Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity
In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a pro...
Saved in:
| Published in: | Numerical algorithms Vol. 88; no. 3; pp. 1419 - 1456 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a product space formulation of the problem. However, it has been discovered that this product space formulation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting structure of the split variational inequality problem. In this paper, we present two new methods with inertial steps for solving the split variational inequality problems in real Hilbert spaces without any product space formulation. We prove that the sequence generated by these methods converges strongly to a minimum-norm solution of the problem when the operators are pseudomonotone and Lipschitz continuous. Also, we provide several numerical experiments of the proposed methods in comparison with other related methods in the literature. |
|---|---|
| AbstractList | In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a product space formulation of the problem. However, it has been discovered that this product space formulation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting structure of the split variational inequality problem. In this paper, we present two new methods with inertial steps for solving the split variational inequality problems in real Hilbert spaces without any product space formulation. We prove that the sequence generated by these methods converges strongly to a minimum-norm solution of the problem when the operators are pseudomonotone and Lipschitz continuous. Also, we provide several numerical experiments of the proposed methods in comparison with other related methods in the literature. |
| Author | Izuchukwu, C. Ogwo, G. N. Mewomo, O. T. |
| Author_xml | – sequence: 1 givenname: G. N. surname: Ogwo fullname: Ogwo, G. N. organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal – sequence: 2 givenname: C. surname: Izuchukwu fullname: Izuchukwu, C. organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal – sequence: 3 givenname: O. T. orcidid: 0000-0003-0389-7469 surname: Mewomo fullname: Mewomo, O. T. email: mewomoo@ukzn.ac.za organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal |
| BookMark | eNp9kEtrAyEUhaWk0CTtH-hK6NrWxxjHZQl9BALdtGsxM5oYZjRRp5B_X5MUCl1kdS_H812OZwJGPngDwD3BjwRj8ZQIwYIjTAnCBNcEkSswJlxQJOmMj8qOiUCEyfoGTFLa4uLCVIxBWngTs9Md7E3ehDZBGyK0zrfOr2HvvOuHHvkQe5hCN2QXfILBwrwxMO06l-G3jk4f9XLDebMfdFEPcBfDqjM9XJlD8C3sgw85eNeUt1twbXWXzN3vnIKv15fP-Ttafrwt5s9L1DAiMxIacym1FLplpjG8otjodkVMraVu2EnFVgqmreHFSSuuZWUbXrUtlqJiU_Bwvluy7AeTstqGIZacSVFJ6hllvGLFVZ9dTQwpRWNVyXj6UI7adYpgdaxYnStWpWJ1qliRgtJ_6C66XsfDZYidoVTMfm3iX6oL1A8m1pPJ |
| CitedBy_id | crossref_primary_10_5269_bspm_65211 crossref_primary_10_1080_02331934_2021_1981897 crossref_primary_10_1186_s13660_021_02719_3 crossref_primary_10_1109_ACCESS_2021_3091906 crossref_primary_10_2989_16073606_2024_2327562 crossref_primary_10_1080_00036811_2022_2107913 crossref_primary_10_1007_s12215_025_01211_x crossref_primary_10_1007_s11075_024_01975_w crossref_primary_10_1186_s13660_022_02782_4 crossref_primary_10_1080_02331934_2023_2168482 crossref_primary_10_1007_s12215_023_00978_1 crossref_primary_10_1007_s11587_021_00624_x crossref_primary_10_1007_s40590_021_00408_1 crossref_primary_10_1007_s11075_025_02040_w crossref_primary_10_1007_s40314_021_01749_3 crossref_primary_10_1080_02331934_2022_2069022 crossref_primary_10_1109_TSMC_2023_3274222 crossref_primary_10_1007_s13370_023_01040_0 crossref_primary_10_3390_axioms14050354 crossref_primary_10_1007_s40306_022_00480_3 crossref_primary_10_1007_s40305_023_00482_4 crossref_primary_10_1007_s11785_025_01810_7 crossref_primary_10_1515_math_2022_0030 crossref_primary_10_3390_math10142367 crossref_primary_10_1007_s11565_024_00496_7 crossref_primary_10_3846_mma_2022_13949 crossref_primary_10_3390_sym14040636 crossref_primary_10_1515_cmam_2020_0174 crossref_primary_10_1007_s10998_022_00470_w crossref_primary_10_1007_s00186_022_00780_2 crossref_primary_10_1080_00036811_2025_2505615 crossref_primary_10_5269_bspm_51319 crossref_primary_10_3390_math12121825 crossref_primary_10_1016_j_cnsns_2022_106656 crossref_primary_10_1007_s00186_023_00846_9 crossref_primary_10_3390_math11020386 crossref_primary_10_1007_s10473_022_0501_5 crossref_primary_10_1515_cmam_2022_0199 crossref_primary_10_1007_s00009_022_02114_2 crossref_primary_10_1080_00036811_2023_2233977 crossref_primary_10_1007_s12215_024_01022_6 crossref_primary_10_1007_s41478_021_00359_w crossref_primary_10_3390_math9212680 crossref_primary_10_1002_mma_8849 crossref_primary_10_1080_00036811_2025_2538107 crossref_primary_10_1155_2024_5511978 crossref_primary_10_1186_s13660_023_03039_4 crossref_primary_10_3390_math10081350 |
| Cites_doi | 10.1007/s10957-020-01672-3 10.3934/jimo.2020063 10.1016/0041-5553(64)90137-5 10.1016/S0360-3016(01)02585-8 10.1186/s13660-017-1397-9 10.1007/BF02142692 10.1515/dema-2020-0006 10.1017/CBO9780511801181 10.1080/02331934.2020.1716752 10.36045/bbms/1590199308 10.1007/s11565-020-00354-2 10.1007/s12215-019-00431-2 10.1016/j.jmaa.2005.12.066 10.1007/s10013-019-00378-y 10.1007/s13324-019-00330-w 10.1080/02331934.2018.1522636 10.1007/s10915-020-01385-9 10.1007/s10440-019-00297-7 10.1007/s10092-018-0300-5 10.1137/S0363012998338806 10.1007/s11075-018-0640-x 10.1007/s11075-019-00758-y 10.1137/130910294 10.1080/02331934.2019.1686633 10.1080/01630563.2019.1681000 10.1007/s10898-017-0506-0 10.1080/02331934.2018.1490417 10.1080/02331934.2020.1723586 10.1016/j.jmaa.2004.04.068 10.1007/s11075-019-00780-0 10.1080/02331934.2014.883515 10.1023/A:1011253113155 10.1080/02331934.2018.1523404 10.1007/s10957-010-9757-3 10.1080/02331934.2020.1808648 10.1016/j.na.2011.10.012 10.1007/s11075-019-00703-z 10.1137/080716542 10.1007/s11784-020-00834-0 10.1007/s11075-018-0527-x 10.1007/s11075-020-00937-2 10.1088/0266-5611/20/1/006 10.1088/0266-5611/26/10/105018 10.1007/s11075-011-9490-5 10.1007/s00211-013-0580-2 10.1007/s11587-019-00460-0 10.1137/S1052623403427859 10.1007/s10957-011-9814-6 10.1007/BF00941468 10.1088/0031-9155/51/10/001 10.21136/AM.2019.0323-18 10.3390/mca25030054 10.1080/01630563.2018.1564763 10.1137/09076773X 10.1007/s10957-014-0598-3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-021-01081-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1456 |
| ExternalDocumentID | 10_1007_s11075_021_01081_1 |
| GrantInformation_xml | – fundername: National Research Foundation (NRF), South Africa grantid: 120784 – fundername: National Research Foundation (NRF), South Africa grantid: 119903 – fundername: University of KwaZulu-Natal-Doctoral Scholarship grantid: 20070301 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-7a0599a97ad3ece5420eadb1e8a9ac3ad3ec0f973afe5599245a94fc54dd09743 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623809400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 08:35:06 EST 2025 Tue Nov 18 22:20:48 EST 2025 Sat Nov 29 01:34:54 EST 2025 Fri Feb 21 02:47:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Projection and contraction methods 47H10 Minimum-norm solutions 49J20 Pseudomonotone operators 49J40 Product space formulation 47H09 Split variational inequality problems Lipschitz continuous Inertial extrapolation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7a0599a97ad3ece5420eadb1e8a9ac3ad3ec0f973afe5599245a94fc54dd09743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0389-7469 |
| PQID | 2918623543 |
| PQPubID | 2043837 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_2918623543 crossref_citationtrail_10_1007_s11075_021_01081_1 crossref_primary_10_1007_s11075_021_01081_1 springer_journals_10_1007_s11075_021_01081_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20211100 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | DongQChoYZhongLRassiasTMInertial projection and contraction algorithms for variational inequalitiesJ. Glob. Optim.20187068770437646241390.90568 CensorYGibaliAReichSThe split variational inequality problemThe Technion-Israel Institute of Technology, Haifa20125930132328731361239.65041 ByrneCA unified treatment for some iterative algorithms in signal processing and image reconstructionInv. Probl.20042010312020446081051.65067 XuHKIterative methods for the split feasibility problem in infinite dimensional Hilbert spacesInv. Probl.20102610501827197791213.65085 HeB-SYangZ-HYuanX-MAn approximate proximal-extragradient type method for monotone variational inequalitiesJ. Math. Anal. Appl.200430036237420982151068.65087 ZhaoJHouDA self-adaptive iterative algorithm for the split common fixed point problemsNumer. Algorithms20198210471063402765607128076 AlvarezFWeak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaceSIAM J. Optim.200414377378220859421079.90096 Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. https://doi.org/10.1007/s10440-019-00297-7 (2019) KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044 MaingéPEApproximation methods for common fixed points of nonexpansive mappings in Hilbert spacesJ. Math. Anal. Appl.2007325146947922735381111.47058 Alakoya, T.O., Taiwo, A., Mewomo, O.T., Cho, Y.J.: An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. https://doi.org/10.1007/s11565-020-00354-2 SüliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.65001x + 433 pp OgbuisiFUMewomoOTConvergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problems, Adv. Pure ApplMath.2019104339353401520607138594 JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo II202069371173541681361461.65196 CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.201114831833527805661229.58018 CensorYBortfeldTMartinBTrofimovAA unified approach for inversion problems in intensity modulated radiation therapyPhys. Med. Biol.20065123532365 Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. https://doi.org/10.1007/s10915-020-01385-9 TianMJiangB-NViscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert spaceNumer. Funct. Anal. Optim.20194090292339370691412.58008 ReichSTuyenTMTrangNMParallel iterative methods for solving the split common fixed point problem in Hilbert spacesNumer. Funct. Anal. Optim.20204177880540805291442.47064 Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019) CensorYElfvingTA multiprojection algorithm using Bregman projections in product spaceNumer. Algorithms1994822123913092220828.65065 Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl., (123). https://doi.org/10.1186/s13660-017-1397-9 (2017) GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in HilbertOptimization20196811332390215407007063 BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009 HanDRHeHJYangHYuanXMA customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraintsNumer. Math.201412716720031912191295.90046 MoudafiASplit monotone variational inclusionsJ. Optim. Theory Appl.201115027528328189201231.90358 OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin202027112715241027051442.47050 IzuchukwuCOkekeCCMewomoOTSystems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappingsUkrainian Math. J.20197114801501 ReichSTuyenTMTwo projection methods for solving the multiple-set split common null point problem in Hilbert spacesOptimization20206919131934413906207249879 TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.20003843144617411470997.90062 AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.200191-231118459310991.65056 Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl., accepted . to appear (2020) ReichSTuyenTMA new algorithm for solving the split common null point problem in Hilbert spacesNumer. Algorithms202083789805405526907160103 Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces Optimization. https://doi.org/10.1080/02331934.2018.1522636 (2018) HeHLingCXuHKA relaxed projection method for split variational inequalitiesJ. Optim. Theory Appl.201516621323333661111323.65079 Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space Optimization. https://doi.org/10.1080/02331934.2020.1716752 (2020) Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems Optimization. https://doi.org/10.1080/02331934.2020.1723586 (2020) ThongDVShehuYIyiolaOSWeak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappingsNumer. Algorithms20198479582340988681439.47047 Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2020063 (2020) JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063607211749 AttouchHPeypouquetJRedontPA dynamical approach to an inertial forward-backward algorithm for convex minimizationSIAM J. Optim.201424123225631641301295.90044 CholamjiakPShehuYInertial forward-backward splitting method in Banach spaces with application to compressed sensingAppl. Math.201964409435398722607088749 GibaliAThongDVTuanPATwo simple projection-type methods for solving variational inequalitiesAnal. Math. Phys.2019922032225403813007152002 ShehuYLiXHDongQLAn efficient projection-type method for monotone variational inequalities in Hilbert spacesNumer. Algorithms202084365388408970307202163 YangJLiuHLiuZModified subgradient extragradient algorithms for solving monotone variational inequalitiesOptimization201867122247225838924931415.49010 Palta, J.R., Mackie, T.R.: Intensity modulated radiation therapy: The state of the art. Medical Physical Monograph. American Association of Physists in Medicine, 29. Medical Physical Publishing, Madison (2003) HendrickxJMOlshevskyAMatrix P-norms are NP-hard to approximate if ${P\neq } 1, 2,\infty $P ≠ 1, 2,∞SIAM J. Matrix Anal. Appl.2010312802281227406341216.68117 PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. and Math. Phys.196445117 Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. arXiv:1808.08084 KimJKSalahuddinSLimWHGeneral nonconvex split variational inequality problemsKorean J. Math.20172546948137499181467.47033 CottleRWYaoJCPseudo-monotone complementarity problems in Hilbert spaceJ. Optim. Theory Appl.19927528129511915880795.90071 FicheraGSul pproblem elastostatico di signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.1963341381420128.18305 Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy, pp 102–192. Edizioni Odersi, Gubbio (1968) Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4). Art. No. 98, 23 pp (2020) Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization. https://doi.org/10.1080/02331934.2020.1808648 (2020) CensorYGibaliAReichSAlgorithms for the split variational inequality problemNumer. Algorithms20125930132328731361239.65041 CengLCAnsariQHYaoJCRelaxed extragradient methods for finding minimum-norm solutions of the split feasibility problemNonlinear Anal.2012752116212528709041236.47066 PhamVHNguyenDHAnhTVA strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problemVietnam J. Math.20204818720440683791437.49046 TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solvin Y Censor (1081_CR12) 1994; 8 LO Jolaoso (1081_CR30) 2020; 69 P Tseng (1081_CR59) 2000; 38 1081_CR1 BT Polyak (1081_CR43) 1964; 4 F Alvarez (1081_CR4) 2001; 9 P Cholamjiak (1081_CR16) 2019; 64 JM Hendrickx (1081_CR26) 2010; 31 1081_CR5 GN Ogwo (1081_CR39) 2020; 27 1081_CR2 DV Thong (1081_CR56) 2019; 84 JK Kim (1081_CR34) 2017; 25 1081_CR42 FU Ogbuisi (1081_CR38) 2019; 10 M Tian (1081_CR57) 2019; 40 J Zhao (1081_CR63) 2015; 64 Y Censor (1081_CR14) 2012; 59 B-S He (1081_CR25) 2004; 300 F Alvarez (1081_CR3) 2004; 14 RW Cottle (1081_CR18) 1992; 75 DR Han (1081_CR23) 2014; 127 S Reich (1081_CR44) 2020; 83 1081_CR49 C Byrne (1081_CR9) 2004; 20 1081_CR47 Y Censor (1081_CR15) 2011; 148 Y Censor (1081_CR11) 2006; 51 H He (1081_CR24) 2015; 166 LC Ceng (1081_CR10) 2012; 75 LO Jolaoso (1081_CR32) 2020; 185 PE Maingé (1081_CR36) 2007; 325 Q Wu (1081_CR60) 2003; 52 A Gibali (1081_CR22) 2019; 9 S Reich (1081_CR45) 2020; 69 1081_CR33 1081_CR31 J Zhao (1081_CR64) 2019; 82 VH Pham (1081_CR41) 2020; 48 Y Censor (1081_CR13) 2012; 59 G Fichera (1081_CR20) 1963; 34 Y Shehu (1081_CR48) 2020; 84 S Reich (1081_CR46) 2020; 41 GM Korpelevich (1081_CR35) 1976; 12 A Gibali (1081_CR21) 2019; 68 A Taiwo (1081_CR53) 2020; 69 A Moudafi (1081_CR37) 2011; 150 E Süli (1081_CR50) 2003 HK Xu (1081_CR61) 2010; 26 1081_CR28 GN Ogwo (1081_CR40) 2020; 53 1081_CR27 C Izuchukwu (1081_CR29) 2019; 71 DV Thong (1081_CR55) 2019; 80 A Beck (1081_CR7) 2009; 2 1081_CR8 J Yang (1081_CR62) 2018; 67 1081_CR54 H Attouch (1081_CR6) 2014; 24 1081_CR51 1081_CR52 Q Dong (1081_CR19) 2018; 70 1081_CR17 1081_CR58 |
| References_xml | – reference: FicheraGSul pproblem elastostatico di signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.1963341381420128.18305 – reference: PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. and Math. Phys.196445117 – reference: Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl., accepted . to appear (2020) – reference: KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044 – reference: ReichSTuyenTMA new algorithm for solving the split common null point problem in Hilbert spacesNumer. Algorithms202083789805405526907160103 – reference: TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solving Split Equality Common Fixed Point Problem for quasi-pseudocontractive mappings in Hilbert spacesRic. Mat.202069123525940981831439.47056 – reference: CensorYGibaliAReichSAlgorithms for the split variational inequality problemNumer. Algorithms20125930132328731361239.65041 – reference: Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. https://doi.org/10.1007/s10915-020-01385-9 – reference: CensorYElfvingTA multiprojection algorithm using Bregman projections in product spaceNumer. Algorithms1994822123913092220828.65065 – reference: CengLCAnsariQHYaoJCRelaxed extragradient methods for finding minimum-norm solutions of the split feasibility problemNonlinear Anal.2012752116212528709041236.47066 – reference: XuHKIterative methods for the split feasibility problem in infinite dimensional Hilbert spacesInv. Probl.20102610501827197791213.65085 – reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.201114831833527805661229.58018 – reference: HeB-SYangZ-HYuanX-MAn approximate proximal-extragradient type method for monotone variational inequalitiesJ. Math. Anal. Appl.200430036237420982151068.65087 – reference: ZhaoJSolving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators normsOptimization2015642619263034118241326.47104 – reference: CensorYBortfeldTMartinBTrofimovAA unified approach for inversion problems in intensity modulated radiation therapyPhys. Med. Biol.20065123532365 – reference: Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space Optimization. https://doi.org/10.1080/02331934.2020.1716752 (2020) – reference: MoudafiASplit monotone variational inclusionsJ. Optim. Theory Appl.201115027528328189201231.90358 – reference: ReichSTuyenTMTrangNMParallel iterative methods for solving the split common fixed point problem in Hilbert spacesNumer. Funct. Anal. Optim.20204177880540805291442.47064 – reference: GibaliAThongDVTuanPATwo simple projection-type methods for solving variational inequalitiesAnal. Math. Phys.2019922032225403813007152002 – reference: TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.20003843144617411470997.90062 – reference: JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo II202069371173541681361461.65196 – reference: WuQMohanRNiemierkoASchmidt-UllrichROptimization of intensity-modulated radiotherapy plan based on the equivalent uniform doseInt. J. Radiat. Oncol. Biol. Phys.200352224235 – reference: ShehuYLiXHDongQLAn efficient projection-type method for monotone variational inequalities in Hilbert spacesNumer. Algorithms202084365388408970307202163 – reference: ReichSTuyenTMTwo projection methods for solving the multiple-set split common null point problem in Hilbert spacesOptimization20206919131934413906207249879 – reference: HanDRHeHJYangHYuanXMA customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraintsNumer. Math.201412716720031912191295.90046 – reference: GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in HilbertOptimization20196811332390215407007063 – reference: Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019) – reference: CensorYGibaliAReichSThe split variational inequality problemThe Technion-Israel Institute of Technology, Haifa20125930132328731361239.65041 – reference: YangJLiuHLiuZModified subgradient extragradient algorithms for solving monotone variational inequalitiesOptimization201867122247225838924931415.49010 – reference: HendrickxJMOlshevskyAMatrix P-norms are NP-hard to approximate if ${P\neq } 1, 2,\infty $P ≠ 1, 2,∞SIAM J. Matrix Anal. Appl.2010312802281227406341216.68117 – reference: Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl., (123). https://doi.org/10.1186/s13660-017-1397-9 (2017) – reference: Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. arXiv:1808.08084 – reference: IzuchukwuCOkekeCCMewomoOTSystems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappingsUkrainian Math. J.20197114801501 – reference: PhamVHNguyenDHAnhTVA strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problemVietnam J. Math.20204818720440683791437.49046 – reference: CholamjiakPShehuYInertial forward-backward splitting method in Banach spaces with application to compressed sensingAppl. Math.201964409435398722607088749 – reference: Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization. https://doi.org/10.1080/02331934.2020.1808648 (2020) – reference: Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy, pp 102–192. Edizioni Odersi, Gubbio (1968) – reference: AlvarezFWeak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaceSIAM J. Optim.200414377378220859421079.90096 – reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063607211749 – reference: OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin202027112715241027051442.47050 – reference: AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.200191-231118459310991.65056 – reference: OgbuisiFUMewomoOTConvergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problems, Adv. Pure ApplMath.2019104339353401520607138594 – reference: Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. https://doi.org/10.1007/s10440-019-00297-7 (2019) – reference: HeHLingCXuHKA relaxed projection method for split variational inequalitiesJ. Optim. Theory Appl.201516621323333661111323.65079 – reference: OgwoGNIzuchukwuCAremuKOMewomoOTOn 𝜃-generalized demimetric mappings and monotone operators in Hadamard spacesDemonstr. Math.202053195111412134907239297 – reference: AttouchHPeypouquetJRedontPA dynamical approach to an inertial forward-backward algorithm for convex minimizationSIAM J. Optim.201424123225631641301295.90044 – reference: CottleRWYaoJCPseudo-monotone complementarity problems in Hilbert spaceJ. Optim. Theory Appl.19927528129511915880795.90071 – reference: Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4). Art. No. 98, 23 pp (2020) – reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009 – reference: DongQChoYZhongLRassiasTMInertial projection and contraction algorithms for variational inequalitiesJ. Glob. Optim.20187068770437646241390.90568 – reference: KimJKSalahuddinSLimWHGeneral nonconvex split variational inequality problemsKorean J. Math.20172546948137499181467.47033 – reference: Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2020063 (2020) – reference: Palta, J.R., Mackie, T.R.: Intensity modulated radiation therapy: The state of the art. Medical Physical Monograph. American Association of Physists in Medicine, 29. Medical Physical Publishing, Madison (2003) – reference: ThongDVShehuYIyiolaOSWeak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappingsNumer. Algorithms20198479582340988681439.47047 – reference: SüliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.65001x + 433 pp – reference: ThongDVHieuDVInertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problemsNumer. Algorithms20198012831307392723407042050 – reference: Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems Optimization. https://doi.org/10.1080/02331934.2020.1723586 (2020) – reference: MaingéPEApproximation methods for common fixed points of nonexpansive mappings in Hilbert spacesJ. Math. Anal. Appl.2007325146947922735381111.47058 – reference: Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces Optimization. https://doi.org/10.1080/02331934.2018.1522636 (2018) – reference: ByrneCA unified treatment for some iterative algorithms in signal processing and image reconstructionInv. Probl.20042010312020446081051.65067 – reference: Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms. https://doi.org/10.1007/s11075-020-00937-2 (2020) – reference: TianMJiangB-NViscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert spaceNumer. Funct. Anal. Optim.20194090292339370691412.58008 – reference: Alakoya, T.O., Taiwo, A., Mewomo, O.T., Cho, Y.J.: An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. https://doi.org/10.1007/s11565-020-00354-2 – reference: ZhaoJHouDA self-adaptive iterative algorithm for the split common fixed point problemsNumer. Algorithms20198210471063402765607128076 – volume: 10 start-page: 339 issue: 4 year: 2019 ident: 1081_CR38 publication-title: Math. – ident: 1081_CR42 – volume: 185 start-page: 744 issue: 3 year: 2020 ident: 1081_CR32 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-020-01672-3 – ident: 1081_CR5 doi: 10.3934/jimo.2020063 – volume: 4 start-page: 1 issue: 5 year: 1964 ident: 1081_CR43 publication-title: U.S.S.R. Comput. Math. and Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 52 start-page: 224 year: 2003 ident: 1081_CR60 publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(01)02585-8 – ident: 1081_CR58 doi: 10.1186/s13660-017-1397-9 – volume: 8 start-page: 221 year: 1994 ident: 1081_CR12 publication-title: Numer. Algorithms doi: 10.1007/BF02142692 – volume: 25 start-page: 469 year: 2017 ident: 1081_CR34 publication-title: Korean J. Math. – volume: 53 start-page: 95 issue: 1 year: 2020 ident: 1081_CR40 publication-title: Demonstr. Math. doi: 10.1515/dema-2020-0006 – volume-title: An introduction to numerical analysis year: 2003 ident: 1081_CR50 doi: 10.1017/CBO9780511801181 – ident: 1081_CR31 doi: 10.1080/02331934.2020.1716752 – volume: 27 start-page: 127 issue: 1 year: 2020 ident: 1081_CR39 publication-title: Bull. Belg. Math. Soc. Simon Stevin doi: 10.36045/bbms/1590199308 – ident: 1081_CR2 doi: 10.1007/s11565-020-00354-2 – volume: 69 start-page: 711 issue: 3 year: 2020 ident: 1081_CR30 publication-title: Rend. Circ. Mat. Palermo II doi: 10.1007/s12215-019-00431-2 – volume: 325 start-page: 469 issue: 1 year: 2007 ident: 1081_CR36 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.12.066 – volume: 48 start-page: 187 year: 2020 ident: 1081_CR41 publication-title: Vietnam J. Math. doi: 10.1007/s10013-019-00378-y – volume: 9 start-page: 2203 year: 2019 ident: 1081_CR22 publication-title: Anal. Math. Phys. doi: 10.1007/s13324-019-00330-w – ident: 1081_CR49 doi: 10.1080/02331934.2018.1522636 – ident: 1081_CR54 doi: 10.1007/s10915-020-01385-9 – ident: 1081_CR17 doi: 10.1007/s10440-019-00297-7 – ident: 1081_CR47 doi: 10.1007/s10092-018-0300-5 – volume: 38 start-page: 431 year: 2000 ident: 1081_CR59 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998338806 – volume: 82 start-page: 1047 year: 2019 ident: 1081_CR64 publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0640-x – volume: 84 start-page: 365 year: 2020 ident: 1081_CR48 publication-title: Numer. Algorithms doi: 10.1007/s11075-019-00758-y – volume: 24 start-page: 232 issue: 1 year: 2014 ident: 1081_CR6 publication-title: SIAM J. Optim. doi: 10.1137/130910294 – volume: 69 start-page: 1913 year: 2020 ident: 1081_CR45 publication-title: Optimization doi: 10.1080/02331934.2019.1686633 – volume: 41 start-page: 778 year: 2020 ident: 1081_CR46 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2019.1681000 – ident: 1081_CR51 – volume: 70 start-page: 687 year: 2018 ident: 1081_CR19 publication-title: J. Glob. Optim. doi: 10.1007/s10898-017-0506-0 – volume: 71 start-page: 1480 year: 2019 ident: 1081_CR29 publication-title: Ukrainian Math. J. – volume: 68 start-page: 13 issue: 1 year: 2019 ident: 1081_CR21 publication-title: Optimization doi: 10.1080/02331934.2018.1490417 – ident: 1081_CR1 doi: 10.1080/02331934.2020.1723586 – volume: 59 start-page: 301 year: 2012 ident: 1081_CR14 publication-title: The Technion-Israel Institute of Technology, Haifa – volume: 300 start-page: 362 year: 2004 ident: 1081_CR25 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.04.068 – volume: 84 start-page: 795 year: 2019 ident: 1081_CR56 publication-title: Numer. Algorithms doi: 10.1007/s11075-019-00780-0 – volume: 64 start-page: 2619 year: 2015 ident: 1081_CR63 publication-title: Optimization doi: 10.1080/02331934.2014.883515 – volume: 9 start-page: 3 issue: 1-2 year: 2001 ident: 1081_CR4 publication-title: Set-Valued Anal. doi: 10.1023/A:1011253113155 – volume: 67 start-page: 2247 issue: 12 year: 2018 ident: 1081_CR62 publication-title: Optimization doi: 10.1080/02331934.2018.1523404 – volume: 148 start-page: 318 year: 2011 ident: 1081_CR15 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9757-3 – ident: 1081_CR28 doi: 10.1080/02331934.2020.1808648 – volume: 75 start-page: 2116 year: 2012 ident: 1081_CR10 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2011.10.012 – volume: 83 start-page: 789 year: 2020 ident: 1081_CR44 publication-title: Numer. Algorithms doi: 10.1007/s11075-019-00703-z – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1081_CR7 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – ident: 1081_CR8 – ident: 1081_CR27 doi: 10.1007/s11784-020-00834-0 – volume: 80 start-page: 1283 year: 2019 ident: 1081_CR55 publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0527-x – volume: 12 start-page: 747 year: 1976 ident: 1081_CR35 publication-title: Ekon. Mat. Metody – ident: 1081_CR52 doi: 10.1007/s11075-020-00937-2 – volume: 20 start-page: 103 year: 2004 ident: 1081_CR9 publication-title: Inv. Probl. doi: 10.1088/0266-5611/20/1/006 – volume: 26 start-page: 105018 year: 2010 ident: 1081_CR61 publication-title: Inv. Probl. doi: 10.1088/0266-5611/26/10/105018 – volume: 59 start-page: 301 year: 2012 ident: 1081_CR13 publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9490-5 – volume: 127 start-page: 167 year: 2014 ident: 1081_CR23 publication-title: Numer. Math. doi: 10.1007/s00211-013-0580-2 – volume: 69 start-page: 235 issue: 1 year: 2020 ident: 1081_CR53 publication-title: Ric. Mat. doi: 10.1007/s11587-019-00460-0 – volume: 14 start-page: 773 issue: 3 year: 2004 ident: 1081_CR3 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403427859 – volume: 150 start-page: 275 year: 2011 ident: 1081_CR37 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9814-6 – volume: 75 start-page: 281 year: 1992 ident: 1081_CR18 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00941468 – volume: 51 start-page: 2353 year: 2006 ident: 1081_CR11 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/10/001 – volume: 64 start-page: 409 year: 2019 ident: 1081_CR16 publication-title: Appl. Math. doi: 10.21136/AM.2019.0323-18 – ident: 1081_CR33 doi: 10.3390/mca25030054 – volume: 40 start-page: 902 year: 2019 ident: 1081_CR57 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2018.1564763 – volume: 34 start-page: 138 year: 1963 ident: 1081_CR20 publication-title: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. – volume: 31 start-page: 2802 year: 2010 ident: 1081_CR26 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/09076773X – volume: 166 start-page: 213 year: 2015 ident: 1081_CR24 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0598-3 |
| SSID | ssj0010027 |
| Score | 2.521267 |
| Snippet | In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1419 |
| SubjectTerms | Algebra Algorithms Computer Science Exploitation Hilbert space Inequality Methods Numeric Computing Numerical Analysis Operators (mathematics) Original Paper Radiation therapy Theory of Computation |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED50-qAPTqfidEoefNNgm7ZL8yQiDkUcPijsraRpKoLr5toN_Pde0mxDwb342iRH4S6573K57wDOYy7QKaeMKq5TGna1pjgzw5hHKU8wP09jaZtN8H4_HgzEs7twK92zyvmZaA_qbKTMHfkVEz6C7yAKg-vxJzVdo0x21bXQWIcNnzHf2Pkjp4ssgom5bLYTT2JEOrErmqlL5zDuMbXJJphGt0j9n45piTZ_JUit3-k1__vHu7DjECe5qU1kD9Z00YKmQ5_E7e2yBdtPCwbXch_Kh8K8uMaFdY_pkiC6JTbDXbwRQ0gynA5pgYiXLKyXjHKCIkiJoisywyjc3TQShLJ19eYXcR1sSGpLZwj-5Kgy9Lw4dgCvvbuX23vqGjRQhTu3olwadhcpuMwCrXQUMg8NM_V1LIVUgf3q5YIHMteG2YyFkRRhrqIwyzwMZIJDaBSjQh8BSYXHNMeZhiGwG7FYYyAnAx3qPNaB5G3w59pJlGMvN000PpIl77LRaIIaTaxGE78NF4s145q7Y-XszlyNidvHZbLUYRsu54awHP5b2vFqaSewxYzt2aLGDjSqyVSfwqaaVe_l5Mxa8TfGJPmE priority: 102 providerName: ProQuest |
| Title | Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity |
| URI | https://link.springer.com/article/10.1007/s11075-021-01081-1 https://www.proquest.com/docview/2918623543 |
| Volume | 88 |
| WOSCitedRecordID | wos000623809400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5080EfnE7F6Rx58E0D_bk0jyobijjGpuJbSbNUBNfJ2g38771k6Yaigr4maVqSu9x9vdx3AKcR42iUE49KphIatJWiOHKEmEdKh3tumkTCFJtgvV709MT7NiksL2-7lyFJc1Kvkt0QqehsYg1_0ZBRxDxVNHeRVsfB8HEZO9BIy8Q48fxF_yayqTLfz_HZHK18zC9hUWNturX_fecObFvvklwsxGEX1lRWh5r1NInV4xybymIOZVsdtu6WBK75HuQ3mb5wjXMtSkznBJ1bYgLc2TPRfCTj2Zhm6PCSpfCSSUpwCpLj2woyRxBufzQS9GQXyZvvxBawIYnJnCGoBJNCs_Ni3z48dDv3V9fU1megEhW3oExochfBmRj5Sqow8ByUy8RVkeBC-qbVSTnzRao0sZkXhIIHqQyD0chBHOMfQCWbZOoQSMIdTzEcqQkC26EXKcRxwleBSiPlC9YAt9ymWFrycl1D4zVe0S7rZY9x2WOz7LHbgLPlM28L6o5fRzfL3Y-tGuexx11EfH4Y-A04L3d71f3zbEd_G34Mm54WGJPj2IRKMZ2pE9iQ8-Iln7agetnp9QctWL9ltKVvpw5bRuQ_AAbE-Uc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqFQ4QKEglo_WBziBReIkJD4ghPgQK2BVCSpxSx3HQUiQhU0A8af4jcw4zq5AKjcOvSb2HJzn8ZuM5w3AWhJLPJQzwXVsMh5uG8NxZI4xj9aeFH6RJco2m4h7veTyUv4eg5e2FoauVbY-0TrqvK_pH_mWkD6S7yAKg927e05doyi72rbQaGBxYp6fMGSrdroH-H3XhTg6vNg_5q6rANcIt5rHiiRJlIxVHhhtolB4uJqZbxIllQ7sU6-QcaAKQ3JcIoyUDAsdhXnuIfsO0O4XmAjJ-9urgufDrAXFeDa7ip4fmVXiinSaUj2Ms6gWmoJ3PIa5__YgHLHbdwlZe84dzfxvK_Qdph2jZnvNFpiFMVPOwYxj18z5rmoOps6GCrXVD6i6Jd0ox4lND-2KIXtnNoNfXjESXLl9uOUlMno23J2sXzA0wSo0XbNHNbh2f1IZUvWmOvWZuQ49LLOlQQwXpV-T_DC-m4c_n7IQCzBe9kuzCCyTnjAxjiQFxO1IJAYDVRWY0BSJCVTcAb9FQ6qdOjs1CblJR7rShKAUEZRaBKV-BzaGc-4abZIPR6-0sEmdn6rSEWY6sNkCb_T639aWPrb2C74dX5ydpqfd3skyTArCvS3gXIHxevBgVuGrfqyvq8FPu4MY_P1sQL4CxUVY7A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD06k4nZoH37Ssn2vzKOpwqGPgB3sraZqK4LqxdgP_ey9puqqoIL4m6bWkd7379XK_AzgJfIpOObIN7ovIcDtCGLgyRszDuUltK4kCpppN-P1-MBzSwYcqfnXavUxJFjUNkqUpzduTOGlXhW-IWmRlsYTC6NQMxD_LrmwaJPH6_dMijyBRl8p34rcYY51Al818L-Oza6rizS8pUuV5uvX_P_MmbOiok5wXarIFSyJtQF1HoETbd4ZDZZOHcqwB63cLYtdsG7JeKg9io6yi9XRGMOglKvGdPhPJUzKajYwUA2GyUGoyTgiKIBneLSdzBOf6ByTBCLco6nwjurENiVRFDUHjGOeStRfnduCxe_VwcW3ovg0GR4PODZ9J0hdGfRY7ggvPtU3U18gSAaOMO2rUTKjvsERIwjPb9Rh1E-65cWwivnF2oZaOU7EHJKKmLXxcKYkDO54dCMR3zBGuSALhML8JVvnKQq5JzWVvjdewomOW2x7itodq20OrCaeLayYFpcevq1ulJoTavLPQphYiQcdznSaclW--mv5Z2v7flh_D6uCyG972-jcHsGZL3VFlkC2o5dOZOIQVPs9fsumR0vp3D9oBvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+methods+for+finding+minimum-norm+solutions+of+the+split+variational+inequality+problem+beyond+monotonicity&rft.jtitle=Numerical+algorithms&rft.au=Ogwo%2C+G.+N.&rft.au=Izuchukwu%2C+C.&rft.au=Mewomo%2C+O.+T.&rft.date=2021-11-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=88&rft.issue=3&rft.spage=1419&rft.epage=1456&rft_id=info:doi/10.1007%2Fs11075-021-01081-1&rft.externalDocID=10_1007_s11075_021_01081_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |