Distributed MLEM: An Iterative Tomographic Image Reconstruction Algorithm for Distributed Memory Architectures
The processing speed for positron emission tomography (PET) image reconstruction has been greatly improved in recent years by simply dividing the workload to multiple processors of a graphics processing unit (GPU). However, if this strategy is generalized to a multi-GPU cluster, the processing speed...
Uloženo v:
| Vydáno v: | IEEE transactions on medical imaging Ročník 32; číslo 5; s. 957 - 967 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2013
|
| Témata: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The processing speed for positron emission tomography (PET) image reconstruction has been greatly improved in recent years by simply dividing the workload to multiple processors of a graphics processing unit (GPU). However, if this strategy is generalized to a multi-GPU cluster, the processing speed does not improve linearly with the number of GPUs. This is because large data transfer is required between the GPUs after each iteration, effectively reducing the parallelism. This paper proposes a novel approach to reformulate the maximum likelihood expectation maximization (MLEM) algorithm so that it can scale up to many GPU nodes with less frequent inter-node communication. While being mathematically different, the new algorithm maximizes the same convex likelihood function as MLEM, thus converges to the same solution. Experiments on a multi-GPU cluster demonstrate the effectiveness of the proposed approach. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0278-0062 1558-254X 1558-254X |
| DOI: | 10.1109/TMI.2013.2252913 |