Takagi–Sugeno fuzzy-based approach for modeling and control of an activated sludge process

Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at the recovery of treated water are increasingly being proposed. Given its better performance, biological treatment via an activated sludge pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of dynamics and control Ročník 12; číslo 8; s. 3123 - 3138
Hlavní autoři: Arifi, Ali, Bouallègue, Soufiene
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Témata:
ISSN:2195-268X, 2195-2698
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at the recovery of treated water are increasingly being proposed. Given its better performance, biological treatment via an activated sludge process (ASP) represents the key phase in the overall treatment chain. In this work, a Takagi–Sugeno (TS) fuzzy-based modeling and control approach of an ASP is proposed and successfully carried out for the carbon removal. Using the formalism of linear parameter-varying state-space representation and convex polytopic transformation, a TS fuzzy model of the studied ASP is firstly established. Such a fuzzy model is then used to design advanced control laws that maintain the considered state variables, i.e., volume of the effluent and concentrations of the heterotrophic biomass, biodegradable substrate and dissolved oxygen, at the set-point values. Two stabilization control approaches, namely parallel distributed compensation and static output parallel distributed compensation, are proposed and successfully applied. All these control problems are reformulated as Lyapunov quadratic stability conditions and linear matrix inequality constraints. Demonstrative results are carried out and compared to show the effectiveness and superiority of the proposed TS fuzzy-based control approach of such complex and nonlinear biochemical processes.
AbstractList Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at the recovery of treated water are increasingly being proposed. Given its better performance, biological treatment via an activated sludge process (ASP) represents the key phase in the overall treatment chain. In this work, a Takagi–Sugeno (TS) fuzzy-based modeling and control approach of an ASP is proposed and successfully carried out for the carbon removal. Using the formalism of linear parameter-varying state-space representation and convex polytopic transformation, a TS fuzzy model of the studied ASP is firstly established. Such a fuzzy model is then used to design advanced control laws that maintain the considered state variables, i.e., volume of the effluent and concentrations of the heterotrophic biomass, biodegradable substrate and dissolved oxygen, at the set-point values. Two stabilization control approaches, namely parallel distributed compensation and static output parallel distributed compensation, are proposed and successfully applied. All these control problems are reformulated as Lyapunov quadratic stability conditions and linear matrix inequality constraints. Demonstrative results are carried out and compared to show the effectiveness and superiority of the proposed TS fuzzy-based control approach of such complex and nonlinear biochemical processes.
Author Arifi, Ali
Bouallègue, Soufiene
Author_xml – sequence: 1
  givenname: Ali
  surname: Arifi
  fullname: Arifi, Ali
  organization: Research Laboratory in Automatic Control, National Engineering School of Tunis, National Engineering School of Gabès, University of Gabès
– sequence: 2
  givenname: Soufiene
  orcidid: 0000-0003-3172-6333
  surname: Bouallègue
  fullname: Bouallègue, Soufiene
  email: soufiene.bouallegue@issig.rnu.tn
  organization: Research Laboratory in Automatic Control, National Engineering School of Tunis, High Institute of Industrial Systems of Gabès, University of Gabès
BookMark eNp9kMtKxEAQRRsZQR3nB1w1uI72Iz3pLGXwBQMuVHAhNJV-xIwxPXYngq78B__QL7HHEQUXs6oquKdu1d1Do853FqEDSo4oIcVxzEnORUZYnhHKS5nlW2iX0VJkbFrK0W8v73bQJMYFIYTRPMnLXXR_A49QN5_vH9dDbTuP3fD29ppVEK3BsFwGD_oBOx_wkze2bboaQ2ew9l0ffIu9SyMG3Tcv0CcitoOpLU6YtjHuo20HbbSTnzpGt2enN7OLbH51fjk7mWea07LPClswKaoCeEWpcCCJdiWTOXG5LTkDovkU2JQ7UhFRaWkqUwhnwDlqDKEVH6PD9d7k-zzY2KuFH0KXLBVnQtBCFkIkFVurdPAxBuvUMjRPEF4VJWoVpFoHqVIy6jtIlSdI_oN000PfrP6Hpt2M8jUak09X2_B31QbqC7wEi6g
CitedBy_id crossref_primary_10_3390_jmse13030490
Cites_doi 10.1007/s40435-023-01360-w
10.1201/b16637
10.3390/app7080813
10.1016/j.oceaneng.2022.113014
10.1109/CarpathianCC.2019.8766060
10.3390/su12030768
10.1016/j.asoc.2022.109636
10.1016/S0165-0114(98)00121-3
10.1201/9780203968567
10.3390/w12113220
10.1109/ICSMC.2000.886553
10.2166/wst.1999.0039
10.1109/STA56120.2022.10019005
10.1109/CDC.2002.1184510
10.3390/app8020261
10.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G
10.1007/s40435-023-01285-4
10.1137/1.9781611970777
10.1016/j.neucom.2014.01.025
10.1021/ie8017687
10.3390/w13081037
10.1177/0142331220969056
10.1177/01423312211039048
10.1007/s40435-023-01368-2
10.1016/j.ifacol.2018.06.136
10.1016/j.envsoft.2003.03.005
10.1002/0471224596
10.23919/ChiCC.2019.8866516
10.1016/j.jprocont.2011.05.001
10.7717/peerj-cs.458
10.1007/s11431-021-1960-7
10.3390/math9222968
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40435-024-01398-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-2698
EndPage 3138
ExternalDocumentID 10_1007_s40435_024_01398_4
GroupedDBID -EM
0R~
30V
4.4
406
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
H13
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
PT4
RLLFE
ROL
RSV
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-7e7285b7a3b115fa80cf92840f4e932a0c36a263f0b05bc8dbd75fdaff1dd01b3
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190208500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2195-268X
IngestDate Mon Sep 29 04:22:53 EDT 2025
Sat Nov 29 03:59:57 EST 2025
Tue Nov 18 21:31:44 EST 2025
Fri Feb 21 02:39:31 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Activated sludge process
Takagi–Sugeno fuzzy modeling
Parallel distributed compensation
Carbon removal
Wastewater treatment systems
Static output feedback control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7e7285b7a3b115fa80cf92840f4e932a0c36a263f0b05bc8dbd75fdaff1dd01b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3172-6333
PQID 3255178755
PQPubID 2043900
PageCount 16
ParticipantIDs proquest_journals_3255178755
crossref_primary_10_1007_s40435_024_01398_4
crossref_citationtrail_10_1007_s40435_024_01398_4
springer_journals_10_1007_s40435_024_01398_4
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of dynamics and control
PublicationTitleAbbrev Int. J. Dynam. Control
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Weijers S (2000) Modelling, identification and control of activated sludge plants for nitrogen removal. PhD dissertation, Technische Universiteit Eindhoven, Pays Bas
RevollarSVilanovaRVegaPFranciscoMMenesesMWastewater treatment plant operation: simple control schemes with a holistic perspectiveSustainability202012376810.3390/su12030768
DuXWangJJegatheesanVShiGDissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithmAppl Sci201810.3390/app8020261
NagyAMMarxBMourotGSchutzGRagotJObservers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs: application to a wastewater treatment plantJ Process Control20112171105111410.1016/j.jprocont.2011.05.001
LahdhiriALesageGHannachiAHeranVSteady-state methodology for activated sludge model 1 (ASM1) state variable calculation in MBRWater202010.3390/w12113220
GernaeyKVVan LoosdrechtMCMHenzeMLindMJørgensenSBActivated sludge wastewater treatment plant modelling and simulation: state of the artEnviron Model Softw20041976378310.1016/j.envsoft.2003.03.005
RevollarSVegaPVilanovaRFranciscoMOptimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategiesAppl Sci20177881310.3390/app7080813
GeorgievaPGFeyo de AzevedoSRobust control design of an activated sludge processInt J Robust Nonlinear Syst19999949967172541710.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G
TanakaKWangHOFuzzy control systems design and analysis: a linear matrix inequality approach2001New YorkWiley10.1002/0471224596
