Convergence of proximal algorithms with stepsize controls for non-linear inverse problems and application to sparse non-negative matrix factorization

We consider a general ill-posed inverse problem in a Hilbert space setting by minimizing a misfit functional coupling with a multi-penalty regularization for stabilization. For solving this minimization problem, we investigate two proximal algorithms with stepsize controls: a proximal fixed point al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 85; číslo 4; s. 1255 - 1279
Hlavní autori: Pham, Quy Muoi, Lachmund, Delf, Hào, Dinh Nho
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2020
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider a general ill-posed inverse problem in a Hilbert space setting by minimizing a misfit functional coupling with a multi-penalty regularization for stabilization. For solving this minimization problem, we investigate two proximal algorithms with stepsize controls: a proximal fixed point algorithm and an alternating proximal algorithm. We prove the decrease of the objective functional and the convergence of both update schemes to a stationary point under mild conditions on the stepsizes. These algorithms are then applied to the sparse and non-negative matrix factorization problems. Based on a priori information of non-negativity and sparsity of the exact solution, the problem is regularized by corresponding terms. In both cases, the implementation of our proposed algorithms is straight-forward since the evaluation of the proximal operators in these problems can be done explicitly. Finally, we test the proposed algorithms for the non-negative sparse matrix factorization problem with both simulated and real-world data and discuss reconstruction performance, convergence, as well as achieved sparsity.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-019-00864-x