Distributed MLEM: An Iterative Tomographic Image Reconstruction Algorithm for Distributed Memory Architectures

The processing speed for positron emission tomography (PET) image reconstruction has been greatly improved in recent years by simply dividing the workload to multiple processors of a graphics processing unit (GPU). However, if this strategy is generalized to a multi-GPU cluster, the processing speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 32; H. 5; S. 957 - 967
Hauptverfasser: Jingyu Cui, Pratx, G., Bowen Meng, Levin, C. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2013
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The processing speed for positron emission tomography (PET) image reconstruction has been greatly improved in recent years by simply dividing the workload to multiple processors of a graphics processing unit (GPU). However, if this strategy is generalized to a multi-GPU cluster, the processing speed does not improve linearly with the number of GPUs. This is because large data transfer is required between the GPUs after each iteration, effectively reducing the parallelism. This paper proposes a novel approach to reformulate the maximum likelihood expectation maximization (MLEM) algorithm so that it can scale up to many GPU nodes with less frequent inter-node communication. While being mathematically different, the new algorithm maximizes the same convex likelihood function as MLEM, thus converges to the same solution. Experiments on a multi-GPU cluster demonstrate the effectiveness of the proposed approach.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2013.2252913