Chadli M, Maquin D, Ragot J (2000) Relaxed stability conditions for Takagi-Sugeno fuzzy systems. In: IEEE international conference on systems, man and cybernetics, Nashville, TN, USA, 08–11 October 2000, pp 3514–3519
TaghiehAMohammadzadehATavoosiJMobayenSRojsiraphisalTAsadJHZhilenkovAObserver-based control for nonlinear time-delayed asynchronously switching systems: a new LMI approachMathematics2021922296810.3390/math9222968
SayadianNJahangiriFAbediMAdaptive event-triggered fuzzy MPC for unknown networked IT-2 T-S fuzzy systemsInt J Dyn Control2024476862310.1007/s40435-023-01360-w
QiaoYWangKFuzzy sliding mode speed control strategy of permanent magnet motor under variable load conditionInt J Dyn Control202310.1007/s40435-023-01285-4
Dhouibi S, Jarray R, Bouallègue S (2023) Modelling and control of wastewater treatment systems: Case of activated sludge processes. In: 9th international conference on green energy and environmental engineering, Sousse, Tunisia, April 28–30, 2023
Wesley EckenfelderWGrauPActivated sludge process design and control: theory and practice1998New YorkCRC Press10.1201/9780203968567
Dhouibi S, Bouallègue S (2022) Modeling and control design of an activated sludge process: A Multi-model approach. In: 21st IEEE international conference on sciences and techniques of automatic control and computer engineering, Sousse, Tunisia, December 19–21, 2022
YangTQiuWMaYChadliMZhangLFuzzy model-based predictive control of dissolved oxygen in activated sludge processesNeurocomputing2014136889510.1016/j.neucom.2014.01.025
Petre E, Selișteanu D, Șulea-Iorgulescu C, Mehedințeanu S (2019) Mathematical modeling and control for an activated sludge process in a wastewater treatment plant. In: 20th International Carpathian control conference, Krakow-Wieliczka, Poland, 26–29 May 2019, pp 1–6
TaghiehAMohammadzadehAZhangCKausarNCastilloOA type-3 fuzzy control for current sharing and voltage balancing in microgridsAppl Soft Comput202212910963610.1016/j.asoc.2022.109636
TaghiehAShafieiMHStatic output feedback control of switched nonlinear systems with time-varying delay and parametric uncertainties under asynchronous switchingTrans Inst Meas Control20214351156116710.1177/0142331220969056
BallhysaNKimSByeonSWastewater treatment plant control strategiesInt J Adv Smart Converg202091625
Huang S, Zhang L, Guo H, Chen P, Xia W, Hu C (2019) Modeling and optimization of the activated sludge process. In: 38th Chinese control conference, Guangzhou, China, 27-30 July 2019, pp 6481–6486
KhallouqAKaramaAAbyadMObserver based robust H∞ fuzzy tracking control: application to an activated sludge processPeerJ Comput Sci2021712210.7717/peerj-cs.458
BoydSEl GhaouiLFeronEBalakrishnanVLinear matrix inequalities in system and control theory1994PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970777
Van HaandelACVan der LubbeJGMHandbook of biological wastewater treatment design and optimization of activated sludge systems2012LondonIWA Publishing
LefebvreBThe activated sludge process: methods and recent developments2019New YorkNova Science Publishers
Henze M, Gujer W, Mino T, Matsuo T, Wetzel M, Marais GR (1994) Activated sludge model no. 2, Technical Report. IAWQ, London, UK
Abdul GaffarSMurali MohanSSeshagiri RaoAKarriRRRavindranGDehghaniMHFuzzy logic control of active sludge-based wastewater treatment plantsSoft computing techniques in solid waste and wastewater management, Chapter 252021Elsevier409422
ChakravartySPRoyARoyPControl of activated sludge treatment process using pre-compensated multi-variable quantitative feedback theory-based controllerTrans Inst Measur Control20224450652210.1177/01423312211039048
NagyAMMourotGMarxBRagotJSchutzGSystematic multi-modeling methodology applied to an activated sludge reactor modelInd Eng Chem Res2010492790279910.1021/ie8017687
MatougLKhadirMTComparison between GPC and adaptive GPC based on Takagi Sugeno multi-model for an activated sludge reactorControl Cybern2017462147176
