Recursive estimation of multivariate hidden Markov model parameters

This article addresses a recursive parameter estimation algorithm for a hidden Markov model (HMM). The work focuses on an HMM with multiple states that are assumed to follow from a multivariate Gaussian distribution. The novelty of this study lies in a state transition probability calculation techni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational statistics Ročník 34; číslo 3; s. 1337 - 1353
Hlavní autoři: Vaičiulytė, Jūratė, Sakalauskas, Leonidas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Témata:
ISSN:0943-4062, 1613-9658
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article addresses a recursive parameter estimation algorithm for a hidden Markov model (HMM). The work focuses on an HMM with multiple states that are assumed to follow from a multivariate Gaussian distribution. The novelty of this study lies in a state transition probability calculation technique that simplifies the application of the backward stage of the forward–backward algorithm. For sequential observation analysis, the complexity of the created recursive algorithm for learning the HMM parameters is merely linear. Meanwhile, the classical Baum–Welch algorithm has second order complexity; therefore, it cannot be applied in online analysis situations. The properties of the proposed recursive expectation–maximization (EM) algorithm were explored by a computer simulation solving test examples and demonstrate that this algorithm can be efficiently applied to solve online tasks related to HMM parameter estimation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-019-00877-z