Convergence of proximal algorithms with stepsize controls for non-linear inverse problems and application to sparse non-negative matrix factorization

We consider a general ill-posed inverse problem in a Hilbert space setting by minimizing a misfit functional coupling with a multi-penalty regularization for stabilization. For solving this minimization problem, we investigate two proximal algorithms with stepsize controls: a proximal fixed point al...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 85; no. 4; pp. 1255 - 1279
Main Authors: Pham, Quy Muoi, Lachmund, Delf, Hào, Dinh Nho
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2020
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider a general ill-posed inverse problem in a Hilbert space setting by minimizing a misfit functional coupling with a multi-penalty regularization for stabilization. For solving this minimization problem, we investigate two proximal algorithms with stepsize controls: a proximal fixed point algorithm and an alternating proximal algorithm. We prove the decrease of the objective functional and the convergence of both update schemes to a stationary point under mild conditions on the stepsizes. These algorithms are then applied to the sparse and non-negative matrix factorization problems. Based on a priori information of non-negativity and sparsity of the exact solution, the problem is regularized by corresponding terms. In both cases, the implementation of our proposed algorithms is straight-forward since the evaluation of the proximal operators in these problems can be done explicitly. Finally, we test the proposed algorithms for the non-negative sparse matrix factorization problem with both simulated and real-world data and discuss reconstruction performance, convergence, as well as achieved sparsity.
AbstractList We consider a general ill-posed inverse problem in a Hilbert space setting by minimizing a misfit functional coupling with a multi-penalty regularization for stabilization. For solving this minimization problem, we investigate two proximal algorithms with stepsize controls: a proximal fixed point algorithm and an alternating proximal algorithm. We prove the decrease of the objective functional and the convergence of both update schemes to a stationary point under mild conditions on the stepsizes. These algorithms are then applied to the sparse and non-negative matrix factorization problems. Based on a priori information of non-negativity and sparsity of the exact solution, the problem is regularized by corresponding terms. In both cases, the implementation of our proposed algorithms is straight-forward since the evaluation of the proximal operators in these problems can be done explicitly. Finally, we test the proposed algorithms for the non-negative sparse matrix factorization problem with both simulated and real-world data and discuss reconstruction performance, convergence, as well as achieved sparsity.
Author Pham, Quy Muoi
Hào, Dinh Nho
Lachmund, Delf
Author_xml – sequence: 1
  givenname: Quy Muoi
  orcidid: 0000-0001-8031-9078
  surname: Pham
  fullname: Pham, Quy Muoi
  email: phamquymuoi@gmail.com
  organization: Department of Mathematics, The University of Danang - University of Science and Education
– sequence: 2
  givenname: Delf
  surname: Lachmund
  fullname: Lachmund, Delf
  organization: Center for Industrial Mathematics, University of Bremen
– sequence: 3
  givenname: Dinh Nho
  surname: Hào
  fullname: Hào, Dinh Nho
  organization: Hanoi Institute of Mathematics, VAST
BookMark eNp9kc1KAzEUhYMoWKsv4CrgOprMb2YpxT8ouNF1yGRuaso0GZO0Vt_D9zXTCoKLrm4I5zv3cM8ZOrbOAkKXjF4zSuubwBitS0JZQyjlVUG2R2jCyjojTVaVx-lNWU1Y3vBTdBbCktKEZfUEfc-c3YBfgFWAncaDd1uzkj2W_cJ5E99WAX-kgUOEIZgvwMrZ6F0fsHYepxikNxakx2b0CTA6tD0kTNoOy2HojZLROIujw2GQo2SkLCzS9wbwSkZvtlhLFdPCr532HJ1o2Qe4-J1T9Hp_9zJ7JPPnh6fZ7ZyonDWR1Iq3rda6KzTL265RTCvaVF3Z0lwx2lKASuaaK8jagvKiq3PeKsmLUsq64Cyfoqu9bwr9voYQxdKtvU0rRdYwXjQsq7Kk4nuV8i4ED1ooE3c5o5emF4yKsQSxL0GkEsSuBLFNaPYPHXw6r_88DOV7KCSxXYD_S3WA-gGzY6Jl
CitedBy_id crossref_primary_10_1007_s11075_020_01063_9
crossref_primary_10_3390_sym13122393
crossref_primary_10_3390_jimaging7100194
Cites_doi 10.1016/j.csda.2006.11.006
10.1016/j.jmaa.2011.11.008
10.1073/pnas.0308531101
10.1088/0266-5611/5/4/007
10.1088/1361-6420/aab6c9
10.1007/s10107-013-0701-9
10.1016/j.jco.2016.05.003
10.1088/0266-5611/27/7/075008
10.1016/j.cam.2015.11.039
10.1088/0266-5611/32/10/104001
10.1093/bioinformatics/btn286
10.1021/pr100734z
10.1080/17415977.2015.1018678
10.1002/cpa.20042
10.1016/j.acha.2017.06.001
10.24033/bsmf.1625
10.1515/jip-2013-0031
10.1088/0266-5611/29/6/065018
10.4310/MAA.2011.v18.n1.a2
10.1137/120887795
10.1007/s10107-011-0484-9
10.1007/978-94-009-1740-8
10.1093/bioinformatics/btr246
10.1038/44565
10.1515/JIIP.2008.025
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-019-00864-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1279
ExternalDocumentID 10_1007_s11075_019_00864_x
GrantInformation_xml – fundername: NAFOSTED
  grantid: 101.02-2017.318
– fundername: German Federal Ministry of Education and Research
  grantid: 13GW0081
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-7c8bbfffd4f13bd9c1fc096d5b03c10b0ee6a3f8ce2b4084d738bca845aa74813
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517719700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 02:29:12 EST 2025
Tue Nov 18 22:01:15 EST 2025
Sat Nov 29 01:34:50 EST 2025
Fri Feb 21 02:32:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Non-smooth Optimization
Proximal fixed point iteration
Alternating proximal iteration
Sparse non-negative matrix factorization
Non-linear inverse problems
Sparsity regularization
Sparse matrix factorization
65Kxx
Non-negative sparsity regularization
49Mxx
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7c8bbfffd4f13bd9c1fc096d5b03c10b0ee6a3f8ce2b4084d738bca845aa74813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8031-9078
PQID 2918491262
PQPubID 2043837
PageCount 25
ParticipantIDs proquest_journals_2918491262
crossref_citationtrail_10_1007_s11075_019_00864_x
crossref_primary_10_1007_s11075_019_00864_x
springer_journals_10_1007_s11075_019_00864_x
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Moreau (CR22) 1965; 93
Muoi (CR23) 2015; 23
Mairal, Bach, Ponce, Sapiro (CR21) 2010; 11
Wang, Lu, Mao, Cheng (CR30) 2013; 29
Alexandrov, Becker, Deininger, Ernst, Wehder, Grasmair, von Eggeling, Thiele, Maass (CR1) 2010; 9
CR16
Muoi, Hào, Sahoo, Tang, Cong, Dang (CR26) 2018; 34
Attouch, Bolte, Svaiter (CR3) 2013; 137
Drakakis, Rickard, Fréin, Cichocki (CR9) 2008; 3
Hào, Quyen (CR14) 2011; 27
Bolte, Sabach, Teboulle (CR5) 2014; 146
Daubechies, Defrise, De Mol (CR7) 2016; 32
Engl, Hanke, Neubauer (CR10) 1996
Ito, Jin, Takeuchi (CR17) 2011; 18
Guo, Lin, Shi (CR13) 2019; 46
Lee, Seung (CR18) 1999; 401
Xu, Yin (CR31) 2013; 6
Berry, Browne, Langville, Pauca, Plemmons (CR4) 2007; 52
Hào, Quyen (CR15) 2012; 388
CR29
Lorenz, Maass, Muoi (CR20) 2012; 39
CR27
Sivananthan (CR28) 2016; 36
Engl, Kunisch, Neubauer (CR11) 1989; 5
Alexandrov, Kobarg (CR2) 2011; 27
Greene, Cagney, Krogan, Cunningham (CR12) 2008; 24
Muoi, Hào, Maass, Pidcock (CR24) 2013; 21
Brunet, Tamayo, Golub, Mesirov (CR6) 2004; 101
Muoi, Hào, Maass, Pidcock (CR25) 2016; 298
Daubechies, Defrise, Demol (CR8) 2004; 57
Lorenz (CR19) 2008; 16
K Ito (864_CR17) 2011; 18
PQ Muoi (864_CR23) 2015; 23
Y Xu (864_CR31) 2013; 6
J Mairal (864_CR21) 2010; 11
DA Lorenz (864_CR20) 2012; 39
H Attouch (864_CR3) 2013; 137
Z Guo (864_CR13) 2019; 46
J Bolte (864_CR5) 2014; 146
K Drakakis (864_CR9) 2008; 3
864_CR16
T Alexandrov (864_CR2) 2011; 27
DA Lorenz (864_CR19) 2008; 16
I Daubechies (864_CR8) 2004; 57
T Alexandrov (864_CR1) 2010; 9
J Brunet (864_CR6) 2004; 101
MW Berry (864_CR4) 2007; 52
DN Hào (864_CR15) 2012; 388
J Moreau (864_CR22) 1965; 93
W Wang (864_CR30) 2013; 29
DD Lee (864_CR18) 1999; 401
DN Hào (864_CR14) 2011; 27
I Daubechies (864_CR7) 2016; 32
D Greene (864_CR12) 2008; 24
S Sivananthan (864_CR28) 2016; 36
PQ Muoi (864_CR24) 2013; 21
864_CR27
HW Engl (864_CR10) 1996
864_CR29
PQ Muoi (864_CR26) 2018; 34
HW Engl (864_CR11) 1989; 5
PQ Muoi (864_CR25) 2016; 298
References_xml – volume: 52
  start-page: 155
  issue: 1
  year: 2007
  end-page: 173
  ident: CR4
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data Analys.
  doi: 10.1016/j.csda.2006.11.006
– volume: 388
  start-page: 593
  issue: 1
  year: 2012
  end-page: 616
  ident: CR15
  article-title: Convergence rates for total variation regularization of coefficient identification problems in elliptic equations ii
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.11.008
– volume: 11
  start-page: 19
  year: 2010
  end-page: 60
  ident: CR21
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 101
  start-page: 4164
  issue: 12
  year: 2004
  end-page: 4169
  ident: CR6
  article-title: Metagenes and molecular pattern discovery using matrix factorization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0308531101
– volume: 5
  start-page: 523
  issue: 4
  year: 1989
  ident: CR11
  article-title: Convergence rates for Tikhonov regularization of non-linear ill-posed problems
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/5/4/007
– ident: CR16
– volume: 34
  start-page: 055007
  issue: 5
  year: 2018
  ident: CR26
  article-title: Inverse problems with nonnegative and sparse solutions: Algorithms and application to the phase retrieval problem
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aab6c9
– volume: 146
  start-page: 459
  issue: 1-2
  year: 2014
  end-page: 494
  ident: CR5
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– ident: CR29
– volume: 36
  start-page: 141
  year: 2016
  end-page: 165
  ident: CR28
  article-title: Multi-penalty regularization in learning theory
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2016.05.003
– volume: 27
  start-page: 075008
  year: 2011
  ident: CR14
  article-title: Convergence rates for total variation regularization of coefficient identification problems in elliptic equations I
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/27/7/075008
– volume: 39
  start-page: 437
  year: 2012
  end-page: 463
  ident: CR20
  article-title: Gradient descent methods based on quadratic approximations of Tikhonov functionals with sparsity constraints: theory and numerical comparison of stepsize rules
  publication-title: Electron. Trans. Numer. Anal.
– ident: CR27
– volume: 298
  start-page: 105
  year: 2016
  end-page: 122
  ident: CR25
  article-title: Descent gradient methods for nonsmooth minimization problems in ill-posed problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.11.039
– volume: 32
  start-page: 104001
  issue: 10
  year: 2016
  ident: CR7
  article-title: Sparsity-enforcing regularisation and ISTA revisited
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/10/104001
– volume: 24
  start-page: 1722
  issue: 15
  year: 2008
  end-page: 1728
  ident: CR12
  article-title: Ensemble non-negative matrix factorization methods for clustering protein–protein interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn286
– volume: 9
  start-page: 6535
  issue: 12
  year: 2010
  end-page: 6546
  ident: CR1
  article-title: Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100734z
– volume: 23
  start-page: 1366
  issue: 8
  year: 2015
  end-page: 1387
  ident: CR23
  article-title: Reconstructing conductivity coefficients based on sparsity regularization and measured data in electrical impedance tomography
  publication-title: Inverse Problems in Science and Engineering
  doi: 10.1080/17415977.2015.1018678
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1541
  ident: CR8
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 46
  start-page: 478
  year: 2019
  end-page: 499
  ident: CR13
  article-title: Distributed learning with multi-penalty regularization
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2017.06.001
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: CR22
  article-title: Proximité et dualité dans un espace hilbertien
  publication-title: Bulletin de la Société Mathématique de France
  doi: 10.24033/bsmf.1625
– volume: 21
  start-page: 665
  issue: 5
  year: 2013
  end-page: 693
  ident: CR24
  article-title: Semismooth Newton and quasi-Newton methods in weighted l1-regularization
  publication-title: Journal of Inverse and Ill-Posed Problems
  doi: 10.1515/jip-2013-0031
– volume: 29
  start-page: 065018
  issue: 6
  year: 2013
  ident: CR30
  article-title: Multi-parameter Tikhonov regularization with the l0 sparsity constraint
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/6/065018
– volume: 18
  start-page: 31
  issue: 1
  year: 2011
  end-page: 46
  ident: CR17
  article-title: Multi-parameter Tikhonov regularization
  publication-title: Methods and Applications of Analysis
  doi: 10.4310/MAA.2011.v18.n1.a2
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  end-page: 1789
  ident: CR31
  article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume: 137
  start-page: 91
  issue: 1-2
  year: 2013
  end-page: 129
  ident: CR3
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– year: 1996
  ident: CR10
  publication-title: Regularization of inverse problems
  doi: 10.1007/978-94-009-1740-8
– volume: 27
  start-page: i230
  issue: 13
  year: 2011
  end-page: i238
  ident: CR2
  article-title: Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr246
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  ident: CR18
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 3
  start-page: 1853
  year: 2008
  end-page: 1870
  ident: CR9
  article-title: Analysis of financial data using non-negative matrix factorization
  publication-title: Int. Math. Forum
– volume: 16
  start-page: 463
  year: 2008
  end-page: 478
  ident: CR19
  article-title: Convergence rates and source conditions for Tikhonov regularization with sparsity constraints
  publication-title: J. Inv Ill-posed problems
  doi: 10.1515/JIIP.2008.025
– volume: 32
  start-page: 104001
  issue: 10
  year: 2016
  ident: 864_CR7
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/10/104001
– volume: 93
  start-page: 273
  year: 1965
  ident: 864_CR22
  publication-title: Bulletin de la Société Mathématique de France
  doi: 10.24033/bsmf.1625
– volume: 5
  start-page: 523
  issue: 4
  year: 1989
  ident: 864_CR11
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/5/4/007
– volume: 21
  start-page: 665
  issue: 5
  year: 2013
  ident: 864_CR24
  publication-title: Journal of Inverse and Ill-Posed Problems
  doi: 10.1515/jip-2013-0031
– volume: 36
  start-page: 141
  year: 2016
  ident: 864_CR28
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2016.05.003
– volume-title: Regularization of inverse problems
  year: 1996
  ident: 864_CR10
  doi: 10.1007/978-94-009-1740-8
– volume: 39
  start-page: 437
  year: 2012
  ident: 864_CR20
  publication-title: Electron. Trans. Numer. Anal.
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 864_CR31
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– ident: 864_CR16
– volume: 9
  start-page: 6535
  issue: 12
  year: 2010
  ident: 864_CR1
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100734z
– volume: 101
  start-page: 4164
  issue: 12
  year: 2004
  ident: 864_CR6
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0308531101
– volume: 23
  start-page: 1366
  issue: 8
  year: 2015
  ident: 864_CR23
  publication-title: Inverse Problems in Science and Engineering
  doi: 10.1080/17415977.2015.1018678
– volume: 34
  start-page: 055007
  issue: 5
  year: 2018
  ident: 864_CR26
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aab6c9
– volume: 29
  start-page: 065018
  issue: 6
  year: 2013
  ident: 864_CR30
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/6/065018
– volume: 18
  start-page: 31
  issue: 1
  year: 2011
  ident: 864_CR17
  publication-title: Methods and Applications of Analysis
  doi: 10.4310/MAA.2011.v18.n1.a2
– ident: 864_CR29
– volume: 52
  start-page: 155
  issue: 1
  year: 2007
  ident: 864_CR4
  publication-title: Comput. Stat. Data Analys.
  doi: 10.1016/j.csda.2006.11.006
– volume: 24
  start-page: 1722
  issue: 15
  year: 2008
  ident: 864_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn286
– volume: 11
  start-page: 19
  year: 2010
  ident: 864_CR21
  publication-title: J. Mach. Learn. Res.
– volume: 57
  start-page: 1413
  year: 2004
  ident: 864_CR8
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 146
  start-page: 459
  issue: 1-2
  year: 2014
  ident: 864_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 46
  start-page: 478
  year: 2019
  ident: 864_CR13
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2017.06.001
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 864_CR18
  publication-title: Nature
  doi: 10.1038/44565
– volume: 137
  start-page: 91
  issue: 1-2
  year: 2013
  ident: 864_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 27
  start-page: 075008
  year: 2011
  ident: 864_CR14
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/27/7/075008
– volume: 388
  start-page: 593
  issue: 1
  year: 2012
  ident: 864_CR15
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.11.008
– volume: 298
  start-page: 105
  year: 2016
  ident: 864_CR25
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.11.039
– volume: 27
  start-page: i230
  issue: 13
  year: 2011
  ident: 864_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr246
– volume: 3
  start-page: 1853
  year: 2008
  ident: 864_CR9
  publication-title: Int. Math. Forum
– ident: 864_CR27
– volume: 16
  start-page: 463
  year: 2008
  ident: 864_CR19
  publication-title: J. Inv Ill-posed problems
  doi: 10.1515/JIIP.2008.025
SSID ssj0010027
Score 2.2515323
Snippet We consider a general ill-posed inverse problem in a Hilbert space setting by minimizing a misfit functional coupling with a multi-penalty regularization for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1255
SubjectTerms Algebra
Algorithms
Computer Science
Convergence
Exact solutions
Factorization
Hilbert space
Inverse problems
Mathematical analysis
Nonlinear control
Numeric Computing
Numerical Analysis
Operators (mathematics)
Original Paper
Regularization
Regularization methods
Sparse matrices
Sparsity
Theory of Computation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VlgM90FJADS3VHLiBxa7X-zqhqqLi0qoSIPW28rNEajYhXlDE_-D_4nGcpEWiF85rj1eah2c8jw_gTaVEaWormCm5Y0LWBVNZ1TLhuNaiUi3PTASbqC8vm-vr9io9uPlUVrmyidFQm6mmN_L3vA2xSJvzin-YfWeEGkXZ1QSh8Qh2aEpCHkv3Pq-zCBRzxWxnsMTB02lS08yydS7EPVS21jLy6gVb3L-YNt7mXwnSeO-c7_3vH-_D0-Rx4ulSRJ7Blu0PYC95n5h02x_A7sV6gqt_Dr_PqBw9dmZanDqkcpfxJNCRtzfhkOHbxCO94WKQkpkf_7KYit49BjcY-2nPyIGVcxwTHW8xQdd4lL3BO3lzHKYYzBotoV29vYmzyHFC4AELXAICpW7RF_D1_OOXs08sQTgwHXR7YLVulHLOGeHyQplW506HoMmUKit0nqnM2koWrtGWK5E1wtRFo7RsRCllLZq8eAnb4Wx7CKi4y6QWZS2rEDMZrnTMI-dB1IxtKzGCfMW_Tqf55gSzcdttJjMTz7vA8y7yvFuM4O16z2w53ePB1ccrRndJ03234fII3q1EZfP539RePUztCJ5wCu1j5cwxbA_zH_Y1PNY_h7Gfn0Q5_wON6AhF
  priority: 102
  providerName: ProQuest
Title Convergence of proximal algorithms with stepsize controls for non-linear inverse problems and application to sparse non-negative matrix factorization
URI https://link.springer.com/article/10.1007/s11075-019-00864-x
https://www.proquest.com/docview/2918491262
Volume 85
WOSCitedRecordID wos000517719700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BywEOFAqIhXY1B25gKXGcxDlC1apSxapqAfUW-VkidbPVOqCK_8H_xfY6u4AAqVwd24k0M_Y3mccH8KqSrNS1YUSX1BIm6oLIrGoIs1QpVsmGZjqSTdSzGb-4aE5TUZgbs93HkGQ8qTfFbt5TCYlmDQk4nBGPHLf9dccDYcPZ-ad17CB4WjHG6c9fj294KpX58x6_XkcbjPlbWDTeNkc7__edj-BhQpf4dqUOj-GO6XdhJyFNTHbs_NBI5jCO7cKD9-sGru4JfD8I2eixMNPgwmLIdunmfmtxdblYdsPnucPwCxe9kly77pvBlPPu0KNg7Bc9CfhVLLEL-ziDibnGoeg1_hQ2x2GB_lQLU8Kq3lzGVuQ4D9wBN7jiA0rFok_h49Hhh4NjkhgciPKmPZBacSmttZrZvJC6UblV3mfSpcwKlWcyM6YSheXKUMkyznRdcKkEZ6UQNeN58Qy2_LvNc0BJbSYUK2tReZdJU6liGDn3mqZNU7EJ5KMgW5XamweWjat205g5CKb1gmmjYNqbCbxer7leNff45-y9UT_aZOiupY13kZucVnQCb0Z92Dz--24vbjf9JdynwdOPiTR7sDUsv5h9uKe-Dp1bTmH73eHs9GwKd09qMg35q-fTaBQ_AD1gCLU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQCwV8gBNYJI43jwNCqFC12nbFoUi9BT_LSt3ssg6w8D_4G_xGPI6zC0j01gPnxBPF-WYy43l8AE9yyYe6MJzqIbOUiyKjMskryi1TiueyYokOZBPFeFyenFTvNuBn3wuDZZW9TQyGWs8UnpG_YJWPRaqU5ezV_BNF1ijMrvYUGh0sRubbVx-yuZcHb_z3fcrY3tvj3X0aWQWo8nBraaFKKa21mts0k7pSqVXej9dDmWQqTWRiTC4yWyrDJE9KrouslEqUfChEwcs083IvwWWelQXq1aigq6wFxnghu-otv_esytik07Xq-TgLy-QqilEEp8s_f4Rr7_avhGz4z-1t_W87dBNuRI-avO5U4BZsmGYbtqJ3TaLtcttw_Wg1odbdhh-7WG4fOk8NmVmC5TyTqZcjzk79S7Ufp47gGTXxWjB3k--GxKJ-R7ybT5pZQ9FBFwsyQTnOkEjN44hoNPmtLoC0M-LNNt6CqxpzGmatkymSIyxJR3gUu2HvwPsL2aq7sOmfbe4BkcwmQvFhIXIfE2omVciTp16VtKlyPoC0x0ut4vx2pBE5q9eTpxFjtcdYHTBWLwfwbLVm3k0vOffunR5YdbRkrl6jagDPe2iuL_9b2v3zpT2Gq_vHR4f14cF49ACuMTzGCFVCO7DZLj6bh3BFfWknbvEo6BiBDxcN2V9a12ff
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQQgOtBQQS0s7B27UauI4r2NVWIGgq0o81FvkZ4nUza7WaVXxP_i_eLzObkEUCXF17EmkGdvfZL6ZIeRVIXmuS8OpzpmlXJQZlUlRU26ZUryQNUt0aDZRTibV2Vl9eiOLP7Ddh5DkMqcBqzR1_eFc28N14pv3WpB0VlPE5Jx6FHmXI5Ee_fVPX1dxBPS6QrzTn8Ue61QxbebPMn69mtZ487cQabh5xpv__81b5FFEnXC0NJPH5I7ptslmRKAQ97fzQ0OTh2Fsmzw8WRV2dU_Ij2NkqYeETQMzC8iCaadetLg4ny3a_tvUAf7aBW88c9d-NxC58A48OoZu1lHEtWIBLcpxBmJHGwei03AjnA79DPxph1NwVWfOQ4lymGJPgWtY9gmKSaRPyZfx28_H72js7ECV3_I9LVUlpbVWc5tmUtcqtcr7UjqXSabSRCbGFCKzlTJM8qTiuswqqUTFcyFKXqXZM7Lh322eE5DMJkLxvBSFd6U0kyqEl1NvgdrUBR-RdFBqo2LZc-y-cdGsCzajYhqvmCYoprkekderNfNl0Y-_zt4dbKWJB4BrWO1d5zplBRuRg8E21o9vl_bi36bvk_unb8bNx_eTDzvkAcOfAYFrs0s2-sWleUnuqau-dYu9sC9-AvCfERs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+proximal+algorithms+with+stepsize+controls+for+non-linear+inverse+problems+and+application+to+sparse+non-negative+matrix+factorization&rft.jtitle=Numerical+algorithms&rft.au=Pham%2C+Quy+Muoi&rft.au=Lachmund%2C+Delf&rft.au=H%C3%A0o%2C+Dinh+Nho&rft.date=2020-12-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=85&rft.issue=4&rft.spage=1255&rft.epage=1279&rft_id=info:doi/10.1007%2Fs11075-019-00864-x&rft.externalDocID=10_1007_s11075_019_00864_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon