Query-based video summarization with multi-label classification network
Generic video summarization algorithms are characterized by the uniqueness of the final video summary result, which cannot satisfy the different summary requirements of different users for the same video. This paper addresses the task of query-based video summarization, which takes users’ queries an...
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 82; číslo 24; s. 37529 - 37549 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Generic video summarization algorithms are characterized by the uniqueness of the final video summary result, which cannot satisfy the different summary requirements of different users for the same video. This paper addresses the task of query-based video summarization, which takes users’ queries and long videos as inputs and aims to generate a query-based video summary. In this article, we propose a query-based video summarization algorithm with a multi-label classification network (MLC-SUM). Specifically, we treat video summarization as a target-based multi-label classification problem, and predict the correlation between video content and multi-concept labels by inputting convolutional features into a multi-layer perceptron, then use the cross-correlation of the labels to weight the predicted probability. Finally, we select the part of the video content with the highest relevance to the user’s query sentence as the video summary output. Experiments on three common datasets verify the effectiveness and superiority of the proposed algorithm. |
|---|---|
| AbstractList | Generic video summarization algorithms are characterized by the uniqueness of the final video summary result, which cannot satisfy the different summary requirements of different users for the same video. This paper addresses the task of query-based video summarization, which takes users’ queries and long videos as inputs and aims to generate a query-based video summary. In this article, we propose a query-based video summarization algorithm with a multi-label classification network (MLC-SUM). Specifically, we treat video summarization as a target-based multi-label classification problem, and predict the correlation between video content and multi-concept labels by inputting convolutional features into a multi-layer perceptron, then use the cross-correlation of the labels to weight the predicted probability. Finally, we select the part of the video content with the highest relevance to the user’s query sentence as the video summary output. Experiments on three common datasets verify the effectiveness and superiority of the proposed algorithm. |
| Author | Li, Yujun Hu, Xifeng Wang, Xuejing Zhang, Yu Hu, Weifeng Zhao, Jia Cui, Yan |
| Author_xml | – sequence: 1 givenname: Weifeng orcidid: 0000-0001-7821-5720 surname: Hu fullname: Hu, Weifeng email: huweifeng@mail.sdu.edu.cn organization: School of Information Science and Engineering, Shandong University – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: School of Information Science and Engineering, Shandong University, State Grid of China Technology College – sequence: 3 givenname: Yujun surname: Li fullname: Li, Yujun organization: School of Information Science and Engineering, Shandong University – sequence: 4 givenname: Jia surname: Zhao fullname: Zhao, Jia organization: School of Information Science and Engineering, Shandong University – sequence: 5 givenname: Xifeng surname: Hu fullname: Hu, Xifeng organization: School of Information Science and Engineering, Shandong University – sequence: 6 givenname: Yan surname: Cui fullname: Cui, Yan organization: Institute of Sociology, Chinese Academy of Social Sciences – sequence: 7 givenname: Xuejing surname: Wang fullname: Wang, Xuejing organization: School of Information Science and Engineering, Shandong University |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqOZZLPZPUrxHxRE0HPIbrKaut3UJGupn97YFQQPPc3AvN_MvDdDk971BqFzIJdAiLgKACSnmFCGgQMtMByhKXDBsBAUJqlnJcGCEzhBsxBWhEDBaT5Fd0-D8Ttcq2B09mm1cVkY1mvl7ZeK1vXZ1sa3bD100eJO1abLmk6FYFvbjPPexK3z76fouFVdMGe_dY5ebm-eF_d4-Xj3sLhe4oZBFbHQOSGFaKqqLAzLudZcV4WGomYtEN1SWmmmgKlccAVQNyVpQVOiBVBhuGZzdDHu3Xj3MZgQ5coNvk8nJS0FVMkuo0lFR1XjXQjetHLjbTK1k0DkT2ByDEymwOQ-MAkJKv9BjY17k9Er2x1G2YiGdKd_Nf7vqwPUN6USgX0 |
| CitedBy_id | crossref_primary_10_1007_s11042_023_16580_7 crossref_primary_10_1109_ACCESS_2024_3503276 crossref_primary_10_1109_ACCESS_2025_3538282 crossref_primary_10_1007_s13369_025_10133_w crossref_primary_10_1038_s41598_025_87824_9 crossref_primary_10_1007_s11042_023_16700_3 crossref_primary_10_1007_s11042_024_19977_0 crossref_primary_10_1109_JSEN_2025_3575352 |
| Cites_doi | 10.1007/s11042-018-7083-1 10.1016/j.image.2012.10.002 10.1109/LSP.2021.3066349 10.1007/s11045-019-00636-9 10.1109/TII.2019.2929228 10.1109/TIP.2020.2985868 10.1109/TMM.2012.2185041 10.1007/s11042-020-08628-9 10.1109/TIP.2017.2695887 10.1016/j.patrec.2010.08.004 10.1504/IJBET.2019.102975 10.1109/TCSVT.2004.841694 10.1109/TCSVT.2019.2904996 10.1007/s11042-022-12442-w 10.1006/jvci.1996.0030 10.1007/s11263-014-0794-5 10.1007/978-3-030-21074-84 10.1007/978-3-030-01258-8_22 10.1109/CVPR.2017.318 10.1109/ICCVW.2019.00192 10.1109/CVPR.2017.229 10.1145/319463.319654 10.1007/978-3-319-10584-0_33 10.1007/978-3-319-10599-4_35 10.1109/ICASSP.1996.543588 10.1109/ICIII.2011.332 10.1609/aaai.v34i07.6929 10.1109/ICCVW.2019.00195 10.1007/s11042-017-4911-7 10.1109/ICIP.1998.723655 10.21611/qirt.2015.0101 10.1145/3123266.3123297 10.1007/978-3-319-46478-7_47 10.1109/CVPR.2005.177 10.1007/978-3-319-46484-8_1 10.1609/aaai.v32i1.12255 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-15126-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library (ProQuest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 37549 |
| ExternalDocumentID | 10_1007_s11042_023_15126_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-7d40067c9986e345dd5d96d16b3f10df229d3a13a475a11bc80f1d20d7127e5d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000954481800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 02:12:38 EST 2025 Sat Nov 29 06:20:27 EST 2025 Tue Nov 18 22:42:18 EST 2025 Fri Feb 21 02:41:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | Deep learning Label correlation User subjectivity Multi-label classification Query-based video summarization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7d40067c9986e345dd5d96d16b3f10df229d3a13a475a11bc80f1d20d7127e5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7821-5720 |
| PQID | 2871977232 |
| PQPubID | 54626 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2871977232 crossref_primary_10_1007_s11042_023_15126_1 crossref_citationtrail_10_1007_s11042_023_15126_1 springer_journals_10_1007_s11042_023_15126_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Wang, Hong, Li, Zha, Yan, Chua (CR30) 2012; 14 CR17 CR39 Ngo, Ma, Zhang (CR22) 2005; 15 CR37 Cizmeciler, Erdem, Erdem (CR2) 2022; 81 Ji, Xiong, Pang, Li (CR11) 2020; 30 CR36 CR13 CR12 Lee, Grauman (CR18) 2015; 114 CR34 Kanmani, Narasimhan (CR14) 2019; 30 Li, Zhao, Lu (CR19) 2017; 26 CR32 CR31 Zhong, Wang, Zou (CR38) 2021; 28 Ejaz, Mehmood, Baik (CR5) 2013; 28 Pfeioeer, Lienhart, Fischer (CR23) 1996; 7 Fakhar, Kanan, Behrad (CR7) 2019; 78 Gong, Chao, Grauman, Sha (CR8) 2014; 3 CR4 Avila, Lopes, Luz (CR1) 2011; 32 CR3 CR6 CR29 CR28 CR9 CR27 CR26 CR25 CR24 CR21 CR20 Kanmani, Narasimhan (CR16) 2020; 79 Zhang (CR35) 2021 CR40 Hussain, Muhammad, Ullah, Cao, Baik, de Albuquerque (CR10) 2020; 16 Kanmani, Narasimhan (CR15) 2019; 31 Xiao, Zhao, Zhang (CR33) 2020; 29 N Ejaz (15126_CR5) 2013; 28 CW Ngo (15126_CR22) 2005; 15 15126_CR17 15126_CR39 15126_CR36 15126_CR37 M Kanmani (15126_CR14) 2019; 30 15126_CR20 15126_CR40 T Hussain (15126_CR10) 2020; 16 15126_CR24 15126_CR21 S Avila (15126_CR1) 2011; 32 K Cizmeciler (15126_CR2) 2022; 81 YJ Lee (15126_CR18) 2015; 114 B Gong (15126_CR8) 2014; 3 M Wang (15126_CR30) 2012; 14 M Kanmani (15126_CR15) 2019; 31 Z Ji (15126_CR11) 2020; 30 15126_CR27 15126_CR28 Y Zhang (15126_CR35) 2021 X Li (15126_CR19) 2017; 26 15126_CR25 15126_CR26 15126_CR29 M Kanmani (15126_CR16) 2020; 79 B Fakhar (15126_CR7) 2019; 78 S Pfeioeer (15126_CR23) 1996; 7 15126_CR31 15126_CR12 15126_CR34 R Zhong (15126_CR38) 2021; 28 15126_CR13 15126_CR3 15126_CR32 15126_CR4 15126_CR6 15126_CR9 S Xiao (15126_CR33) 2020; 29 |
| References_xml | – ident: CR4 – ident: CR39 – ident: CR37 – ident: CR12 – volume: 78 start-page: 16995 issue: 12 year: 2019 end-page: 17025 ident: CR7 article-title: Event detection in soccer videos using unsupervised learning of spatiotemporal features based on pooled spatial pyramid model publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7083-1 – volume: 28 start-page: 34 issue: 1 year: 2013 end-page: 44 ident: CR5 article-title: Efficient visual attention based framework for extracting key frames from videos publication-title: Signal Process Image Commun doi: 10.1016/j.image.2012.10.002 – volume: 28 start-page: 663 year: 2021 end-page: 667 ident: CR38 article-title: Graph attention networks adjusted bi-LSTM for video summarization publication-title: IEEE Sign Proc Lett doi: 10.1109/LSP.2021.3066349 – volume: 30 start-page: 1911 issue: 4 year: 2019 end-page: 1935 ident: CR14 article-title: An optimal weighted averaging fusion strategy for remotely sensed images[J] publication-title: Multidim Syst Sign Process doi: 10.1007/s11045-019-00636-9 – year: 2021 ident: CR35 publication-title: Research on video summarization based on semantic content understanding – ident: CR6 – volume: 16 start-page: 77 issue: 1 year: 2020 end-page: 86 ident: CR10 article-title: Cloud-assisted multiview video summarization using CNN and bidirectional LSTM publication-title: IEEE Trans Indust Inform doi: 10.1109/TII.2019.2929228 – ident: CR29 – volume: 29 start-page: 5889 year: 2020 end-page: 5899 ident: CR33 article-title: Query-biased self-attentive network for query-focused video summarization publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2985868 – ident: CR40 – ident: CR25 – ident: CR27 – volume: 14 start-page: 975 issue: 4 year: 2012 end-page: 985 ident: CR30 article-title: Event driven web video summarization by tag localization and key-shot identification publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2012.2185041 – volume: 3 start-page: 2069 year: 2014 end-page: 2077 ident: CR8 article-title: Diverse sequential subset selection for supervised video summarization publication-title: Adv Neural Inf Proces Syst – ident: CR21 – volume: 79 start-page: 25 year: 2020 end-page: 26 ident: CR16 article-title: Optimal fusion aided face recognition from visible and thermal face images[J] publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08628-9 – volume: 26 start-page: 3652 issue: 8 year: 2017 end-page: 3664 ident: CR19 article-title: A general framework for edited video and raw video summarization publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2695887 – volume: 32 start-page: 56 issue: 1 year: 2011 end-page: 68 ident: CR1 article-title: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2010.08.004 – volume: 31 start-page: 278 issue: 3 year: 2019 end-page: 291 ident: CR15 article-title: Particle swarm optimisation aided weighted averaging fusion strategy for CT and MRI medical images[J] publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2019.102975 – ident: CR3 – ident: CR17 – volume: 15 start-page: 296 issue: 2 year: 2005 end-page: 305 ident: CR22 article-title: Video summarization and scene detection by graph modeling publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2004.841694 – ident: CR31 – ident: CR13 – ident: CR9 – ident: CR32 – volume: 30 start-page: 1709 issue: 6 year: 2020 end-page: 1717 ident: CR11 article-title: Video summarization with attention-based encoder-decoder networks publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2019.2904996 – ident: CR34 – volume: 81 start-page: 17457 issue: 12 year: 2022 end-page: 17482 ident: CR2 article-title: Leveraging semantic saliency maps for query-specific video summarization[J] publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12442-w – ident: CR36 – volume: 7 start-page: 345 issue: 4 year: 1996 end-page: 353 ident: CR23 article-title: Abstracting digital movies automatically publication-title: J Vis Commun Image Represent doi: 10.1006/jvci.1996.0030 – volume: 114 start-page: 38 issue: 1 year: 2015 end-page: 55 ident: CR18 article-title: Predicting important objects for egocentric video summarization publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0794-5 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 15126_CR6 doi: 10.1007/978-3-030-21074-84 – volume: 7 start-page: 345 issue: 4 year: 1996 ident: 15126_CR23 publication-title: J Vis Commun Image Represent doi: 10.1006/jvci.1996.0030 – ident: 15126_CR25 doi: 10.1007/978-3-030-01258-8_22 – ident: 15126_CR21 doi: 10.1109/CVPR.2017.318 – volume-title: Research on video summarization based on semantic content understanding year: 2021 ident: 15126_CR35 – volume: 16 start-page: 77 issue: 1 year: 2020 ident: 15126_CR10 publication-title: IEEE Trans Indust Inform doi: 10.1109/TII.2019.2929228 – ident: 15126_CR17 doi: 10.1109/ICCVW.2019.00192 – ident: 15126_CR4 doi: 10.1109/CVPR.2017.229 – volume: 28 start-page: 34 issue: 1 year: 2013 ident: 15126_CR5 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2012.10.002 – ident: 15126_CR27 – volume: 14 start-page: 975 issue: 4 year: 2012 ident: 15126_CR30 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2012.2185041 – volume: 15 start-page: 296 issue: 2 year: 2005 ident: 15126_CR22 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2004.841694 – volume: 30 start-page: 1911 issue: 4 year: 2019 ident: 15126_CR14 publication-title: Multidim Syst Sign Process doi: 10.1007/s11045-019-00636-9 – volume: 28 start-page: 663 year: 2021 ident: 15126_CR38 publication-title: IEEE Sign Proc Lett doi: 10.1109/LSP.2021.3066349 – volume: 114 start-page: 38 issue: 1 year: 2015 ident: 15126_CR18 publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0794-5 – ident: 15126_CR28 doi: 10.1145/319463.319654 – volume: 79 start-page: 25 year: 2020 ident: 15126_CR16 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08628-9 – ident: 15126_CR9 doi: 10.1007/978-3-319-10584-0_33 – volume: 81 start-page: 17457 issue: 12 year: 2022 ident: 15126_CR2 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12442-w – ident: 15126_CR37 – ident: 15126_CR24 doi: 10.1007/978-3-319-10599-4_35 – ident: 15126_CR31 doi: 10.1109/ICASSP.1996.543588 – ident: 15126_CR34 doi: 10.1109/ICIII.2011.332 – ident: 15126_CR32 doi: 10.1609/aaai.v34i07.6929 – volume: 31 start-page: 278 issue: 3 year: 2019 ident: 15126_CR15 publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2019.102975 – volume: 26 start-page: 3652 issue: 8 year: 2017 ident: 15126_CR19 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2695887 – ident: 15126_CR12 doi: 10.1109/ICCVW.2019.00195 – ident: 15126_CR13 doi: 10.1007/s11042-017-4911-7 – ident: 15126_CR40 doi: 10.1109/ICIP.1998.723655 – volume: 78 start-page: 16995 issue: 12 year: 2019 ident: 15126_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7083-1 – volume: 29 start-page: 5889 year: 2020 ident: 15126_CR33 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2985868 – ident: 15126_CR20 doi: 10.21611/qirt.2015.0101 – volume: 32 start-page: 56 issue: 1 year: 2011 ident: 15126_CR1 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2010.08.004 – ident: 15126_CR29 doi: 10.1145/3123266.3123297 – volume: 3 start-page: 2069 year: 2014 ident: 15126_CR8 publication-title: Adv Neural Inf Proces Syst – ident: 15126_CR36 doi: 10.1007/978-3-319-46478-7_47 – ident: 15126_CR3 doi: 10.1109/CVPR.2005.177 – volume: 30 start-page: 1709 issue: 6 year: 2020 ident: 15126_CR11 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2019.2904996 – ident: 15126_CR26 doi: 10.1007/978-3-319-46484-8_1 – ident: 15126_CR39 doi: 10.1609/aaai.v32i1.12255 |
| SSID | ssj0016524 |
| Score | 2.37781 |
| Snippet | Generic video summarization algorithms are characterized by the uniqueness of the final video summary result, which cannot satisfy the different summary... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 37529 |
| SubjectTerms | Algorithms Classification Computer Communication Networks Computer Science Cross correlation Data Structures and Information Theory Datasets Deep learning Design Labels Multilayer perceptrons Multilayers Multimedia Multimedia Information Systems Neural networks Queries Semantics Special Purpose and Application-Based Systems User requirements Video data |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection (ProQuest) dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBQgFRKCgDG1jEcR7OhFDFY4AKJEDdosTnSEhVWvpA4t_jS5wWkOjC7MSKcmd_n32PD-BUIcViuGRRFmXMz2PJpDk1sxC10ErIVJYaS6_3Ua8n-_340V64TWxaZb0nlhs1DhXdkV8QszdcxRCAy9E7I9Uoiq5aCY1VWCNmQyl9D253HkUIAytqK11mkJHbopmqdI5TYYpBLEaYFzL-E5gWbPNXgLTEnZvmf794G7Ys43SuKhfZgRVdtKBZqzk4dnG3YPNba8JduH2a6fEnI5BDh2r1hk5V52brNh26wHXKdERmHEkPHEU8nBKPqvGiyi_fg5eb6-fuHbOiC0yZ1ThlEfqEYMocw0It_AAxwDhEHmYi5y7mnhejSLlI_ShIOc-UdHOOnosR9yIdoNiHRjEs9AE4Ms8k-uaAlabCFz5Ksxco6WtPpmEYoWwDr_94omxHchLGGCSLXspkpcRYKSmtlPA2nM3fGVX9OJY-3alNk9i1OUkWdmnDeW3cxfDfsx0un-0INrzSnyjTrwON6Ximj2FdfUzfJuOT0jO_AD4I5sU priority: 102 providerName: ProQuest |
| Title | Query-based video summarization with multi-label classification network |
| URI | https://link.springer.com/article/10.1007/s11042-023-15126-1 https://www.proquest.com/docview/2871977232 |
| Volume | 82 |
| WOSCitedRecordID | wos000954481800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5080EfnE7F6Rx98E0DTdM26aOOTUGdc-qcvpQ2SUEYm-yH4H9v0qarigr6EihNQ7nk-t317rsDOORCx2IwQzSmMXKTgCGmvGbkC0kkJyxiaY-l_iXtdNhgEHQNKWyaZ7vnIcn0S12Q3bCmkiiMQRqlfKR8nrKCO6YbNvRu-4vYge-ZVrbMRgoPsaHKfL_GZzgqbMwvYdEUbdqV_73nBqwb69I6yY7DJizJURUqeecGyyhyFdY-lCHcgrObuZy8IQ1owtK8vLGVcdoMR9PSP2utNPUQqUMjhxbXNrdOMsruj7Jc8m24b7fumufINFhAXGneDFHharTiyuXyJXE9ITwR-AL7MUmwLRLHCQSJMIlc6kUYx5zZCRaOLSh2qPQE2YHSaDySu2CxJGbCVc5UFBGXuIIpvefMlQ6LfJ8KVgOcyznkpvq4boIxDIu6yVpuoZJbmMotxDU4WjzzktXe-HV2Pd--0OjhNNT-oLJwldlYg-N8u4rbP6-297fp-7DqpDuus_zqUJpN5vIAVvjr7Hk6acAyfXhsQPm01en21NUFRWq8spt6dK7V2PWeGukpfgd8NuLq |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JTxsxFH4KiwQ9sIRWhKX4ACewGo89Y-dQVVXbAEqIQALEbZjx80iVUEKTAOJP8RvrN0vSIsGNA2fPWJrx9za_5QPYtUi5GGG4TnXKVdYy3PiomUfopLPSJCbnWLrs6l7PXF21TmvwVPXCUFllpRNzRY0DS3fkX8iz976KdwC-3f7hxBpF2dWKQqOARcc9PviQbfT1-Kc_370gaP86_3HES1YBbj3cxlyjIhVtfZwROalCxBBbEYoolZloYhYELZSJkInSYSJEak0zExg0UYtAuxCl33cG5pQ0muSqo_kkaxGFJYmuaXJviUXZpFO06glqhPEWkpONjbj43xBOvdtnCdnczrWX39sfWoGl0qNm3wsRWIWa69dhuWKrYKXyqsOHf0YvrsHh2Z0bPnIy4sioF3HAij6-si-V0QU1y8stuRcUd8MsxRlUWFWs94v6-Y9w8SYf9wlm-4O-WwdmstSg8gFkkkglFRqv66xRLjBJFGk0DRDVCce2nLhOxB838XRWNKEi9qiIc1TEogH7k3dui3kjrz69VUEhLnXPKJ7ioAEHFZimyy_vtvH6bjuwcHR-0o27x73OJiwGOZapqnELZsfDO7cN8_Z-_Hs0_JxLBYPrtwbZX4FCQh0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4FihA98K5ICWUPcKIrsl7buzlUVQVNQaAoSIBQL8beWUuVUEKTAOKv9dd1x14ngAS3HDivvZK937x25psB2DFIuRihucpUxsO8pbl2UTOP0UprpE51MWPp8lR1OvrqqtWtwb-KC0NllZVOLBQ19g3dke-TZ-98FecA7Oe-LKJ72P5--5fTBCnKtFbjNEqInNjHBxe-Db8dH7qz3g2C9s_zgyPuJwxw46A34gpDUtfGxRyxlWGEGGErRhFnMhdNzIOghTIVMg1VlAqRGd3MBQZNVCJQNkLp9p2BD8rFmFRO2I1-jzMYceQH6uomd1ZZeMJOSdsTRIpx1pKTvY25eG4UJ57ui-RsYfPaS-_5by3Dove02Y9SNFagZnursFRNsWBeqa3CxyctGdfg19mdHTxyMu7IiKPYZyW_z_NVGV1cs6IMkzsBsjfMUPxBBVfleq-sq1-Hi6l83CeY7fV7dgOYzjONoQss01SGMkTtdKDRoQ10GscKdR1EddqJ8Z3YaSDITTLpIU0ISRxCkgIhiajD3vid27IPyZtPNypYJF4nDZMJJurwtQLWZPn13T6_vds2zDtsJafHnZNNWAgKWFOxYwNmR4M7uwVz5n70Zzj4UggIg-tpY-w_Qb9LQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query-based+video+summarization+with+multi-label+classification+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Hu%2C+Weifeng&rft.au=Zhang%2C+Yu&rft.au=Li%2C+Yujun&rft.au=Zhao%2C+Jia&rft.date=2023-10-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=24&rft.spage=37529&rft.epage=37549&rft_id=info:doi/10.1007%2Fs11042-023-15126-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15126_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |