Takagi–Sugeno fuzzy-based approach for modeling and control of an activated sludge process
Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at the recovery of treated water are increasingly being proposed. Given its better performance, biological treatment via an activated sludge pro...
Saved in:
| Published in: | International journal of dynamics and control Vol. 12; no. 8; pp. 3123 - 3138 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2195-268X, 2195-2698 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at the recovery of treated water are increasingly being proposed. Given its better performance, biological treatment via an activated sludge process (ASP) represents the key phase in the overall treatment chain. In this work, a Takagi–Sugeno (TS) fuzzy-based modeling and control approach of an ASP is proposed and successfully carried out for the carbon removal. Using the formalism of linear parameter-varying state-space representation and convex polytopic transformation, a TS fuzzy model of the studied ASP is firstly established. Such a fuzzy model is then used to design advanced control laws that maintain the considered state variables, i.e., volume of the effluent and concentrations of the heterotrophic biomass, biodegradable substrate and dissolved oxygen, at the set-point values. Two stabilization control approaches, namely parallel distributed compensation and static output parallel distributed compensation, are proposed and successfully applied. All these control problems are reformulated as Lyapunov quadratic stability conditions and linear matrix inequality constraints. Demonstrative results are carried out and compared to show the effectiveness and superiority of the proposed TS fuzzy-based control approach of such complex and nonlinear biochemical processes. |
|---|---|
| AbstractList | Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at the recovery of treated water are increasingly being proposed. Given its better performance, biological treatment via an activated sludge process (ASP) represents the key phase in the overall treatment chain. In this work, a Takagi–Sugeno (TS) fuzzy-based modeling and control approach of an ASP is proposed and successfully carried out for the carbon removal. Using the formalism of linear parameter-varying state-space representation and convex polytopic transformation, a TS fuzzy model of the studied ASP is firstly established. Such a fuzzy model is then used to design advanced control laws that maintain the considered state variables, i.e., volume of the effluent and concentrations of the heterotrophic biomass, biodegradable substrate and dissolved oxygen, at the set-point values. Two stabilization control approaches, namely parallel distributed compensation and static output parallel distributed compensation, are proposed and successfully applied. All these control problems are reformulated as Lyapunov quadratic stability conditions and linear matrix inequality constraints. Demonstrative results are carried out and compared to show the effectiveness and superiority of the proposed TS fuzzy-based control approach of such complex and nonlinear biochemical processes. |
| Author | Arifi, Ali Bouallègue, Soufiene |
| Author_xml | – sequence: 1 givenname: Ali surname: Arifi fullname: Arifi, Ali organization: Research Laboratory in Automatic Control, National Engineering School of Tunis, National Engineering School of Gabès, University of Gabès – sequence: 2 givenname: Soufiene orcidid: 0000-0003-3172-6333 surname: Bouallègue fullname: Bouallègue, Soufiene email: soufiene.bouallegue@issig.rnu.tn organization: Research Laboratory in Automatic Control, National Engineering School of Tunis, High Institute of Industrial Systems of Gabès, University of Gabès |
| BookMark | eNp9kMtKxEAQRRsZQR3nB1w1uI72Iz3pLGXwBQMuVHAhNJV-xIwxPXYngq78B__QL7HHEQUXs6oquKdu1d1Do853FqEDSo4oIcVxzEnORUZYnhHKS5nlW2iX0VJkbFrK0W8v73bQJMYFIYTRPMnLXXR_A49QN5_vH9dDbTuP3fD29ppVEK3BsFwGD_oBOx_wkze2bboaQ2ew9l0ffIu9SyMG3Tcv0CcitoOpLU6YtjHuo20HbbSTnzpGt2enN7OLbH51fjk7mWea07LPClswKaoCeEWpcCCJdiWTOXG5LTkDovkU2JQ7UhFRaWkqUwhnwDlqDKEVH6PD9d7k-zzY2KuFH0KXLBVnQtBCFkIkFVurdPAxBuvUMjRPEF4VJWoVpFoHqVIy6jtIlSdI_oN000PfrP6Hpt2M8jUak09X2_B31QbqC7wEi6g |
| CitedBy_id | crossref_primary_10_3390_jmse13030490 |
| Cites_doi | 10.1007/s40435-023-01360-w 10.1201/b16637 10.3390/app7080813 10.1016/j.oceaneng.2022.113014 10.1109/CarpathianCC.2019.8766060 10.3390/su12030768 10.1016/j.asoc.2022.109636 10.1016/S0165-0114(98)00121-3 10.1201/9780203968567 10.3390/w12113220 10.1109/ICSMC.2000.886553 10.2166/wst.1999.0039 10.1109/STA56120.2022.10019005 10.1109/CDC.2002.1184510 10.3390/app8020261 10.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G 10.1007/s40435-023-01285-4 10.1137/1.9781611970777 10.1016/j.neucom.2014.01.025 10.1021/ie8017687 10.3390/w13081037 10.1177/0142331220969056 10.1177/01423312211039048 10.1007/s40435-023-01368-2 10.1016/j.ifacol.2018.06.136 10.1016/j.envsoft.2003.03.005 10.1002/0471224596 10.23919/ChiCC.2019.8866516 10.1016/j.jprocont.2011.05.001 10.7717/peerj-cs.458 10.1007/s11431-021-1960-7 10.3390/math9222968 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s40435-024-01398-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2195-2698 |
| EndPage | 3138 |
| ExternalDocumentID | 10_1007_s40435_024_01398_4 |
| GroupedDBID | -EM 0R~ 30V 4.4 406 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 RLLFE ROL RSV SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-7e7285b7a3b115fa80cf92840f4e932a0c36a263f0b05bc8dbd75fdaff1dd01b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190208500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2195-268X |
| IngestDate | Mon Sep 29 04:22:53 EDT 2025 Sat Nov 29 03:59:57 EST 2025 Tue Nov 18 21:31:44 EST 2025 Fri Feb 21 02:39:31 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Activated sludge process Takagi–Sugeno fuzzy modeling Parallel distributed compensation Carbon removal Wastewater treatment systems Static output feedback control |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7e7285b7a3b115fa80cf92840f4e932a0c36a263f0b05bc8dbd75fdaff1dd01b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3172-6333 |
| PQID | 3255178755 |
| PQPubID | 2043900 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3255178755 crossref_primary_10_1007_s40435_024_01398_4 crossref_citationtrail_10_1007_s40435_024_01398_4 springer_journals_10_1007_s40435_024_01398_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of dynamics and control |
| PublicationTitleAbbrev | Int. J. Dynam. Control |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Weijers S (2000) Modelling, identification and control of activated sludge plants for nitrogen removal. PhD dissertation, Technische Universiteit Eindhoven, Pays Bas RevollarSVilanovaRVegaPFranciscoMMenesesMWastewater treatment plant operation: simple control schemes with a holistic perspectiveSustainability202012376810.3390/su12030768 DuXWangJJegatheesanVShiGDissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithmAppl Sci201810.3390/app8020261 NagyAMMarxBMourotGSchutzGRagotJObservers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs: application to a wastewater treatment plantJ Process Control20112171105111410.1016/j.jprocont.2011.05.001 LahdhiriALesageGHannachiAHeranVSteady-state methodology for activated sludge model 1 (ASM1) state variable calculation in MBRWater202010.3390/w12113220 GernaeyKVVan LoosdrechtMCMHenzeMLindMJørgensenSBActivated sludge wastewater treatment plant modelling and simulation: state of the artEnviron Model Softw20041976378310.1016/j.envsoft.2003.03.005 RevollarSVegaPVilanovaRFranciscoMOptimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategiesAppl Sci20177881310.3390/app7080813 GeorgievaPGFeyo de AzevedoSRobust control design of an activated sludge processInt J Robust Nonlinear Syst19999949967172541710.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G TanakaKWangHOFuzzy control systems design and analysis: a linear matrix inequality approach2001New YorkWiley10.1002/0471224596 Chadli M, Maquin D, Ragot J (2000) Relaxed stability conditions for Takagi-Sugeno fuzzy systems. In: IEEE international conference on systems, man and cybernetics, Nashville, TN, USA, 08–11 October 2000, pp 3514–3519 TaghiehAMohammadzadehATavoosiJMobayenSRojsiraphisalTAsadJHZhilenkovAObserver-based control for nonlinear time-delayed asynchronously switching systems: a new LMI approachMathematics2021922296810.3390/math9222968 SayadianNJahangiriFAbediMAdaptive event-triggered fuzzy MPC for unknown networked IT-2 T-S fuzzy systemsInt J Dyn Control2024476862310.1007/s40435-023-01360-w QiaoYWangKFuzzy sliding mode speed control strategy of permanent magnet motor under variable load conditionInt J Dyn Control202310.1007/s40435-023-01285-4 Dhouibi S, Jarray R, Bouallègue S (2023) Modelling and control of wastewater treatment systems: Case of activated sludge processes. In: 9th international conference on green energy and environmental engineering, Sousse, Tunisia, April 28–30, 2023 Wesley EckenfelderWGrauPActivated sludge process design and control: theory and practice1998New YorkCRC Press10.1201/9780203968567 Dhouibi S, Bouallègue S (2022) Modeling and control design of an activated sludge process: A Multi-model approach. In: 21st IEEE international conference on sciences and techniques of automatic control and computer engineering, Sousse, Tunisia, December 19–21, 2022 YangTQiuWMaYChadliMZhangLFuzzy model-based predictive control of dissolved oxygen in activated sludge processesNeurocomputing2014136889510.1016/j.neucom.2014.01.025 Petre E, Selișteanu D, Șulea-Iorgulescu C, Mehedințeanu S (2019) Mathematical modeling and control for an activated sludge process in a wastewater treatment plant. In: 20th International Carpathian control conference, Krakow-Wieliczka, Poland, 26–29 May 2019, pp 1–6 TaghiehAMohammadzadehAZhangCKausarNCastilloOA type-3 fuzzy control for current sharing and voltage balancing in microgridsAppl Soft Comput202212910963610.1016/j.asoc.2022.109636 TaghiehAShafieiMHStatic output feedback control of switched nonlinear systems with time-varying delay and parametric uncertainties under asynchronous switchingTrans Inst Meas Control20214351156116710.1177/0142331220969056 BallhysaNKimSByeonSWastewater treatment plant control strategiesInt J Adv Smart Converg202091625 Huang S, Zhang L, Guo H, Chen P, Xia W, Hu C (2019) Modeling and optimization of the activated sludge process. In: 38th Chinese control conference, Guangzhou, China, 27-30 July 2019, pp 6481–6486 KhallouqAKaramaAAbyadMObserver based robust H∞ fuzzy tracking control: application to an activated sludge processPeerJ Comput Sci2021712210.7717/peerj-cs.458 BoydSEl GhaouiLFeronEBalakrishnanVLinear matrix inequalities in system and control theory1994PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970777 Van HaandelACVan der LubbeJGMHandbook of biological wastewater treatment design and optimization of activated sludge systems2012LondonIWA Publishing LefebvreBThe activated sludge process: methods and recent developments2019New YorkNova Science Publishers Henze M, Gujer W, Mino T, Matsuo T, Wetzel M, Marais GR (1994) Activated sludge model no. 2, Technical Report. IAWQ, London, UK Abdul GaffarSMurali MohanSSeshagiri RaoAKarriRRRavindranGDehghaniMHFuzzy logic control of active sludge-based wastewater treatment plantsSoft computing techniques in solid waste and wastewater management, Chapter 252021Elsevier409422 ChakravartySPRoyARoyPControl of activated sludge treatment process using pre-compensated multi-variable quantitative feedback theory-based controllerTrans Inst Measur Control20224450652210.1177/01423312211039048 NagyAMMourotGMarxBRagotJSchutzGSystematic multi-modeling methodology applied to an activated sludge reactor modelInd Eng Chem Res2010492790279910.1021/ie8017687 MatougLKhadirMTComparison between GPC and adaptive GPC based on Takagi Sugeno multi-model for an activated sludge reactorControl Cybern2017462147176 TakagiTSugenoMFuzzy identification of systems and its application to modeling and controlIEEE Trans Syst Man Cybern198515166172 Debel HansenLVengMDurdevicPCompressor scheduling and pressure control for an alternating aeration activated sludge process: a simulation study validated on plant dataWater2021138103710.3390/w13081037 Chadli M, Maquin D, Ragot J (2002) An LMI formulation for output feedback stabilization in multiple model approach. In: 41st IEEE conference on decision and control, Las Vegas Nevada, USA, pp 311–316 YoneyamaJNishikawaMKatayamaHIchikawaAOutput stabilization of Takagi-Sugeno fuzzy systemsFuzzy Sets Syst20001112253266174136010.1016/S0165-0114(98)00121-3 GujerWHenzeMLoosdrechtMMinoTActivated sludge model no.3Water Sci Technol19993918319310.2166/wst.1999.0039 OlssonGNewellBWastewater treatment systems: modelling, diagnosis and control1999LondonIWA Publishing RevollarSVilanovaRFranciscoMVegaPPI dissolved oxygen control in wastewater treatment plants for plant wide nitrogen removal efficiencyIFAC-PapersOnLine20185145045510.1016/j.ifacol.2018.06.136 Henze M, Leslie Grady CP, Gujer W, Marais GR, Matsuo T (1987) Activated sludge model no.1, Technical Report. IAWQ, London, UK XieYBWangDQiaoJFDynamic multi-objective intelligent optimal control toward wastewater treatment processesSci China Technol Sci20226556958010.1007/s11431-021-1960-7 FreitasJBSMarquezanLde Oliveira EvaldPJDPeñalozaEAGHernandez CelyMMA fuzzy-based predictive PID for DC motor speed controlInt J Dyn Control202410.1007/s40435-023-01368-2 TaghiehAZhangCAlattasKABouteraaYRathinasamySMohammadzadehAA predictive type-3 fuzzy control for under- actuated surface vehiclesOcean Eng2022266411301410.1016/j.oceaneng.2022.113014 CritesRWMiddlebrooksJBastianRKReedSCNatural wastewater treatment systems2014New YorkCRC Press10.1201/b16637 Rizwan AzharMEmadadeenAAdvanced control strategy for wastewater treatment process: a parametric studyInt J Chem Eng Appl20145335341 A Taghieh (1398_CR28) 2022; 266 S Revollar (1398_CR21) 2017; 7 A Taghieh (1398_CR35) 2021; 9 PG Georgieva (1398_CR16) 1999; 9 JBS Freitas (1398_CR29) 2024 S Boyd (1398_CR34) 1994 YB Xie (1398_CR23) 2022; 65 1398_CR41 1398_CR42 S Abdul Gaffar (1398_CR32) 2021 N Ballhysa (1398_CR4) 2020; 9 AM Nagy (1398_CR39) 2010; 49 L Debel Hansen (1398_CR18) 2021; 13 1398_CR43 1398_CR22 Y Qiao (1398_CR30) 2023 1398_CR9 S Revollar (1398_CR19) 2020; 12 RW Crites (1398_CR1) 2014 T Takagi (1398_CR24) 1985; 15 T Yang (1398_CR31) 2014; 136 W Gujer (1398_CR10) 1999; 39 K Tanaka (1398_CR25) 2001 A Khallouq (1398_CR37) 2021; 7 G Olsson (1398_CR2) 1999 AC Van Haandel (1398_CR3) 2012 W Wesley Eckenfelder (1398_CR8) 1998 KV Gernaey (1398_CR6) 2004; 19 SP Chakravarty (1398_CR17) 2022; 44 A Taghieh (1398_CR27) 2022; 129 L Matoug (1398_CR38) 2017; 46 1398_CR12 1398_CR11 M Rizwan Azhar (1398_CR13) 2014; 5 1398_CR33 J Yoneyama (1398_CR44) 2000; 111 N Sayadian (1398_CR26) 2024 AM Nagy (1398_CR40) 2011; 21 (1398_CR7) 2019 1398_CR14 A Taghieh (1398_CR36) 2021; 43 A Lahdhiri (1398_CR5) 2020 S Revollar (1398_CR20) 2018; 51 X Du (1398_CR15) 2018 |
| References_xml | – reference: Debel HansenLVengMDurdevicPCompressor scheduling and pressure control for an alternating aeration activated sludge process: a simulation study validated on plant dataWater2021138103710.3390/w13081037 – reference: NagyAMMourotGMarxBRagotJSchutzGSystematic multi-modeling methodology applied to an activated sludge reactor modelInd Eng Chem Res2010492790279910.1021/ie8017687 – reference: CritesRWMiddlebrooksJBastianRKReedSCNatural wastewater treatment systems2014New YorkCRC Press10.1201/b16637 – reference: TakagiTSugenoMFuzzy identification of systems and its application to modeling and controlIEEE Trans Syst Man Cybern198515166172 – reference: LahdhiriALesageGHannachiAHeranVSteady-state methodology for activated sludge model 1 (ASM1) state variable calculation in MBRWater202010.3390/w12113220 – reference: YangTQiuWMaYChadliMZhangLFuzzy model-based predictive control of dissolved oxygen in activated sludge processesNeurocomputing2014136889510.1016/j.neucom.2014.01.025 – reference: ChakravartySPRoyARoyPControl of activated sludge treatment process using pre-compensated multi-variable quantitative feedback theory-based controllerTrans Inst Measur Control20224450652210.1177/01423312211039048 – reference: OlssonGNewellBWastewater treatment systems: modelling, diagnosis and control1999LondonIWA Publishing – reference: Petre E, Selișteanu D, Șulea-Iorgulescu C, Mehedințeanu S (2019) Mathematical modeling and control for an activated sludge process in a wastewater treatment plant. In: 20th International Carpathian control conference, Krakow-Wieliczka, Poland, 26–29 May 2019, pp 1–6 – reference: Dhouibi S, Jarray R, Bouallègue S (2023) Modelling and control of wastewater treatment systems: Case of activated sludge processes. In: 9th international conference on green energy and environmental engineering, Sousse, Tunisia, April 28–30, 2023 – reference: Henze M, Leslie Grady CP, Gujer W, Marais GR, Matsuo T (1987) Activated sludge model no.1, Technical Report. IAWQ, London, UK – reference: Wesley EckenfelderWGrauPActivated sludge process design and control: theory and practice1998New YorkCRC Press10.1201/9780203968567 – reference: Weijers S (2000) Modelling, identification and control of activated sludge plants for nitrogen removal. PhD dissertation, Technische Universiteit Eindhoven, Pays Bas – reference: Chadli M, Maquin D, Ragot J (2000) Relaxed stability conditions for Takagi-Sugeno fuzzy systems. In: IEEE international conference on systems, man and cybernetics, Nashville, TN, USA, 08–11 October 2000, pp 3514–3519 – reference: Dhouibi S, Bouallègue S (2022) Modeling and control design of an activated sludge process: A Multi-model approach. In: 21st IEEE international conference on sciences and techniques of automatic control and computer engineering, Sousse, Tunisia, December 19–21, 2022 – reference: GeorgievaPGFeyo de AzevedoSRobust control design of an activated sludge processInt J Robust Nonlinear Syst19999949967172541710.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G – reference: Rizwan AzharMEmadadeenAAdvanced control strategy for wastewater treatment process: a parametric studyInt J Chem Eng Appl20145335341 – reference: BoydSEl GhaouiLFeronEBalakrishnanVLinear matrix inequalities in system and control theory1994PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970777 – reference: Huang S, Zhang L, Guo H, Chen P, Xia W, Hu C (2019) Modeling and optimization of the activated sludge process. In: 38th Chinese control conference, Guangzhou, China, 27-30 July 2019, pp 6481–6486 – reference: Abdul GaffarSMurali MohanSSeshagiri RaoAKarriRRRavindranGDehghaniMHFuzzy logic control of active sludge-based wastewater treatment plantsSoft computing techniques in solid waste and wastewater management, Chapter 252021Elsevier409422 – reference: FreitasJBSMarquezanLde Oliveira EvaldPJDPeñalozaEAGHernandez CelyMMA fuzzy-based predictive PID for DC motor speed controlInt J Dyn Control202410.1007/s40435-023-01368-2 – reference: LefebvreBThe activated sludge process: methods and recent developments2019New YorkNova Science Publishers – reference: YoneyamaJNishikawaMKatayamaHIchikawaAOutput stabilization of Takagi-Sugeno fuzzy systemsFuzzy Sets Syst20001112253266174136010.1016/S0165-0114(98)00121-3 – reference: RevollarSVilanovaRVegaPFranciscoMMenesesMWastewater treatment plant operation: simple control schemes with a holistic perspectiveSustainability202012376810.3390/su12030768 – reference: Van HaandelACVan der LubbeJGMHandbook of biological wastewater treatment design and optimization of activated sludge systems2012LondonIWA Publishing – reference: TaghiehAShafieiMHStatic output feedback control of switched nonlinear systems with time-varying delay and parametric uncertainties under asynchronous switchingTrans Inst Meas Control20214351156116710.1177/0142331220969056 – reference: BallhysaNKimSByeonSWastewater treatment plant control strategiesInt J Adv Smart Converg202091625 – reference: GujerWHenzeMLoosdrechtMMinoTActivated sludge model no.3Water Sci Technol19993918319310.2166/wst.1999.0039 – reference: TaghiehAZhangCAlattasKABouteraaYRathinasamySMohammadzadehAA predictive type-3 fuzzy control for under- actuated surface vehiclesOcean Eng2022266411301410.1016/j.oceaneng.2022.113014 – reference: TaghiehAMohammadzadehAZhangCKausarNCastilloOA type-3 fuzzy control for current sharing and voltage balancing in microgridsAppl Soft Comput202212910963610.1016/j.asoc.2022.109636 – reference: QiaoYWangKFuzzy sliding mode speed control strategy of permanent magnet motor under variable load conditionInt J Dyn Control202310.1007/s40435-023-01285-4 – reference: Chadli M, Maquin D, Ragot J (2002) An LMI formulation for output feedback stabilization in multiple model approach. In: 41st IEEE conference on decision and control, Las Vegas Nevada, USA, pp 311–316 – reference: RevollarSVegaPVilanovaRFranciscoMOptimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategiesAppl Sci20177881310.3390/app7080813 – reference: GernaeyKVVan LoosdrechtMCMHenzeMLindMJørgensenSBActivated sludge wastewater treatment plant modelling and simulation: state of the artEnviron Model Softw20041976378310.1016/j.envsoft.2003.03.005 – reference: TanakaKWangHOFuzzy control systems design and analysis: a linear matrix inequality approach2001New YorkWiley10.1002/0471224596 – reference: DuXWangJJegatheesanVShiGDissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithmAppl Sci201810.3390/app8020261 – reference: RevollarSVilanovaRFranciscoMVegaPPI dissolved oxygen control in wastewater treatment plants for plant wide nitrogen removal efficiencyIFAC-PapersOnLine20185145045510.1016/j.ifacol.2018.06.136 – reference: XieYBWangDQiaoJFDynamic multi-objective intelligent optimal control toward wastewater treatment processesSci China Technol Sci20226556958010.1007/s11431-021-1960-7 – reference: NagyAMMarxBMourotGSchutzGRagotJObservers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs: application to a wastewater treatment plantJ Process Control20112171105111410.1016/j.jprocont.2011.05.001 – reference: SayadianNJahangiriFAbediMAdaptive event-triggered fuzzy MPC for unknown networked IT-2 T-S fuzzy systemsInt J Dyn Control2024476862310.1007/s40435-023-01360-w – reference: TaghiehAMohammadzadehATavoosiJMobayenSRojsiraphisalTAsadJHZhilenkovAObserver-based control for nonlinear time-delayed asynchronously switching systems: a new LMI approachMathematics2021922296810.3390/math9222968 – reference: KhallouqAKaramaAAbyadMObserver based robust H∞ fuzzy tracking control: application to an activated sludge processPeerJ Comput Sci2021712210.7717/peerj-cs.458 – reference: Henze M, Gujer W, Mino T, Matsuo T, Wetzel M, Marais GR (1994) Activated sludge model no. 2, Technical Report. IAWQ, London, UK – reference: MatougLKhadirMTComparison between GPC and adaptive GPC based on Takagi Sugeno multi-model for an activated sludge reactorControl Cybern2017462147176 – year: 2024 ident: 1398_CR26 publication-title: Int J Dyn Control doi: 10.1007/s40435-023-01360-w – volume-title: Natural wastewater treatment systems year: 2014 ident: 1398_CR1 doi: 10.1201/b16637 – start-page: 409 volume-title: Soft computing techniques in solid waste and wastewater management, Chapter 25 year: 2021 ident: 1398_CR32 – volume: 7 start-page: 813 issue: 8 year: 2017 ident: 1398_CR21 publication-title: Appl Sci doi: 10.3390/app7080813 – volume: 15 start-page: 166 year: 1985 ident: 1398_CR24 publication-title: IEEE Trans Syst Man Cybern – volume: 266 start-page: 113014 issue: 4 year: 2022 ident: 1398_CR28 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113014 – ident: 1398_CR22 doi: 10.1109/CarpathianCC.2019.8766060 – volume-title: The activated sludge process: methods and recent developments year: 2019 ident: 1398_CR7 – ident: 1398_CR41 – ident: 1398_CR14 – volume: 12 start-page: 768 issue: 3 year: 2020 ident: 1398_CR19 publication-title: Sustainability doi: 10.3390/su12030768 – volume: 129 start-page: 109636 year: 2022 ident: 1398_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109636 – ident: 1398_CR12 – volume: 111 start-page: 253 issue: 2 year: 2000 ident: 1398_CR44 publication-title: Fuzzy Sets Syst doi: 10.1016/S0165-0114(98)00121-3 – volume-title: Activated sludge process design and control: theory and practice year: 1998 ident: 1398_CR8 doi: 10.1201/9780203968567 – volume-title: Handbook of biological wastewater treatment design and optimization of activated sludge systems year: 2012 ident: 1398_CR3 – year: 2020 ident: 1398_CR5 publication-title: Water doi: 10.3390/w12113220 – ident: 1398_CR33 doi: 10.1109/ICSMC.2000.886553 – volume: 39 start-page: 183 year: 1999 ident: 1398_CR10 publication-title: Water Sci Technol doi: 10.2166/wst.1999.0039 – ident: 1398_CR42 doi: 10.1109/STA56120.2022.10019005 – ident: 1398_CR43 doi: 10.1109/CDC.2002.1184510 – year: 2018 ident: 1398_CR15 publication-title: Appl Sci doi: 10.3390/app8020261 – volume: 9 start-page: 949 year: 1999 ident: 1398_CR16 publication-title: Int J Robust Nonlinear Syst doi: 10.1002/(SICI)1099-1239(199911)9:13<949::AID-RNC445>3.0.CO;2-G – year: 2023 ident: 1398_CR30 publication-title: Int J Dyn Control doi: 10.1007/s40435-023-01285-4 – ident: 1398_CR11 – volume-title: Linear matrix inequalities in system and control theory year: 1994 ident: 1398_CR34 doi: 10.1137/1.9781611970777 – volume: 9 start-page: 16 year: 2020 ident: 1398_CR4 publication-title: Int J Adv Smart Converg – volume: 136 start-page: 88 year: 2014 ident: 1398_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.025 – volume-title: Wastewater treatment systems: modelling, diagnosis and control year: 1999 ident: 1398_CR2 – volume: 49 start-page: 2790 year: 2010 ident: 1398_CR39 publication-title: Ind Eng Chem Res doi: 10.1021/ie8017687 – volume: 13 start-page: 1037 issue: 8 year: 2021 ident: 1398_CR18 publication-title: Water doi: 10.3390/w13081037 – volume: 43 start-page: 1156 issue: 5 year: 2021 ident: 1398_CR36 publication-title: Trans Inst Meas Control doi: 10.1177/0142331220969056 – volume: 46 start-page: 147 issue: 2 year: 2017 ident: 1398_CR38 publication-title: Control Cybern – volume: 44 start-page: 506 year: 2022 ident: 1398_CR17 publication-title: Trans Inst Measur Control doi: 10.1177/01423312211039048 – year: 2024 ident: 1398_CR29 publication-title: Int J Dyn Control doi: 10.1007/s40435-023-01368-2 – volume: 51 start-page: 450 year: 2018 ident: 1398_CR20 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.06.136 – volume: 5 start-page: 335 year: 2014 ident: 1398_CR13 publication-title: Int J Chem Eng Appl – volume: 19 start-page: 763 year: 2004 ident: 1398_CR6 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2003.03.005 – volume-title: Fuzzy control systems design and analysis: a linear matrix inequality approach year: 2001 ident: 1398_CR25 doi: 10.1002/0471224596 – ident: 1398_CR9 doi: 10.23919/ChiCC.2019.8866516 – volume: 21 start-page: 1105 issue: 7 year: 2011 ident: 1398_CR40 publication-title: J Process Control doi: 10.1016/j.jprocont.2011.05.001 – volume: 7 start-page: 1 year: 2021 ident: 1398_CR37 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.458 – volume: 65 start-page: 569 year: 2022 ident: 1398_CR23 publication-title: Sci China Technol Sci doi: 10.1007/s11431-021-1960-7 – volume: 9 start-page: 2968 issue: 22 year: 2021 ident: 1398_CR35 publication-title: Mathematics doi: 10.3390/math9222968 |
| SSID | ssj0002140249 ssib031263557 |
| Score | 2.298411 |
| Snippet | Wastewater treatment systems have recently taken on new trends resulting from the growing awareness of health and environmental risks. New strategies aimed at... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3123 |
| SubjectTerms | Activated sludge process Carbon Compensation Complexity Control Control algorithms Control and Systems Theory Control theory Controllers Design Dissolved oxygen Dynamical Systems Effluents Energy consumption Engineering Fuzzy sets Linear matrix inequalities Neural networks Nitrogen Objectives Optimization Robust control Simulation Sludge State space models Variables Vibration Wastewater treatment |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA2-FrrwLdYXWbjTYJLJmHQlIhZXIqjQhTBk8ihFaattBV35D_6hX-JNmrEq2I3LYSaByb3JPUnuPQehfeOVBiCviHWWE4gQhpS5YER75pXTlFqto9iEvLxUzWb9Kh249VNaZbUmxoXadk04Iz_KAPsy8K48P-k9kqAaFW5Xk4TGNJoNLAkspu5dV_6UscC0km71wsrMYTfBIyLmQaKQH6tmqqOJ1XSBaCaUK4e0jKyuiPgZq8YA9NedaQxFjaX__sQyWkwgFJ-OvGYFTbnOKlr4Rk24hu5u9L1utT_e3q-HgccV--Hr6wsJQc_iiogcA-LFUUsH2mDdsThlvuOuh0cciiaeAcxa3H8Y2pbDvVFZwjq6bZzfnF2QpMRADEzRAZFOcpWXUmclIEivFTW-DoGNeuEAAGpqsmMNg-1pSfPSKFtamXurvWfWUlZmG2im0-24TYQtpz4Xou6kECKzrMy5N1IyGHEPuytZQ6wa88IkmvKglvFQfBEsRzsVYKci2qkQNXTw1aY3IumY-PVOZZwiTdh-MbZMDR1W5h2__ru3rcm9baN5Hj0qpAzuoJnB09DtojnzPGj3n_aiu34CybDu8A priority: 102 providerName: ProQuest |
| Title | Takagi–Sugeno fuzzy-based approach for modeling and control of an activated sludge process |
| URI | https://link.springer.com/article/10.1007/s40435-024-01398-4 https://www.proquest.com/docview/3255178755 |
| Volume | 12 |
| WOSCitedRecordID | wos001190208500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2195-2698 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2195-2698 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2195-2698 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2195-2698 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: RSV dateStart: 20130301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB61oYdygD5FeEQ-9NZasr02do6AgjhFEQEUVZVWXj8QKgqIJEhw4j_wD_kljJ3d0FYUqb2stFrbWo3tmW80M98AfHHRWATyhvrgBUUL4WilJKc28miCZcxbm5tN6H7fjEbdQV0UNmmy3ZuQZNbUi2K3xAOTqolT1kTRNVS-hiU0dyY1bDgcnjSnqOCJX6WO5SV9LNCHEBkHi9SYUGybUV098_yyv1uoJ9j5R6Q0G6D91f_79XewUgNOsjM_Ie_hVRh_gOVfaAg_wo8j-9Oenj3c3Q9nibOVxNnt7Q1NBs6ThnScILoluW8OziF27Emd5U4uIr6SVCBxjcDVk8n5zJ8GcjkvQfgEx_u9o70DWnddoA6v45TqoIVRlbZFhWgxWsNc7KIRY1EGBHuWuWLboogjq5iqnPGV1yp6GyP3nvGq-Ayt8cU4rAHxgkUlZTdoKWXheaVEdFpzlEFET0q3gTeSLl1NSZ46Y5yXCzLlLLkSJVdmyZWyDV8Xcy7nhBwvjt5sNrCsL-ekLNCN4qiolGrDt2bDnj7_fbX1fxu-AW9F3vOULrgJrenVLGzBG3c9PZtcdWBpt9cfHHZStukQnwP1vZMP8iOVoOhv |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RWqn0QP_FFmh9aE-the04a-dQIQRFIOiqEltpD5VSxz8IgXYXdpcKTn2Hvkcfqk_C2JuwbaVy49BjlNhS4s8znzMz3wC8tkEbJPKaOu8ERQ9haZVLTk3gQXvDmDMmNZtQnY7u9YpPc_CzqYWJaZWNTUyG2g1s_Ee-liH35YiuPF8fntLYNSpGV5sWGlNY7PmLb3hkG73f3cL1fSPE9ofu5g6tuwpQi3AbU-WV0HmlTFYhGwpGMxsKNNIsSI9kxjCbtY1oZ4FVLK-sdpVTeXAmBO4c41WG896Bu0gjRJFSBQ8a_GY8KrvUUcToCQSeXkRi4CK2RBRt3avrdlL1XhS2ieXRMQ0kKzSVf_rGGeH9K0abXN_2w__toz2CxZpkk43prngMc77_BB78Jr34FL50zbE5PPr1_cfBJOrUkjC5vLyg0ak70gitE2T0JPUKwjHE9B2pM_vJIOAliUUh50jWHRmdTNyhJ8Np2cUz-Hwrr_cc5vuDvl8C4gQLuZSFV1LKzPEqF8EqxXGFA54eVQt4s8alrWXYYzeQk_JaQDrhokRclAkXpWzB2-sxw6kIyY1PrzRgKGuDNCpnSGjBuwZOs9v_nu3FzbO9gvs73Y_75f5uZ28ZFkRCc0yPXIH58dnEr8I9ez4-Gp29TFuFwNfbhtkVO3VNpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD54KdI-qL3R9VLz4FsbTDIZk30UdVEsi6CWfSgMmVxEKuOyN6hP_Q_9h_0lnmRnVi1tQXwccoE5uZzvkPN9B2DbBm0QyGvqvBMUPYSlZS45NYEH7Q1jzphUbEJ1u7rXa58-YPGnbPfmSXLKaYgqTdVop-_Czoz4FjVhIrM4ZlBkbU3lPCzKmEgf4_Wzr82OynjUWqnf9eLdLDCeEAkTi1ikUOzqXs2k-fu0j73VPQT949U0OaPOyvN_YxWWayBK9qY75zXM-eoNvHogT_gWvp2b7-by6vfPX2fjqOVKwvj29geNjs-RRoycIOolqZ4OjiGmcqTOfic3AT9JJE5MENA6Mrweu0tP-lNqwju46Bye7x_RuhoDtXhMR1R5JXReKpOViCKD0cyGNjo3FqRHEGiYzXYNmjuwkuWl1a50Kg_OhMCdY7zM3sNCdVP5D0CcYCGXsu2VlDJzvMxFsEpxtEHACEu1gDdWL2wtVR4rZlwXM5HlZLkCLVckyxWyBZ9mY_pToY7_9t5oFrOoD-2wyDC84niB5XkLPjeLd9_879nWntZ9C5ZODzrFl-PuyTq8FGn5Y0bhBiyMBmO_CS_sZHQ1HHxMe_kOk5vwpQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Takagi%E2%80%93Sugeno+fuzzy-based+approach+for+modeling+and+control+of+an+activated+sludge+process&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Arifi%2C+Ali&rft.au=Bouall%C3%A8gue%2C+Soufiene&rft.date=2024-08-01&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=12&rft.issue=8&rft.spage=3123&rft.epage=3138&rft_id=info:doi/10.1007%2Fs40435-024-01398-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40435_024_01398_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon |