A smoothing proximal gradient algorithm for matrix rank minimization problem

In this paper, we study the low-rank matrix minimization problem, where the loss function is convex but nonsmooth and the penalty term is defined by the cardinality function. We first introduce an exact continuous relaxation, that is, both problems have the same minimizers and the same optimal value...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 81; číslo 2; s. 519 - 538
Hlavní autoři: Yu, Quan, Zhang, Xinzhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the low-rank matrix minimization problem, where the loss function is convex but nonsmooth and the penalty term is defined by the cardinality function. We first introduce an exact continuous relaxation, that is, both problems have the same minimizers and the same optimal value. In particular, we introduce a class of lifted stationary points of the relaxed problem and show that any local minimizer of the relaxed problem must be a lifted stationary point. In addition, we derive lower bound property for the nonzero singular values of the lifted stationary point and hence also of the local minimizers of the relaxed problem. Then the smoothing proximal gradient (SPG) algorithm is proposed to find a lifted stationary point of the continuous relaxation model. Moreover, it is shown that any accumulating point of the sequence generated by SPG algorithm is a lifted stationary point. At last, numerical examples show the efficiency of the SPG algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-021-00337-9