex functions. FISTA is known to improve the complexity of the classical proximal gradient method (PGM) from O ( k - 1 ) to the optimal complexity O ( k - 2...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 84; číslo 2; s. 295 - 318 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The fast iterative shrinkage/thresholding algorithm (FISTA) is one of the most popular first-order iterations for minimizing the sum of two convex functions. FISTA is known to improve the complexity of the classical proximal gradient method (PGM) from
O
(
k
-
1
)
to the optimal complexity
O
(
k
-
2
)
in terms of the sequence of the functional values. When the evaluation of the proximal operator is hard, inexact versions of FISTA might be used to solve the problem. In this paper, we proposed an inexact version of FISTA by solving the proximal subproblem inexactly using a relative error criterion instead of exogenous and diminishing error rules. The introduced relative error rule in the FISTA iteration is related to the progress of the algorithm at each step and does not increase the computational burden per iteration. Moreover, the proposed algorithm recovers the same optimal convergence rate as FISTA. Some numerical experiments are also reported to illustrate the numerical behavior of the relative inexact method when compared with FISTA under an absolute error criterion. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-022-00421-8 |