TakagiTSugenoMFuzzy identification of systems and its application to modeling and controlIEEE Trans Syst Man Cybern198515166172
Debel HansenLVengMDurdevicPCompressor scheduling and pressure control for an alternating aeration activated sludge process: a simulation study validated on plant dataWater2021138103710.3390/w13081037
Chadli M, Maquin D, Ragot J (2002) An LMI formulation for output feedback stabilization in multiple model approach. In: 41st IEEE conference on decision and control, Las Vegas Nevada, USA, pp 311–316
YoneyamaJNishikawaMKatayamaHIchikawaAOutput stabilization of Takagi-Sugeno fuzzy systemsFuzzy Sets Syst20001112253266174136010.1016/S0165-0114(98)00121-3
GujerWHenzeMLoosdrechtMMinoTActivated sludge model no.3Water Sci Technol19993918319310.2166/wst.1999.0039
OlssonGNewellBWastewater treatment systems: modelling, diagnosis and control1999LondonIWA Publishing
RevollarSVilanovaRFranciscoMVegaPPI dissolved oxygen control in wastewater treatment plants for plant wide nitrogen removal efficiencyIFAC-PapersOnLine20185145045510.1016/j.ifacol.2018.06.136
Henze M, Leslie Grady CP, Gujer W, Marais GR, Matsuo T (1987) Activated sludge model no.1, Technical Report. IAWQ, London, UK
XieYBWangDQiaoJFDynamic multi-objective intelligent optimal control toward wastewater treatment processesSci China Technol Sci20226556958010.1007/s11431-021-1960-7
FreitasJBSMarquezanLde Oliveira EvaldPJDPeñalozaEAGHernandez CelyMMA fuzzy-based predictive PID for DC motor speed controlInt J Dyn Control202410.1007/s40435-023-01368-2
TaghiehAZhangCAlattasKABouteraaYRathinasamySMohammadzadehAA predictive type-3 fuzzy control for under- actuated surface vehiclesOcean Eng2022266411301410.1016/j.oceaneng.2022.113014
CritesRWMiddlebrooksJBastianRKReedSCNatural wastewater treatment systems2014New YorkCRC Press10.1201/b16637
Rizwan AzharMEmadadeenAAdvanced control strategy for wastewater treatment process: a parametric studyInt J Chem Eng Appl20145335341
A Taghieh (1398_CR28) 2022; 266
S Revollar (1398_CR21) 2017; 7
A Taghieh (1398_CR35) 2021; 9
PG Georgieva (1398_CR16) 1999; 9
JBS Freitas (1398_CR29) 2024
S Boyd (1398_CR34) 1994
YB Xie (1398_CR23) 2022; 65
1398_CR41
1398_CR42
S Abdul Gaffar (1398_CR32) 2021
N Ballhysa (1398_CR4) 2020; 9
AM Nagy (1398_CR39) 2010; 49
L Debel Hansen (1398_CR18) 2021; 13
1398_CR43
1398_CR22
Y Qiao (1398_CR30) 2023
1398_CR9
S Revollar (1398_CR19) 2020; 12
RW Crites (1398_CR1) 2014
T Takagi (1398_CR24) 1985; 15
T Yang (1398_CR31) 2014; 136
W Gujer (1398_CR10) 1999; 39
K Tanaka (1398_CR25) 2001
A Khallouq (1398_CR37) 2021; 7
G Olsson (1398_CR2) 1999
AC Van Haandel (1398_CR3) 2012
W Wesley Eckenfelder (1398_CR8) 1998
KV Gernaey (1398_CR6) 2004; 19
SP Chakravarty (1398_CR17) 2022; 44
A Taghieh (1398_CR27) 2022; 129
L Matoug (1398_CR38) 2017; 46
1398_CR12
1398_CR11
M Rizwan Azhar (1398_CR13) 2014; 5
1398_CR33
J Yoneyama (1398_CR44) 2000; 111
N Sayadian (1398_CR26) 2024
AM Nagy (1398_CR40) 2011; 21
(1398_CR7) 2019
1398_CR14
A Taghieh (1398_CR36) 2021; 43
A Lahdhiri (1398_CR5) 2020
S Revollar (1398_CR20) 2018; 51
X Du (1398_CR15) 2018
References_xml – reference: Debel HansenLVengMDurdevicPCompressor scheduling and pressure control for an alternating aeration activated sludge process: a simulation study validated on plant dataWater2021138103710.3390/w13081037
– reference: NagyAMMourotGMarxBRagotJSchutzGSystematic multi-modeling methodology applied to an activated sludge reactor modelInd Eng Chem Res2010492790279910.1021/ie8017687
– reference: CritesRWMiddlebrooksJBastianRKReedSCNatural wastewater treatment systems2014New YorkCRC Press10.1201/b16637
– reference: TakagiTSugenoMFuzzy identification of systems and its application to modeling and controlIEEE Trans Syst Man Cybern198515166172
– reference: LahdhiriALesageGHannachiAHeranVSteady-state methodology for activated sludge model 1 (ASM1) state variable calculation in MBRWater202010.3390/w12113220
– reference: YangTQiuWMaYChadliMZhangLFuzzy model-based predictive control of dissolved oxygen in activated sludge processesNeurocomputing2014136889510.1016/j.neucom.2014.01.025
