A self-supervised method of single-image depth estimation by feeding forward information using max-pooling layers
We propose an encoder–decoder CNN framework to predict depth from one single image in a self-supervised manner. To this aim, we design three kinds of encoder based on the recent advanced deep neural network and one kind of decoder which can generate multiscale predictions. Eight loss functions are d...
Uloženo v:
| Vydáno v: | The Visual computer Ročník 37; číslo 4; s. 815 - 829 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-2789, 1432-2315 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose an encoder–decoder CNN framework to predict depth from one single image in a self-supervised manner. To this aim, we design three kinds of encoder based on the recent advanced deep neural network and one kind of decoder which can generate multiscale predictions. Eight loss functions are designed based on the proposed encoder–decoder CNN framework to validate the performance. For training, we take rectified stereo image pairs as input of the CNN, which is trained by reconstructing image via learning multiscale disparity maps. For testing, the CNN can estimate the accurate depth information by inputting only one single image. We validate our framework on two public datasets in contrast to the state-of-the-art methods and our designed different variants, and the performance of different encoder–decoder architectures and loss functions is evaluated to obtain the best combination, which proves that our proposed method performs very well for single-image depth estimation without the supervision of ground truth. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-2789 1432-2315 |
| DOI: | 10.1007/s00371-020-01832-6 |