High-order accurate multi-sub-step implicit integration algorithms with dissipation control for hyperbolic problems

This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The proposed methods achieve third-order consistency per sub-step, and thus, the trapezoidal rule is always employed in the first sub-step. This...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archive of applied mechanics (1991) Ročník 94; číslo 8; s. 2285 - 2334
Hlavní autoři: Li, Jinze, Li, Hua, Yu, Kaiping, Zhao, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Témata:
ISSN:0939-1533, 1432-0681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The proposed methods achieve third-order consistency per sub-step, and thus, the trapezoidal rule is always employed in the first sub-step. This paper demonstrates for the first time that the proposed s -sub-step implicit method with s ≤ 6 can reach s th-order accuracy when achieving dissipation control and unconditional stability simultaneously. Hence, this paper develops, analyzes, and compares four cost-optimal high-order implicit algorithms within the present s -sub-step method using three, four, five, and six sub-steps. Each high-order implicit algorithm shares identical effective stiffness matrices to achieve optimal spectral properties. Unlike the published algorithms, the proposed high-order methods do not suffer from the order reduction for solving forced vibrations. Moreover, the novel methods overcome the defect that the authors’ previous algorithms require an additional solution to obtain accurate accelerations. Linear and nonlinear examples are solved to confirm the numerical performance and superiority of four novel high-order algorithms.
AbstractList This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The proposed methods achieve third-order consistency per sub-step, and thus, the trapezoidal rule is always employed in the first sub-step. This paper demonstrates for the first time that the proposed s -sub-step implicit method with s ≤ 6 can reach s th-order accuracy when achieving dissipation control and unconditional stability simultaneously. Hence, this paper develops, analyzes, and compares four cost-optimal high-order implicit algorithms within the present s -sub-step method using three, four, five, and six sub-steps. Each high-order implicit algorithm shares identical effective stiffness matrices to achieve optimal spectral properties. Unlike the published algorithms, the proposed high-order methods do not suffer from the order reduction for solving forced vibrations. Moreover, the novel methods overcome the defect that the authors’ previous algorithms require an additional solution to obtain accurate accelerations. Linear and nonlinear examples are solved to confirm the numerical performance and superiority of four novel high-order algorithms.
This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The proposed methods achieve third-order consistency per sub-step, and thus, the trapezoidal rule is always employed in the first sub-step. This paper demonstrates for the first time that the proposed s-sub-step implicit method with s≤6 can reach sth-order accuracy when achieving dissipation control and unconditional stability simultaneously. Hence, this paper develops, analyzes, and compares four cost-optimal high-order implicit algorithms within the present s-sub-step method using three, four, five, and six sub-steps. Each high-order implicit algorithm shares identical effective stiffness matrices to achieve optimal spectral properties. Unlike the published algorithms, the proposed high-order methods do not suffer from the order reduction for solving forced vibrations. Moreover, the novel methods overcome the defect that the authors’ previous algorithms require an additional solution to obtain accurate accelerations. Linear and nonlinear examples are solved to confirm the numerical performance and superiority of four novel high-order algorithms.
Author Li, Hua
Li, Jinze
Yu, Kaiping
Zhao, Rui
Author_xml – sequence: 1
  givenname: Jinze
  surname: Li
  fullname: Li, Jinze
  organization: School of Astronautics, Harbin Institute of Technology
– sequence: 2
  givenname: Hua
  surname: Li
  fullname: Li, Hua
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University
– sequence: 3
  givenname: Kaiping
  surname: Yu
  fullname: Yu, Kaiping
  email: kaipingyu1968@gmail.com
  organization: School of Astronautics, Harbin Institute of Technology
– sequence: 4
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: School of Astronautics, Harbin Institute of Technology
BookMark eNp9kM9LwzAUx4NMcJv-A54CnqP50a7NUYY6YeBFzyFJ0y6jbWqSIv3vjasgeNghvMP7fN7L-67Aone9AeCW4HuCcfEQMM4IR5hm6W1YgaYLsCQZowhvSrIAS8wZRyRn7AqsQjjixOcUL0HY2eaAnK-Mh1Lr0ctoYDe20aIwKhSiGaDthtZqG6Hto2kSYV0PZds4b-OhC_ArFVjZEOww97Tro3ctrJ2Hh2kwXrk0AA7eqdZ04Rpc1rIN5ua3rsHH89P7dof2by-v28c90ozwiIoK50VVZpowTYuNKqnmVGZK5tqYQmW8zDjllaoLXePUlVxyotUmk1Vea6XYGtzNc9Piz9GEKI5u9H1aKRjNOSa0JCxR5Uxp70Lwphbp1NMd0UvbCoLFT8RijlikiMUpYjEllf5TB2876afzEpulkOC-Mf7vV2esb87slR0
CitedBy_id crossref_primary_10_1002_nme_7639
Cites_doi 10.1007/s00366-014-0390-x
10.1007/s00419-022-02286-z
10.1007/s11071-020-06020-8
10.1016/S0045-7825(00)00189-4
10.1007/s11071-020-06101-8
10.1002/nme.7291
10.1016/S0045-7825(02)00264-5
10.1007/BF00363983
10.1016/0045-7825(94)90061-2
10.1002/nme.1620151011
10.1002/eqe.4290020208
10.1002/(SICI)1097-0207(19961030)39:20<3475::AID-NME10>3.0.CO;2-H
10.1007/s00366-020-01129-1
10.1002/eqe.4290060111
10.1016/j.apm.2018.12.027
10.1016/j.cja.2020.05.005
10.1061/JMCEA3.0000098
10.1002/(SICI)1097-0207(19960630)39:12<2131::AID-NME947>3.0.CO;2-Z
10.1142/S0219455421500735
10.1016/j.compstruc.2022.106814
10.1016/0045-7825(92)90115-Z
10.1016/j.compstruc.2005.08.001
10.1142/S0219455415500546
10.1243/09544062JMES2093
10.1016/j.cma.2015.06.016
10.1016/S0045-7825(96)01191-7
10.1108/02644400810891544
10.1007/s00419-019-01637-7
10.1016/j.compstruc.2013.06.007
10.1016/j.apm.2022.10.012
10.1007/s11831-021-09536-3
10.1016/j.compstruc.2018.11.001
10.1016/j.compstruc.2012.01.009
10.1115/1.4036821
10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
10.1016/j.compstruc.2006.09.004
10.1016/j.compstruc.2018.10.008
10.1007/s11071-019-04936-4
10.1142/S0219455421501066
10.1115/1.2900803
10.1002/nme.6574
10.1002/eqe.4290150710
10.1016/j.cma.2021.114436
10.1002/eqe.4290050306
10.2140/jomms.2017.12.57
10.1016/S0045-7825(99)00024-9
10.1061/(ASCE)0733-9445(2008)134:6(973)
10.1007/s00466-003-0469-5
10.1007/BF00913408
10.1016/0021-9991(92)90331-R
10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
10.1002/nme.637
10.1016/S0045-7825(96)01243-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00419-024-02637-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0681
EndPage 2334
ExternalDocumentID 10_1007_s00419_024_02637_y
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: HIT.NSRIF.2020014
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: China Scholarship Council
  grantid: 202006120104
  funderid: http://dx.doi.org/10.13039/501100004543
– fundername: National Postdoctoral Fellowship Program
  grantid: GZC20233464
– fundername: National Natural Science Foundation of China
  grantid: 12272105; 12102103
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
ZMTXR
ZY4
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-7d057d84c13c276b82c92a4ba5cee7b4984929dbf7cf0b82a9a91cb64ad5fcbb3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271156500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0939-1533
IngestDate Fri Oct 10 03:41:59 EDT 2025
Tue Nov 18 21:55:45 EST 2025
Sat Nov 29 03:42:31 EST 2025
Fri Feb 21 02:39:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Optimal spectral features
Dissipation control
High-order accuracy
ESDIRK
Implicit time integration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7d057d84c13c276b82c92a4ba5cee7b4984929dbf7cf0b82a9a91cb64ad5fcbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259012813
PQPubID 2043580
PageCount 50
ParticipantIDs proquest_journals_3259012813
crossref_citationtrail_10_1007_s00419_024_02637_y
crossref_primary_10_1007_s00419_024_02637_y
springer_journals_10_1007_s00419_024_02637_y
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive of applied mechanics (1991)
PublicationTitleAbbrev Arch Appl Mech
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References WangYTammaKMaxamDXueTQinGAn overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representationsArch. Comput. Methods Eng.20212835933619
MalakiyehMMShojaeeSBatheK-JThe Bathe time integration method revisited for prescribing desired numerical dissipationComput. Struct.2019212289298
HilberHMHughesTJRTaylorRLImproved numerical dissipation for time integration algorithms in structural dynamicsEarthq. Eng. Struct. Dyn.19775283292
FanSCFungTCShengGA comprehensive unified set of single-step algorithms with controllable dissipation for dynamics Part IFormulation. Comput. Methods Appl. Mech. Eng.19971458798
Fung, T.C.: Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2 — Second-order equations. Int. J. Num. Methods Eng. 45, 971–1006 (1999)
Rezaiee-PajandMEsfehaniSAHEhsanmaneshHAn efficient weighted residual time integration familyInt. J. Struct. Stab. Dyn.20212121501064280931
LiJYuKA novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamicsArch. Appl. Mech.202090737772
FungTCComplex-time-step Newmark methods with controllable numerical dissipationInt. J. Num. Methods Eng.19984165931601316
KrenkSConservative fourth-order time integration of non-linear dynamic systemsComput. Methods Appl. Mech. Eng.201529539553388824
KimWReddyJNA new family of higher-order time integration algorithms for the analysis of structural dynamicsJ. Appl. Mech.20178407100817
SimoJCTarnowNWongKExact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamicsComput. Methods Appl. Mech. Eng.1992100631161187632
HulbertGMHughesTJRAn error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamicsEarthq. Eng. Struct. Dyn.198715901910
LiJLiHLianYZhaoRYuKA suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability boundsAppl. Math. Model.20231146016264498706
MancusoMUbertiniFThe Nørsett time integration methodology for finite element transient analysisComput. Methods Appl. Mech. Eng.200219132973327
TarnowNSimoJCHow to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation propertiesComput. Methods Appl. Mech. Eng.19941152332521285020
SoaresDA straightforward high-order accurate time-marching procedure for dynamic analysesEng. Comput.20223816591677
ArgyrisJHDunnePCAngelopoulosTDynamic response by large step integrationEarthq. Eng. Struct. Dyn.19732185203
WoodWBossakMZienkiewiczOAn alpha modification of Newmark’s methodInt. J. Num. Methods Eng.19801515621566595373
BatheKJBaigMMIOn a composite implicit time integration procedure for nonlinear dynamicsComput. Struct.200583251325242174999
GonzalezOExact energy and momentum conserving algorithms for general models in nonlinear elasticityComput. Methods Appl. Mech. Eng.2000190176317831807477
LiJYuKLiXA novel family of controllably dissipative composite integration algorithms for structural dynamic analysisNonlinear Dyn.20199624752507
BankRECoughranWMGrosseEHRoseDJKentsmithRTransient simulation of silicon devices and circuitsIEEE Trans. Electron Dev.19853216
KwonS-BBatheK-JNohGSelecting the load at the intermediate time point of the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe time integration schemeComput. Struct.2021254
BatheKJConserving energy and momentum in nonlinear dynamics: a simple implicit time integration schemeComput. Struct.2007854374452303506
ZhangHZhangRXingYMasaratiPOn the optimization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-sub-step composite time integration methodsNonlinear Dyn.202010219391962
MancusoMUbertiniFA methodology for the generation of low-cost higher-order methods for linear dynamicsInt. J. Num. Methods Eng.200356188319121965017
SimoJCTarnowNThe discrete energy-momentum method - Conserving algorithms for nonlinear elastodynamicsZeitschrift Fur Angewandte Mathematik Und Physik1992437577921182782
FungTCUnconditionally stable higher-order accurate Hermitian time finite elementsInt. J. Num. Methods Eng.19963934753495
LiJLiHZhaoRYuKOn second-order s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-sub-step explicit algorithms with controllable dissipation and adjustable bifurcation point for second-order hyperbolic problemsEuropean J. Mech. - A/Solids2023974505447
Rezaiee-PajandMAlamatianJNumerical time integration for dynamic analysis using a new higher order predictor-corrector methodEng. Comput.200825541568
ChoiBBatheK-JNohGTime splitting ratio in the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe time integration method for higher-order accuracy in structural dynamics and heat transferComput. Struct.2022270
LiJYuKA truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamicsNonlinear Dyn.202010225032530
MancusoMUbertiniFAn efficient integration procedure for linear dynamics based on a time discontinuous Galerkin formulationComput. Mech.2003321541682020163
Rezaiee-PajandMKarimi-RadMA new explicit time integration scheme for nonlinear dynamic analysisInt. J. Struct. Stab. Dyn.20161615500543567746
BatheK-JNohGInsight into an implicit time integration scheme for structural dynamicsComput. Struct.201298–9916
de FrutosJSanz-SernaJMAn easily implementable fourth-order method for the time integration of wave problemsJ. Comput. Phys.19921031601681188091
Rezaiee-PajandMKarimi-RadMMore accurate and stable time integration schemeEng. Comput.201531791812
LiJYuKTangHFurther assessment of three Bathe algorithms and implementations for wave propagation problemsInt. J. Struct. Stab. Dyn.20212121500734255742
NohGBatheK-JThe Bathe time integration method with controllable spectral radius: the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe methodComput. Struct.2019212299310
HilberHMHughesTJRCollocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamicsEarthq. Eng. Struct. Dyn.1978699117
ChungJHulbertGMA time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} methodJ. Appl. Mech.1993603713751223971
KuhlDRammEGeneralized energy-momentum method for non-linear adaptive shell dynamicsComput. Methods Appl. Mech. Eng.19991783433661711044
LiJZhaoRYuKLiXDirectly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamicsComput. Methods Appl. Mech. Eng.20223894348274
LiJYuKA simple truly self-starting and L-stable integration algorithm for structural dynamicsInt. J. Appl. Mech.202012129
Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Dover Civil and Mechanical Engineering (Dover Publications, 2000)
LiJYuKZhaoRFangYThree optimal families of three-sub-step dissipative implicit integration algorithms with either second, third, or fourth-order accuracy for second-order nonlinear dynamicsInt. J. Num. Methods Eng.2023124373337664631843
GrafenhorstMRangJHartmannSTime-adaptive finite element simulations of dynamical problems for temperature-dependent materialsJ. Mech. Mater. Struct.20171257913576124
NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech. Div.1959856794
Rezaiee-PajandMAlamatianJImplicit higher-order accuracy method for numerical integration in dynamic analysisJ. Struct. Eng.2008134973985
NohGBatheK-JAn explicit time integration scheme for the analysis of wave propagationsComput. Struct.2013129178193
ZhaoRLiJYuKA self-starting dissipative alternative to the central difference methodsArch. Appl. Mech.202393571603
ShaoHCaiCA three parameters algorithm for numerical integration of structural dynamic equationsChinese J. Appl. Mech.198857681
FungTCUnconditionally stable higher-order Newmark methods by sub-stepping procedureComput. Methods Appl. Mech. Eng.199714761841470541
Rezaiee-Pajand, M., Sarafrazi, S.R.: A mixed and multi-step higher-order implicit time integration family. Arch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 2097–2108 (2010)
SongCEisenträgerSZhangXHigh-order implicit time integration scheme based on Padé expansionsComput. Methods Appl. Mech. Eng.2022390
HeHNonlinear aeroelastic analysis of the folding fin with freeplay under thermal environmentChinese J. Aeronaut.20203323572371
LiJYuKAn alternative to the Bathe algorithmAppl. Math. Modell.2019692552723895060
Rezaiee-PajandMEsfehaniSAHKarimi-RadMHighly accurate family of time integration methodStruct. Eng. Mech.201867603616
LiJYuKLiXAn identical second-order single step explicit integration algorithm with dissipation control for structural dynamicsInt. J
N Tarnow (2637_CR27) 1994; 115
M Rezaiee-Pajand (2637_CR7) 2016; 16
HM Hilber (2637_CR52) 1978; 6
R Zhao (2637_CR4) 2023; 93
M Rezaiee-Pajand (2637_CR40) 2008; 25
S Krenk (2637_CR33) 2015; 295
J Li (2637_CR17) 2023; 124
2637_CR42
J Li (2637_CR6) 2022; 395
B Choi (2637_CR51) 2022; 270
JC Simo (2637_CR62) 1992; 43
W Kim (2637_CR38) 2017; 84
MM Malakiyeh (2637_CR24) 2019; 212
RE Bank (2637_CR16) 1985; 32
KJ Bathe (2637_CR15) 2007; 85
W Wood (2637_CR10) 1980; 15
JH Argyris (2637_CR43) 1973; 2
M Rezaiee-Pajand (2637_CR35) 2008; 134
J Li (2637_CR14) 2021; 21
J de Frutos (2637_CR46) 1992; 103
JC Simo (2637_CR59) 1992; 100
TC Fung (2637_CR31) 1998; 41
TC Fung (2637_CR65) 1996; 39
J Li (2637_CR22) 2020; 102
D Soares (2637_CR49) 2022; 38
M Rezaiee-Pajand (2637_CR2) 2015; 31
NM Newmark (2637_CR8) 1959; 85
J Li (2637_CR37) 2022; 389
O Gonzalez (2637_CR61) 2000; 190
KJ Bathe (2637_CR13) 2005; 83
M Rezaiee-Pajand (2637_CR57) 2021; 21
J Chung (2637_CR12) 1993; 60
H He (2637_CR64) 2020; 33
J Li (2637_CR53) 2023; 97
GM Hulbert (2637_CR56) 1987; 15
G Noh (2637_CR18) 2019; 212
K-J Bathe (2637_CR63) 2012; 98–99
M Grafenhorst (2637_CR39) 2017; 12
J Li (2637_CR3) 2021; 122
2637_CR20
J Li (2637_CR54) 2023; 114
H Shao (2637_CR11) 1988; 5
2637_CR1
Y Wang (2637_CR41) 2021; 28
D Kuhl (2637_CR58) 1999; 45
M Mancuso (2637_CR32) 2003; 32
C Song (2637_CR47) 2022; 390
H Zhang (2637_CR34) 2020; 102
J Li (2637_CR21) 2019; 69
TC Fung (2637_CR26) 1996; 17
TC Fung (2637_CR29) 1997; 147
D Kuhl (2637_CR60) 1999; 178
J Li (2637_CR23) 2020; 12
J Li (2637_CR19) 2019; 96
J Li (2637_CR25) 2020; 90
W Kim (2637_CR28) 2017; 84
M Mancuso (2637_CR45) 2003; 56
X Li (2637_CR44) 1996; 39
M Rezaiee-Pajand (2637_CR36) 2018; 67
2637_CR55
SC Fan (2637_CR30) 1997; 145
S-B Kwon (2637_CR50) 2021; 254
G Noh (2637_CR5) 2013; 129
M Mancuso (2637_CR48) 2002; 191
HM Hilber (2637_CR9) 1977; 5
References_xml – reference: Rezaiee-PajandMEsfehaniSAHKarimi-RadMHighly accurate family of time integration methodStruct. Eng. Mech.201867603616
– reference: NohGBatheK-JAn explicit time integration scheme for the analysis of wave propagationsComput. Struct.2013129178193
– reference: ArgyrisJHDunnePCAngelopoulosTDynamic response by large step integrationEarthq. Eng. Struct. Dyn.19732185203
– reference: SoaresDA straightforward high-order accurate time-marching procedure for dynamic analysesEng. Comput.20223816591677
– reference: LiJYuKTangHFurther assessment of three Bathe algorithms and implementations for wave propagation problemsInt. J. Struct. Stab. Dyn.20212121500734255742
– reference: ZhangHZhangRXingYMasaratiPOn the optimization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-sub-step composite time integration methodsNonlinear Dyn.202010219391962
– reference: HeHNonlinear aeroelastic analysis of the folding fin with freeplay under thermal environmentChinese J. Aeronaut.20203323572371
– reference: GonzalezOExact energy and momentum conserving algorithms for general models in nonlinear elasticityComput. Methods Appl. Mech. Eng.2000190176317831807477
– reference: Rezaiee-PajandMEsfehaniSAHEhsanmaneshHAn efficient weighted residual time integration familyInt. J. Struct. Stab. Dyn.20212121501064280931
– reference: LiXWibergNStructural dynamic analysis by a time-discontinuous Galerkin finite element methodInt. J. Num. Methods Eng.199639213121521396393
– reference: WoodWBossakMZienkiewiczOAn alpha modification of Newmark’s methodInt. J. Num. Methods Eng.19801515621566595373
– reference: Rezaiee-Pajand, M., Sarafrazi, S.R.: A mixed and multi-step higher-order implicit time integration family. Arch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 2097–2108 (2010)
– reference: NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech. Div.1959856794
– reference: de FrutosJSanz-SernaJMAn easily implementable fourth-order method for the time integration of wave problemsJ. Comput. Phys.19921031601681188091
– reference: Rezaiee-PajandMKarimi-RadMA new explicit time integration scheme for nonlinear dynamic analysisInt. J. Struct. Stab. Dyn.20161615500543567746
– reference: MancusoMUbertiniFA methodology for the generation of low-cost higher-order methods for linear dynamicsInt. J. Num. Methods Eng.200356188319121965017
– reference: NohGBatheK-JThe Bathe time integration method with controllable spectral radius: the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe methodComput. Struct.2019212299310
– reference: BatheKJBaigMMIOn a composite implicit time integration procedure for nonlinear dynamicsComput. Struct.200583251325242174999
– reference: KuhlDRammEGeneralized energy-momentum method for non-linear adaptive shell dynamicsComput. Methods Appl. Mech. Eng.19991783433661711044
– reference: KimWReddyJNEffective higher-order time integration algorithms for the analysis of linear structural dynamicsJ. Appl. Mech.201784
– reference: Rezaiee-PajandMAlamatianJImplicit higher-order accuracy method for numerical integration in dynamic analysisJ. Struct. Eng.2008134973985
– reference: SongCEisenträgerSZhangXHigh-order implicit time integration scheme based on Padé expansionsComput. Methods Appl. Mech. Eng.2022390
– reference: ChungJHulbertGMA time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} methodJ. Appl. Mech.1993603713751223971
– reference: GrafenhorstMRangJHartmannSTime-adaptive finite element simulations of dynamical problems for temperature-dependent materialsJ. Mech. Mater. Struct.20171257913576124
– reference: MancusoMUbertiniFAn efficient integration procedure for linear dynamics based on a time discontinuous Galerkin formulationComput. Mech.2003321541682020163
– reference: ChoiBBatheK-JNohGTime splitting ratio in the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe time integration method for higher-order accuracy in structural dynamics and heat transferComput. Struct.2022270
– reference: Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Dover Civil and Mechanical Engineering (Dover Publications, 2000)
– reference: LiJYuKZhaoRFangYThree optimal families of three-sub-step dissipative implicit integration algorithms with either second, third, or fourth-order accuracy for second-order nonlinear dynamicsInt. J. Num. Methods Eng.2023124373337664631843
– reference: HilberHMHughesTJRCollocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamicsEarthq. Eng. Struct. Dyn.1978699117
– reference: LiJYuKA simple truly self-starting and L-stable integration algorithm for structural dynamicsInt. J. Appl. Mech.202012129
– reference: SimoJCTarnowNThe discrete energy-momentum method - Conserving algorithms for nonlinear elastodynamicsZeitschrift Fur Angewandte Mathematik Und Physik1992437577921182782
– reference: ZhaoRLiJYuKA self-starting dissipative alternative to the central difference methodsArch. Appl. Mech.202393571603
– reference: LiJYuKAn alternative to the Bathe algorithmAppl. Math. Modell.2019692552723895060
– reference: LiJLiHLianYZhaoRYuKA suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability boundsAppl. Math. Model.20231146016264498706
– reference: Butcher, J.C.: Num. Methods Ord. Diff. Equ., 3rd edn. Wiley, New York (2016)
– reference: LiJLiHZhaoRYuKOn second-order s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-sub-step explicit algorithms with controllable dissipation and adjustable bifurcation point for second-order hyperbolic problemsEuropean J. Mech. - A/Solids2023974505447
– reference: HulbertGMHughesTJRAn error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamicsEarthq. Eng. Struct. Dyn.198715901910
– reference: LiJZhaoRYuKLiXDirectly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamicsComput. Methods Appl. Mech. Eng.20223894348274
– reference: MancusoMUbertiniFThe Nørsett time integration methodology for finite element transient analysisComput. Methods Appl. Mech. Eng.200219132973327
– reference: WangYTammaKMaxamDXueTQinGAn overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representationsArch. Comput. Methods Eng.20212835933619
– reference: LiJYuKLiXAn identical second-order single step explicit integration algorithm with dissipation control for structural dynamicsInt. J. Num. Methods Eng.2021122108911324202425
– reference: FungTCUnconditionally stable higher-order Newmark methods by sub-stepping procedureComput. Methods Appl. Mech. Eng.199714761841470541
– reference: LiJYuKA truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamicsNonlinear Dyn.202010225032530
– reference: MalakiyehMMShojaeeSBatheK-JThe Bathe time integration method revisited for prescribing desired numerical dissipationComput. Struct.2019212289298
– reference: ShaoHCaiCA three parameters algorithm for numerical integration of structural dynamic equationsChinese J. Appl. Mech.198857681
– reference: Rezaiee-PajandMKarimi-RadMMore accurate and stable time integration schemeEng. Comput.201531791812
– reference: HilberHMHughesTJRTaylorRLImproved numerical dissipation for time integration algorithms in structural dynamicsEarthq. Eng. Struct. Dyn.19775283292
– reference: KrenkSConservative fourth-order time integration of non-linear dynamic systemsComput. Methods Appl. Mech. Eng.201529539553388824
– reference: FanSCFungTCShengGA comprehensive unified set of single-step algorithms with controllable dissipation for dynamics Part IFormulation. Comput. Methods Appl. Mech. Eng.19971458798
– reference: Rezaiee-PajandMAlamatianJNumerical time integration for dynamic analysis using a new higher order predictor-corrector methodEng. Comput.200825541568
– reference: LiJYuKZhaoRTwo third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamicsComput. Methods Appl. Mech. Eng.20223954412694
– reference: BankRECoughranWMGrosseEHRoseDJKentsmithRTransient simulation of silicon devices and circuitsIEEE Trans. Electron Dev.19853216
– reference: LiJYuKA novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamicsArch. Appl. Mech.202090737772
– reference: TarnowNSimoJCHow to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation propertiesComput. Methods Appl. Mech. Eng.19941152332521285020
– reference: BatheK-JNohGInsight into an implicit time integration scheme for structural dynamicsComput. Struct.201298–9916
– reference: KimWReddyJNA new family of higher-order time integration algorithms for the analysis of structural dynamicsJ. Appl. Mech.20178407100817
– reference: LiJYuKLiXA novel family of controllably dissipative composite integration algorithms for structural dynamic analysisNonlinear Dyn.20199624752507
– reference: KuhlDCrisfieldMEnergy-conserving and decaying algorithms in non-linear structural dynamicsInt. J. Num. Methods Eng.1999455695991687371
– reference: BatheKJConserving energy and momentum in nonlinear dynamics: a simple implicit time integration schemeComput. Struct.2007854374452303506
– reference: FungTCUnconditionally stable higher-order accurate Hermitian time finite elementsInt. J. Num. Methods Eng.19963934753495
– reference: FungTCComplex-time-step Newmark methods with controllable numerical dissipationInt. J. Num. Methods Eng.19984165931601316
– reference: SimoJCTarnowNWongKExact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamicsComput. Methods Appl. Mech. Eng.1992100631161187632
– reference: KwonS-BBatheK-JNohGSelecting the load at the intermediate time point of the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe time integration schemeComput. Struct.2021254
– reference: FungTCFanSCShengGExtrapolated Galerkin time finite elementsComput. Mech.1996173984051395441
– reference: Fung, T.C.: Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2 — Second-order equations. Int. J. Num. Methods Eng. 45, 971–1006 (1999)
– volume: 31
  start-page: 791
  year: 2015
  ident: 2637_CR2
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-014-0390-x
– volume: 93
  start-page: 571
  year: 2023
  ident: 2637_CR4
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-022-02286-z
– volume: 5
  start-page: 76
  year: 1988
  ident: 2637_CR11
  publication-title: Chinese J. Appl. Mech.
– volume: 102
  start-page: 1939
  year: 2020
  ident: 2637_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06020-8
– volume: 389
  year: 2022
  ident: 2637_CR37
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 190
  start-page: 1763
  year: 2000
  ident: 2637_CR61
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00189-4
– volume: 102
  start-page: 2503
  year: 2020
  ident: 2637_CR22
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06101-8
– volume: 124
  start-page: 3733
  year: 2023
  ident: 2637_CR17
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/nme.7291
– volume: 191
  start-page: 3297
  year: 2002
  ident: 2637_CR48
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00264-5
– ident: 2637_CR1
– volume: 17
  start-page: 398
  year: 1996
  ident: 2637_CR26
  publication-title: Comput. Mech.
  doi: 10.1007/BF00363983
– volume: 115
  start-page: 233
  year: 1994
  ident: 2637_CR27
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)90061-2
– volume: 15
  start-page: 1562
  year: 1980
  ident: 2637_CR10
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/nme.1620151011
– volume: 2
  start-page: 185
  year: 1973
  ident: 2637_CR43
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290020208
– ident: 2637_CR55
– volume: 39
  start-page: 3475
  year: 1996
  ident: 2637_CR65
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19961030)39:20<3475::AID-NME10>3.0.CO;2-H
– volume: 38
  start-page: 1659
  year: 2022
  ident: 2637_CR49
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01129-1
– volume: 6
  start-page: 99
  year: 1978
  ident: 2637_CR52
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290060111
– volume: 69
  start-page: 255
  year: 2019
  ident: 2637_CR21
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2018.12.027
– volume: 33
  start-page: 2357
  year: 2020
  ident: 2637_CR64
  publication-title: Chinese J. Aeronaut.
  doi: 10.1016/j.cja.2020.05.005
– volume: 85
  start-page: 67
  year: 1959
  ident: 2637_CR8
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0000098
– volume: 39
  start-page: 2131
  year: 1996
  ident: 2637_CR44
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19960630)39:12<2131::AID-NME947>3.0.CO;2-Z
– volume: 21
  start-page: 2150073
  year: 2021
  ident: 2637_CR14
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455421500735
– volume: 270
  year: 2022
  ident: 2637_CR51
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2022.106814
– volume: 100
  start-page: 63
  year: 1992
  ident: 2637_CR59
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90115-Z
– volume: 395
  year: 2022
  ident: 2637_CR6
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 83
  start-page: 2513
  year: 2005
  ident: 2637_CR13
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2005.08.001
– volume: 16
  start-page: 1550054
  year: 2016
  ident: 2637_CR7
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455415500546
– ident: 2637_CR20
  doi: 10.1243/09544062JMES2093
– volume: 295
  start-page: 39
  year: 2015
  ident: 2637_CR33
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.06.016
– volume: 145
  start-page: 87
  year: 1997
  ident: 2637_CR30
  publication-title: Formulation. Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01191-7
– volume: 25
  start-page: 541
  year: 2008
  ident: 2637_CR40
  publication-title: Eng. Comput.
  doi: 10.1108/02644400810891544
– volume: 90
  start-page: 737
  year: 2020
  ident: 2637_CR25
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-019-01637-7
– volume: 129
  start-page: 178
  year: 2013
  ident: 2637_CR5
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.06.007
– volume: 114
  start-page: 601
  year: 2023
  ident: 2637_CR54
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.10.012
– volume: 84
  year: 2017
  ident: 2637_CR28
  publication-title: J. Appl. Mech.
– volume: 28
  start-page: 3593
  year: 2021
  ident: 2637_CR41
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09536-3
– volume: 212
  start-page: 299
  year: 2019
  ident: 2637_CR18
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.11.001
– volume: 98–99
  start-page: 1
  year: 2012
  ident: 2637_CR63
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.01.009
– volume: 97
  year: 2023
  ident: 2637_CR53
  publication-title: European J. Mech. - A/Solids
– volume: 67
  start-page: 603
  year: 2018
  ident: 2637_CR36
  publication-title: Struct. Eng. Mech.
– volume: 254
  year: 2021
  ident: 2637_CR50
  publication-title: Comput. Struct.
– volume: 84
  start-page: 071008
  year: 2017
  ident: 2637_CR38
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4036821
– volume: 41
  start-page: 65
  year: 1998
  ident: 2637_CR31
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
– volume: 45
  start-page: 569
  year: 1999
  ident: 2637_CR58
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
– volume: 85
  start-page: 437
  year: 2007
  ident: 2637_CR15
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.09.004
– volume: 212
  start-page: 289
  year: 2019
  ident: 2637_CR24
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.10.008
– volume: 96
  start-page: 2475
  year: 2019
  ident: 2637_CR19
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04936-4
– volume: 21
  start-page: 2150106
  year: 2021
  ident: 2637_CR57
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455421501066
– volume: 60
  start-page: 371
  year: 1993
  ident: 2637_CR12
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 122
  start-page: 1089
  year: 2021
  ident: 2637_CR3
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/nme.6574
– volume: 32
  start-page: 16
  year: 1985
  ident: 2637_CR16
  publication-title: IEEE Trans. Electron Dev.
– volume: 15
  start-page: 901
  year: 1987
  ident: 2637_CR56
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290150710
– volume: 390
  year: 2022
  ident: 2637_CR47
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114436
– volume: 5
  start-page: 283
  year: 1977
  ident: 2637_CR9
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290050306
– volume: 12
  start-page: 57
  year: 2017
  ident: 2637_CR39
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2017.12.57
– volume: 178
  start-page: 343
  year: 1999
  ident: 2637_CR60
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00024-9
– volume: 134
  start-page: 973
  year: 2008
  ident: 2637_CR35
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2008)134:6(973)
– volume: 32
  start-page: 154
  year: 2003
  ident: 2637_CR32
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0469-5
– volume: 43
  start-page: 757
  year: 1992
  ident: 2637_CR62
  publication-title: Zeitschrift Fur Angewandte Mathematik Und Physik
  doi: 10.1007/BF00913408
– volume: 103
  start-page: 160
  year: 1992
  ident: 2637_CR46
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90331-R
– ident: 2637_CR42
  doi: 10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
– volume: 56
  start-page: 1883
  year: 2003
  ident: 2637_CR45
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/nme.637
– volume: 12
  start-page: 1
  year: 2020
  ident: 2637_CR23
  publication-title: Int. J. Appl. Mech.
– volume: 147
  start-page: 61
  year: 1997
  ident: 2637_CR29
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01243-1
SSID ssj0004520
Score 2.3680227
Snippet This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2285
SubjectTerms Accuracy
Algorithms
Classical Mechanics
Dissipation
Engineering
Forced vibration
Implicit methods
Load
Original
Runge-Kutta method
Stiffness matrix
Theoretical and Applied Mechanics
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BYYCBb0ShIA9sYNHYbhJPCFARA6oQAtQtiu2UViptaVKk_nvOxmkBiS4MmZw4Ud7Zdz4_vwM45cKkmYgbVDHDqUi1pkrjwGt0rPZKwDLtWJUv91GrFbfb8sEn3HJPqyznRDdRm6G2OfILzuwpSRYH_HL0Tm3VKLu76ktoLMOKVSoTFVi5brYeHr_rhbssi-SS2sjGH5txh-es1JSk6KPwCnlEpz9d0zze_LVF6jzP7eZ_v3kLNnzMSa6-jGQblrLBDqx_UyLchdzyPajT4ST4JydWQII4siHNJ4qiKYxIz5HPewUpJSYQUpL2X_GNRfctJzalS-z-vmdpE0-DJxgXky6ud8fKihATX8Mm34Pn2-bTzR319RioxoFa0MhgcGdioQOuWRSqmGnJUqHSBnraSAkZCwy2jOpEulPH1lSmMtAqFKlpdLRSfB8qg-EgOwASxlkYSiODDOeDOlfKaCayUAuFCzyp6lUISigS7cXKbc2MfjKTWXbwJQhf4uBLplU4mz0z-pLqWHh3rcQs8cM2T-aAVeG8RH3e_Hdvh4t7O4I15gzNEgdrUCnGk-wYVvVH0cvHJ95oPwFJMfX8
  priority: 102
  providerName: ProQuest
Title High-order accurate multi-sub-step implicit integration algorithms with dissipation control for hyperbolic problems
URI https://link.springer.com/article/10.1007/s00419-024-02637-y
https://www.proquest.com/docview/3259012813
Volume 94
WOSCitedRecordID wos001271156500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: KB.
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1432-0681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004520
  issn: 0939-1533
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7E-Sg7eNNJNso8crSiCUoovxMuyyW7tQq3S3Qr9907SbH2ggh52L3mwzGR2JplvvgDsc5EmmYh8qljKqUi0pkqj4fldw73isUxbVOXdZdhuR_f3suOKwooK7V6lJO2felrsZqihJEWfgk_AQzqehTl0d5Exx6vru48c4fZkRXJJTTTjSmW-n-OzO3qPMb-kRa23OVv-33euwJKLLsnxZDmswkw2WIPFD5yD61AYZAe1jJsEZTYyVBHEwgppMVIUlf5Ccgszz0tSkUmg8kjSf3we5mXvqSDm8JaYTL7DYxMHeCcYAZMe7myHytANE3dbTbEBt2enNyfn1N28QDWaZEnDFMO4NBLa45qFgYqYliwRKvHRp4ZKyEhgWJWqbqi7TWxNZCI9rQKRpH5XK8U3oTZ4HmRbQIIoCwKZSi9Dy29ypVLNRBZooXArJ1WzDl6lgFg7WnJzO0Y_nhIqW4HGKNDYCjQe1-FgOuZlQsrxa-_dSq-xM9Ai5swU3bLI43U4rPT43vzzbNt_674DC8wuBQMZ3IVaORxlezCvX8u8GDZgrnXa7lw1YPaiddQwuNNrfHf8h4Zd0m-SIO_3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xklgOvBa05ekDewKLxnaT-IAQ4iEQpULiIW7Z-FGoxJZuk4L6p_iNjN2Eskhw48AhJyeWHH-eGdvffAOwwYVJrYhrVDHDqUi1pkrjwqs1nfZKwKz2rMrretRoxDc38nwEnstcGEerLG2iN9TmQbsz8m3OXJYkiwO-2_lHXdUod7taltAYwOLU9p9wy5btnBzg_P5m7Ojwcv-YFlUFqEa45TQyGKKYWOiAaxaFKmZaslSotIb-IlJCxgJDBqOakW5WsTWVqQy0CkVqak2tFMd-R2FcOOvvqYIXb9XJ_ZmO5JK6OKpI0vGpek7YSlL0iPiEPKL9_x3hMLp9dyHr_dzRzHf7Q7MwXUTUZG-wBOZgxLbnYeqNzuJPyBybhXqVUYI46Tl5DOKplDTrKYpA75CWp9a3clIKaCBgSXp_iyPM7_5mxB1YE8deKDjopCD5E4z6yR3u5rvKSSyTokJPtgBXXzLqRRhrP7TtLyBhbMNQGhlYtHZVrpTRTNhQC4XbV6mqFQjKqU90IcXuKoLcJ68i0h4uCcIl8XBJ-hXYfP2mMxAi-fTtlRIjSWGUsmQIkApslSgbNn_c29Lnva3D5PHlWT2pnzROl-EH8yB3FMkVGMu7PbsKE_oxb2XdNb9cCPz5avS9ACOcVEY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDv8Xp1Dz4psE1ydrmUdShOMZAHXsrTdK6wtzG2gn7702ydpuigvjQp6Sh3F16l9x33wGcU6bCiPk1LIiimIVSYiH1xqvFhnvFIZG0qMp2w2s2_U6Htxaq-C3avUhJTmsaDEtTP7saqvhqVvhmaKI41v5FPy718GQZVphpGmTO60_tRb5we8vCKccmssnLZr5f47NrmsebX1Kk1vPUt_7_zduwmUed6HpqJjuwFPV3YWOBi3APUoP4wJaJE2lZjg2FBLJwQ5yOBdbGMESJhZ8nGSpIJrRSUdh7HYySrPuWInOpi0yGP8dpoxwIj3RkjLr6xDsShoYY5V1s0n14qd8939zjvCMDlnqrZthTOrxTPpMOlcRzhU8kJyETYU37Wk8w7jMdbikRezKu6tGQh9yRwmWhqsVSCHoApf6gHx0Ccv3IdbniTqT_CFUqhJKERa5kQh_xuKiWwSmUEcicrtx0zegFM6JlK9BACzSwAg0mZbiYvTOcknX8OrtS6DjIN24aUGKKcYnv0DJcFjqdD_-82tHfpp_BWuu2HjQemo_HsE6sVRhUYQVK2WgcncCqfM-SdHRq7fkD-kX3UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+accurate+multi-sub-step+implicit+integration+algorithms+with+dissipation+control+for+hyperbolic+problems&rft.jtitle=Archive+of+applied+mechanics+%281991%29&rft.au=Li%2C+Jinze&rft.au=Li%2C+Hua&rft.au=Yu%2C+Kaiping&rft.au=Zhao%2C+Rui&rft.date=2024-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0939-1533&rft.eissn=1432-0681&rft.volume=94&rft.issue=8&rft.spage=2285&rft.epage=2334&rft_id=info:doi/10.1007%2Fs00419-024-02637-y&rft.externalDocID=10_1007_s00419_024_02637_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-1533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-1533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-1533&client=summon