– reference: ChakravartySPRoyARoyPControl of activated sludge treatment process using pre-compensated multi-variable quantitative feedback theory-based controllerTrans Inst Measur Control20224450652210.1177/01423312211039048
– reference: OlssonGNewellBWastewater treatment systems: modelling, diagnosis and control1999LondonIWA Publishing
– reference: Petre E, Selișteanu D, Șulea-Iorgulescu C, Mehedințeanu S (2019) Mathematical modeling and control for an activated sludge process in a wastewater treatment plant. In: 20th International Carpathian control conference, Krakow-Wieliczka, Poland, 26–29 May 2019, pp 1–6
– reference: Dhouibi S, Jarray R, Bouallègue S (2023) Modelling and control of wastewater treatment systems: Case of activated sludge processes. In: 9th international conference on green energy and environmental engineering, Sousse, Tunisia, April 28–30, 2023
– reference: Henze M, Leslie Grady CP, Gujer W, Marais GR, Matsuo T (1987) Activated sludge model no.1, Technical Report. IAWQ, London, UK
– reference: Wesley EckenfelderWGrauPActivated sludge process design and control: theory and practice1998New YorkCRC Press10.1201/9780203968567
– reference: Weijers S (2000) Modelling, identification and control of activated sludge plants for nitrogen removal. PhD dissertation, Technische Universiteit Eindhoven, Pays Bas
– reference: Chadli M, Maquin D, Ragot J (2000) Relaxed stability conditions for Takagi-Sugeno fuzzy systems. In: IEEE international conference on systems, man and cybernetics, Nashville, TN, USA, 08–11 October 2000, pp 3514–3519
– reference: Dhouibi S, Bouallègue S (2022) Modeling and control design of an activated sludge process: A Multi-model approach. In: 21st IEEE international conference on sciences and techniques of automatic control and computer engineering, Sousse, Tunisia, December 19–21, 2022
– reference: GeorgievaPGFeyo de AzevedoSRobust control design of an activated sludge processInt J Robust Nonlinear Syst19999949967172541710.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G
– reference: Rizwan AzharMEmadadeenAAdvanced control strategy for wastewater treatment process: a parametric studyInt J Chem Eng Appl20145335341
– reference: BoydSEl GhaouiLFeronEBalakrishnanVLinear matrix inequalities in system and control theory1994PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970777
– reference: Huang S, Zhang L, Guo H, Chen P, Xia W, Hu C (2019) Modeling and optimization of the activated sludge process. In: 38th Chinese control conference, Guangzhou, China, 27-30 July 2019, pp 6481–6486
– reference: Abdul GaffarSMurali MohanSSeshagiri RaoAKarriRRRavindranGDehghaniMHFuzzy logic control of active sludge-based wastewater treatment plantsSoft computing techniques in solid waste and wastewater management, Chapter 252021Elsevier409422
– reference: FreitasJBSMarquezanLde Oliveira EvaldPJDPeñalozaEAGHernandez CelyMMA fuzzy-based predictive PID for DC motor speed controlInt J Dyn Control202410.1007/s40435-023-01368-2
– reference: LefebvreBThe activated sludge process: methods and recent developments2019New YorkNova Science Publishers
– reference: YoneyamaJNishikawaMKatayamaHIchikawaAOutput stabilization of Takagi-Sugeno fuzzy systemsFuzzy Sets Syst20001112253266174136010.1016/S0165-0114(98)00121-3
– reference: RevollarSVilanovaRVegaPFranciscoMMenesesMWastewater treatment plant operation: simple control schemes with a holistic perspectiveSustainability202012376810.3390/su12030768
– reference: Van HaandelACVan der LubbeJGMHandbook of biological wastewater treatment design and optimization of activated sludge systems2012LondonIWA Publishing
– reference: TaghiehAShafieiMHStatic output feedback control of switched nonlinear systems with time-varying delay and parametric uncertainties under asynchronous switchingTrans Inst Meas Control20214351156116710.1177/0142331220969056
– reference: BallhysaNKimSByeonSWastewater treatment plant control strategiesInt J Adv Smart Converg202091625
– reference: GujerWHenzeMLoosdrechtMMinoTActivated sludge model no.3Water Sci Technol19993918319310.2166/wst.1999.0039
– reference: TaghiehAZhangCAlattasKABouteraaYRathinasamySMohammadzadehAA predictive type-3 fuzzy control for under- actuated surface vehiclesOcean Eng2022266411301410.1016/j.oceaneng.2022.113014
– reference: TaghiehAMohammadzadehAZhangCKausarNCastilloOA type-3 fuzzy control for current sharing and voltage balancing in microgridsAppl Soft Comput202212910963610.1016/j.asoc.2022.109636
– reference: QiaoYWangKFuzzy sliding mode speed control strategy of permanent magnet motor under variable load conditionInt J Dyn Control202310.1007/s40435-023-01285-4
– reference: Chadli M, Maquin D, Ragot J (2002) An LMI formulation for output feedback stabilization in multiple model approach. In: 41st IEEE conference on decision and control, Las Vegas Nevada, USA, pp 311–316
– reference: RevollarSVegaPVilanovaRFranciscoMOptimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategiesAppl Sci20177881310.3390/app7080813
– reference: GernaeyKVVan LoosdrechtMCMHenzeMLindMJørgensenSBActivated sludge wastewater treatment plant modelling and simulation: state of the artEnviron Model Softw20041976378310.1016/j.envsoft.2003.03.005
– reference: TanakaKWangHOFuzzy control systems design and analysis: a linear matrix inequality approach2001New YorkWiley10.1002/0471224596
– reference: DuXWangJJegatheesanVShiGDissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithmAppl Sci201810.3390/app8020261
– reference: RevollarSVilanovaRFranciscoMVegaPPI dissolved oxygen control in wastewater treatment plants for plant wide nitrogen removal efficiencyIFAC-PapersOnLine20185145045510.1016/j.ifacol.2018.06.136
– reference: XieYBWangDQiaoJFDynamic multi-objective intelligent optimal control toward wastewater treatment processesSci China Technol Sci20226556958010.1007/s11431-021-1960-7
– reference: NagyAMMarxBMourotGSchutzGRagotJObservers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs: application to a wastewater treatment plantJ Process Control20112171105111410.1016/j.jprocont.2011.05.001
– reference: SayadianNJahangiriFAbediMAdaptive event-triggered fuzzy MPC for unknown networked IT-2 T-S fuzzy systemsInt J Dyn Control2024476862310.1007/s40435-023-01360-w
– reference: TaghiehAMohammadzadehATavoosiJMobayenSRojsiraphisalTAsadJHZhilenkovAObserver-based control for nonlinear time-delayed asynchronously switching systems: a new LMI approachMathematics2021922296810.3390/math9222968
– reference: KhallouqAKaramaAAbyadMObserver based robust H∞ fuzzy tracking control: application to an activated sludge processPeerJ Comput Sci2021712210.7717/peerj-cs.458
– reference: Henze M, Gujer W, Mino T, Matsuo T, Wetzel M, Marais GR (1994) Activated sludge model no. 2, Technical Report. IAWQ, London, UK
– reference: MatougLKhadirMTComparison between GPC and adaptive GPC based on Takagi Sugeno multi-model for an activated sludge reactorControl Cybern2017462147176
– year: 2024
  ident: 1398_CR26
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-023-01360-w
– volume-title: Natural wastewater treatment systems
  year: 2014
  ident: 1398_CR1
  doi: 10.1201/b16637
– start-page: 409
  volume-title: Soft computing techniques in solid waste and wastewater management, Chapter 25
  year: 2021
  ident: 1398_CR32
– volume: 7
  start-page: 813
  issue: 8
  year: 2017
  ident: 1398_CR21
  publication-title: Appl Sci
  doi: 10.3390/app7080813
– volume: 15
  start-page: 166
  year: 1985
  ident: 1398_CR24
  publication-title: IEEE Trans Syst Man Cybern
– volume: 266
  start-page: 113014
  issue: 4
  year: 2022
  ident: 1398_CR28
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113014
– ident: 1398_CR22
  doi: 10.1109/CarpathianCC.2019.8766060
– volume-title: The activated sludge process: methods and recent developments
  year: 2019
  ident: 1398_CR7
– ident: 1398_CR41
– ident: 1398_CR14
– volume: 12
  start-page: 768
  issue: 3
  year: 2020
  ident: 1398_CR19
  publication-title: Sustainability
  doi: 10.3390/su12030768
– volume: 129
  start-page: 109636
  year: 2022
  ident: 1398_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109636
– ident: 1398_CR12
– volume: 111
  start-page: 253
  issue: 2
  year: 2000
  ident: 1398_CR44
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(98)00121-3
– volume-title: Activated sludge process design and control: theory and practice
  year: 1998
  ident: 1398_CR8
  doi: 10.1201/9780203968567
– volume-title: Handbook of biological wastewater treatment design and optimization of activated sludge systems
  year: 2012
  ident: 1398_CR3
– year: 2020
  ident: 1398_CR5
  publication-title: Water
  doi: 10.3390/w12113220
– ident: 1398_CR33
  doi: 10.1109/ICSMC.2000.886553
– volume: 39
  start-page: 183
  year: 1999
  ident: 1398_CR10
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1999.0039
– ident: 1398_CR42
  doi: 10.1109/STA56120.2022.10019005
– ident: 1398_CR43
  doi: 10.1109/CDC.2002.1184510
– year: 2018
  ident: 1398_CR15
  publication-title: Appl Sci
  doi: 10.3390/app8020261
– volume: 9
  start-page: 949
  year: 1999
  ident: 1398_CR16
  publication-title: Int J Robust Nonlinear Syst
  doi: 10.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G
– year: 2023
  ident: 1398_CR30
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-023-01285-4
– ident: 1398_CR11
– volume-title: Linear matrix inequalities in system and control theory
  year: 1994
  ident: 1398_CR34
  doi: 10.1137/1.9781611970777
– volume: 9
  start-page: 16
  year: 2020
  ident: 1398_CR4
  publication-title: Int J Adv Smart Converg
– volume: 136
  start-page: 88
  year: 2014
  ident: 1398_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.025
– volume-title: Wastewater treatment systems: modelling, diagnosis and control
  year: 1999
  ident: 1398_CR2
– volume: 49
  start-page: 2790
  year: 2010
  ident: 1398_CR39
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie8017687
– volume: 13
  start-page: 1037
  issue: 8
  year: 2021
  ident: 1398_CR18
  publication-title: Water
  doi: 10.3390/w13081037
– volume: 43
  start-page: 1156
  issue: 5
  year: 2021
  ident: 1398_CR36
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331220969056
– volume: 46
  start-page: 147
  issue: 2
  year: 2017
  ident: 1398_CR38
  publication-title: Control Cybern
– volume: 44
  start-page: 506
  year: 2022
  ident: 1398_CR17
  publication-title: Trans Inst Measur Control
  doi: 10.1177/01423312211039048
– year: 2024
  ident: 1398_CR29
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-023-01368-2
– volume: 51
  start-page: 450
  year: 2018
  ident: 1398_CR20
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.06.136
– volume: 5
  start-page: 335
  year: 2014
  ident: 1398_CR13
  publication-title: Int J Chem Eng Appl
– volume: 19
  start-page: 763
  year: 2004
  ident: 1398_CR6
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2003.03.005
– volume-title: Fuzzy control systems design and analysis: a linear matrix inequality approach
  year: 2001
  ident: 1398_CR25
  doi: 10.1002/0471224596
– ident: 1398_CR9
  doi: 10.23919/ChiCC.2019.8866516
– volume: 21
  start-page: 1105
  issue: 7
  year: 2011
  ident: 1398_CR40
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2011.05.001
– volume: 7
  start-page: 1
  year: 2021
  ident: 1398_CR37
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.458
– volume: 65
  start-page: 569
  year: 2022
  ident: 1398_CR23
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-021-1960-7
– volume: 9
  start-page: 2968
  issue: 22
  year: 2021
  ident: 1398_CR35
  publication-title: Mathematics
  doi: 10.3390/math9222968
SSID ssj0002140249
ssib031263557
Score 2.298411
Snippet Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3123
SubjectTerms Activated sludge process
Carbon
Compensation
Complexity
Control
Control algorithms
Control and Systems Theory
Control theory
Controllers
Design
Dissolved oxygen
Dynamical Systems
Effluents
Energy consumption
Engineering
Fuzzy sets
Linear matrix inequalities
Neural networks
Nitrogen
Objectives
Optimization
Robust control
Simulation
Sludge
State space models
Variables
Vibration
Wastewater treatment
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA5aPejBf7FaJQdvupBNdrvZo4jFUxFbpQdhyc-mFKUt3W7BnnwH39AncZLutioq6HF3k7DMJDNfmJlvEDpVXDCX3Gp4HMAFBY6iACDq-RGjOhUpDeSs2UTUbPJOJ74pisKyMtu9DEk6Sz0vdrM8MLaa2GZNsJh7wTJaAXfHbcOG29Z9uYuYb_lVilietccU7hDU4WBqGxPSOu8U1TPfL_vZQy1g55dIqXNAjc3__foW2igAJ76Y7ZBttJT2d9D6BxrCXfTQFo-i23t7eW3llrMVm3w6ffasg9O4JB3HgG6x65sDc7Doa1xkueOBgUdsCyQmAFw1zp5y3U3xcFaCsIfuGlfty2uv6LrgKdDa2IvSiPJQRoJJQItGcKJMDE6MmCAFsCeIYnUBIjZEklAqrqWOQqOFMb7WxJdsH1X6g356gLAC40UUCbRUcRAFQigm61pTQwy8Z7KK_FLSiSooyW1njKdkTqbsJJeA5BInuSSoorP5nOGMkOPX0bVSgUlxOLOEwTXKB0MVhlV0Xips8fnn1Q7_NvwIrVGnc5suWEOV8ShPj9Gqmox72ejEbdp38x7kzQ
  priority: 102
  providerName: Springer Nature
Title Takagi–Sugeno fuzzy-based approach for modeling and control of an activated sludge process
URI https://link.springer.com/article/10.1007/s40435-024-01398-4
https://www.proquest.com/docview/3255178755
Volume 12
WOSCitedRecordID wos001190208500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2195-2698
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002140249
  issn: 2195-268X
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2195-2698
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002140249
  issn: 2195-268X
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2195-2698
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002140249
  issn: 2195-268X
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2195-2698
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140249
  issn: 2195-268X
  databaseCode: RSV
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5OBNi2nSbtuTqCielsVVWUQoeTQiyu7qPsA9-R_8h_4SJ9nUVUEvXgp9JNDMZOZLMvMNwK5KBXfBrSbNIlyg4FQUCESDMOFMF6JgkRwVm0hqtbTZzOp-w63rwypLm-gMtW4ru0d-wBH7hqhdcXzYeQps1Sh7uupLaEzCtGVJCF3oXqPUJx5aphV_qmctM8PVBHOImNkShayaNn0ejcums0QzNl3ZhmXwLA2i775qDEB_nJk6V3S28N-fWIR5D0LJ0UhrlmCiaC3D3BdqwhW4vRQP4u7-_fWt0bc8rsT0h8OXwDo9TUoicoKIl7haOtiGiJYmPvKdtA3eEps0MUAwq0n3sa_vCtIZpSWswtXZ6eXJeeArMQQKJdkLkiJhaSwTwSUiSCNSqkyGjo2aqEAAKKjiVYGDbaiksVSpljqJjRbGhFrTUPI1mGq1W8U6EIUGjSoaaamyKImEUFxWtWaGGnzOZQXCcsxz5WnKbbWMx_yTYNnJKUc55U5OeVSBvc82nRFJx59fb5XCyf2E7eZjyVRgvxTv-PXvvW383dsmzDKnUTZkcAumes_9Yhtm1KB3333egenj01r9YsepLV7r8Q1eLxrXH-Qb8pY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRJlQXmqgRZmASuwOp6xY3tRoaoPtWqJkBqkLJDMPKuqlZM2D5Ss-If-Rz-qX8Kdsd0UJLLLgqUfM7I9Z-4947n3XID3KhXcB7faNItwgYJTUSARDcKEM22EYZEsi00k7Xba7WZfl-CmzoVxYZW1TfSGWveU-0e-yZH7hoiuOP7cvwxc1Si3u1qX0ChhcWQmP3HJNtg63MXx_cDY_l5n5yCoqgoECp9qGCQmYWksE8ElsiErUqpshkaa2sggmRFU8ZZgLW6ppLFUqZY6ia0W1oZa01By7PcBLCONYJkPFTyp8ctDp-xS7SI6T8Bw9cI8A2euJCJrpd0qb8dn7zlhG5ce7cJAeJYG0Z--cUZ4_9qj9a5vf_V_-2hP4UlFssl2OSuewZIpnsPje9KLL-B7R5yL07PbX9cnI6dTS-xoOp0EzqlrUgutE2T0xNcKwjZEFJpUkf2kZ_GQuKSQMZJ1TQYXI31qSL9Mu3gJ3xbyeq-gUfQKswZEocGmikZaqixKIiEUly2tmaUWz3PZhLAe41xVMuyuGshFficg7XGRIy5yj4s8asLHuzb9UoRk7t3rNRjyyiAN8hkSmvCphtPs8r97ez2_t3fw6KDz5Tg_PmwfvYEV5tHswiPXoTG8GpkNeKjGw7PB1Vs_VQj8WDTMfgNnok2W
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-xMk3bA2yDiUJhfuCNRTi20ySP06ACgapKLagPkyL_iREChYo2SPC077BvuE_C2UlamDakaY9JbEu5s32_0939DmBXJ5L75FabpAIdFDyKEoFoEMacmVzmTKiq2UTc7yfjcTp4UsXvs92bkGRV0-BYmorZ_sTY_Xnhm-OEcZXFLoOCp0kgXsGycIn0zl8fnjc7ioeOa6WO67m7maE_wTwmZq5JIesm47qS5s_LPrdWCwj6W9TUG6Pe6v__xntYqYEo-VrtnA-wlBcf4d0TesI1-D6SV_Li8tePn8PScbkSWz483AfO8BnSkJETRL3E99PBOUQWhtTZ7-TG4iNxhRN3CGgNmV6X5iInk6o0YR3Oeoejb0dB3Y0h0KjNWRDnMUsiFUuuEEVamVBtUzRu1IocQaCkmnclittSRSOlE6NMHFkjrQ2NoaHin6BV3BT5BhCNlxrVVBilUxELKTVXXWOYpRbfc9WGsJF6pmuqctcx4zqbkyx7yWUoucxLLhNt2JvPmVREHS-O7jTKzOpDO804ulchXmBR1IYvjfIWn_--2ua_Df8MbwYHvez0uH-yBW-ZV7_LKOxAa3Zb5tvwWt_NLqe3O34vPwLXO_CV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Takagi%E2%80%93Sugeno+fuzzy-based+approach+for+modeling+and+control+of+an+activated+sludge+process&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Arifi%2C+Ali&rft.au=Bouall%C3%A8gue%2C+Soufiene&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=12&rft.issue=8&rft.spage=3123&rft.epage=3138&rft_id=info:doi/10.1007%2Fs40435-024-01398-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon