Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity

In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a pro...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 88; no. 3; pp. 1419 - 1456
Main Authors: Ogwo, G. N., Izuchukwu, C., Mewomo, O. T.
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2021
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a product space formulation of the problem. However, it has been discovered that this product space formulation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting structure of the split variational inequality problem. In this paper, we present two new methods with inertial steps for solving the split variational inequality problems in real Hilbert spaces without any product space formulation. We prove that the sequence generated by these methods converges strongly to a minimum-norm solution of the problem when the operators are pseudomonotone and Lipschitz continuous. Also, we provide several numerical experiments of the proposed methods in comparison with other related methods in the literature.
AbstractList In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a product space formulation of the problem. However, it has been discovered that this product space formulation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting structure of the split variational inequality problem. In this paper, we present two new methods with inertial steps for solving the split variational inequality problems in real Hilbert spaces without any product space formulation. We prove that the sequence generated by these methods converges strongly to a minimum-norm solution of the problem when the operators are pseudomonotone and Lipschitz continuous. Also, we provide several numerical experiments of the proposed methods in comparison with other related methods in the literature.
Author Izuchukwu, C.
Ogwo, G. N.
Mewomo, O. T.
Author_xml – sequence: 1
  givenname: G. N.
  surname: Ogwo
  fullname: Ogwo, G. N.
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
– sequence: 2
  givenname: C.
  surname: Izuchukwu
  fullname: Izuchukwu, C.
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
– sequence: 3
  givenname: O. T.
  orcidid: 0000-0003-0389-7469
  surname: Mewomo
  fullname: Mewomo, O. T.
  email: mewomoo@ukzn.ac.za
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
BookMark eNp9kEtrAyEUhaWk0CTtH-hK6NrWxxjHZQl9BALdtGsxM5oYZjRRp5B_X5MUCl1kdS_H812OZwJGPngDwD3BjwRj8ZQIwYIjTAnCBNcEkSswJlxQJOmMj8qOiUCEyfoGTFLa4uLCVIxBWngTs9Md7E3ehDZBGyK0zrfOr2HvvOuHHvkQe5hCN2QXfILBwrwxMO06l-G3jk4f9XLDebMfdFEPcBfDqjM9XJlD8C3sgw85eNeUt1twbXWXzN3vnIKv15fP-Ttafrwt5s9L1DAiMxIacym1FLplpjG8otjodkVMraVu2EnFVgqmreHFSSuuZWUbXrUtlqJiU_Bwvluy7AeTstqGIZacSVFJ6hllvGLFVZ9dTQwpRWNVyXj6UI7adYpgdaxYnStWpWJ1qliRgtJ_6C66XsfDZYidoVTMfm3iX6oL1A8m1pPJ
CitedBy_id crossref_primary_10_5269_bspm_65211
crossref_primary_10_1080_02331934_2021_1981897
crossref_primary_10_1186_s13660_021_02719_3
crossref_primary_10_1109_ACCESS_2021_3091906
crossref_primary_10_2989_16073606_2024_2327562
crossref_primary_10_1080_00036811_2022_2107913
crossref_primary_10_1007_s12215_025_01211_x
crossref_primary_10_1007_s11075_024_01975_w
crossref_primary_10_1186_s13660_022_02782_4
crossref_primary_10_1080_02331934_2023_2168482
crossref_primary_10_1007_s12215_023_00978_1
crossref_primary_10_1007_s11587_021_00624_x
crossref_primary_10_1007_s40590_021_00408_1
crossref_primary_10_1007_s11075_025_02040_w
crossref_primary_10_1007_s40314_021_01749_3
crossref_primary_10_1080_02331934_2022_2069022
crossref_primary_10_1109_TSMC_2023_3274222
crossref_primary_10_1007_s13370_023_01040_0
crossref_primary_10_3390_axioms14050354
crossref_primary_10_1007_s40306_022_00480_3
crossref_primary_10_1007_s40305_023_00482_4
crossref_primary_10_1007_s11785_025_01810_7
crossref_primary_10_1515_math_2022_0030
crossref_primary_10_3390_math10142367
crossref_primary_10_1007_s11565_024_00496_7
crossref_primary_10_3846_mma_2022_13949
crossref_primary_10_3390_sym14040636
crossref_primary_10_1515_cmam_2020_0174
crossref_primary_10_1007_s10998_022_00470_w
crossref_primary_10_1007_s00186_022_00780_2
crossref_primary_10_1080_00036811_2025_2505615
crossref_primary_10_5269_bspm_51319
crossref_primary_10_3390_math12121825
crossref_primary_10_1016_j_cnsns_2022_106656
crossref_primary_10_1007_s00186_023_00846_9
crossref_primary_10_3390_math11020386
crossref_primary_10_1007_s10473_022_0501_5
crossref_primary_10_1515_cmam_2022_0199
crossref_primary_10_1007_s00009_022_02114_2
crossref_primary_10_1080_00036811_2023_2233977
crossref_primary_10_1007_s12215_024_01022_6
crossref_primary_10_1007_s41478_021_00359_w
crossref_primary_10_3390_math9212680
crossref_primary_10_1002_mma_8849
crossref_primary_10_1080_00036811_2025_2538107
crossref_primary_10_1155_2024_5511978
crossref_primary_10_1186_s13660_023_03039_4
crossref_primary_10_3390_math10081350
Cites_doi 10.1007/s10957-020-01672-3
10.3934/jimo.2020063
10.1016/0041-5553(64)90137-5
10.1016/S0360-3016(01)02585-8
10.1186/s13660-017-1397-9
10.1007/BF02142692
10.1515/dema-2020-0006
10.1017/CBO9780511801181
10.1080/02331934.2020.1716752
10.36045/bbms/1590199308
10.1007/s11565-020-00354-2
10.1007/s12215-019-00431-2
10.1016/j.jmaa.2005.12.066
10.1007/s10013-019-00378-y
10.1007/s13324-019-00330-w
10.1080/02331934.2018.1522636
10.1007/s10915-020-01385-9
10.1007/s10440-019-00297-7
10.1007/s10092-018-0300-5
10.1137/S0363012998338806
10.1007/s11075-018-0640-x
10.1007/s11075-019-00758-y
10.1137/130910294
10.1080/02331934.2019.1686633
10.1080/01630563.2019.1681000
10.1007/s10898-017-0506-0
10.1080/02331934.2018.1490417
10.1080/02331934.2020.1723586
10.1016/j.jmaa.2004.04.068
10.1007/s11075-019-00780-0
10.1080/02331934.2014.883515
10.1023/A:1011253113155
10.1080/02331934.2018.1523404
10.1007/s10957-010-9757-3
10.1080/02331934.2020.1808648
10.1016/j.na.2011.10.012
10.1007/s11075-019-00703-z
10.1137/080716542
10.1007/s11784-020-00834-0
10.1007/s11075-018-0527-x
10.1007/s11075-020-00937-2
10.1088/0266-5611/20/1/006
10.1088/0266-5611/26/10/105018
10.1007/s11075-011-9490-5
10.1007/s00211-013-0580-2
10.1007/s11587-019-00460-0
10.1137/S1052623403427859
10.1007/s10957-011-9814-6
10.1007/BF00941468
10.1088/0031-9155/51/10/001
10.21136/AM.2019.0323-18
10.3390/mca25030054
10.1080/01630563.2018.1564763
10.1137/09076773X
10.1007/s10957-014-0598-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-021-01081-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1456
ExternalDocumentID 10_1007_s11075_021_01081_1
GrantInformation_xml – fundername: National Research Foundation (NRF), South Africa
  grantid: 120784
– fundername: National Research Foundation (NRF), South Africa
  grantid: 119903
– fundername: University of KwaZulu-Natal-Doctoral Scholarship
  grantid: 20070301
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-7a0599a97ad3ece5420eadb1e8a9ac3ad3ec0f973afe5599245a94fc54dd09743
IEDL.DBID RSV
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623809400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 08:35:06 EST 2025
Tue Nov 18 22:20:48 EST 2025
Sat Nov 29 01:34:54 EST 2025
Fri Feb 21 02:47:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Projection and contraction methods
47H10
Minimum-norm solutions
49J20
Pseudomonotone operators
49J40
Product space formulation
47H09
Split variational inequality problems
Lipschitz continuous
Inertial extrapolation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7a0599a97ad3ece5420eadb1e8a9ac3ad3ec0f973afe5599245a94fc54dd09743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0389-7469
PQID 2918623543
PQPubID 2043837
PageCount 38
ParticipantIDs proquest_journals_2918623543
crossref_citationtrail_10_1007_s11075_021_01081_1
crossref_primary_10_1007_s11075_021_01081_1
springer_journals_10_1007_s11075_021_01081_1
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DongQChoYZhongLRassiasTMInertial projection and contraction algorithms for variational inequalitiesJ. Glob. Optim.20187068770437646241390.90568
CensorYGibaliAReichSThe split variational inequality problemThe Technion-Israel Institute of Technology, Haifa20125930132328731361239.65041
ByrneCA unified treatment for some iterative algorithms in signal processing and image reconstructionInv. Probl.20042010312020446081051.65067
XuHKIterative methods for the split feasibility problem in infinite dimensional Hilbert spacesInv. Probl.20102610501827197791213.65085
HeB-SYangZ-HYuanX-MAn approximate proximal-extragradient type method for monotone variational inequalitiesJ. Math. Anal. Appl.200430036237420982151068.65087
ZhaoJHouDA self-adaptive iterative algorithm for the split common fixed point problemsNumer. Algorithms20198210471063402765607128076
AlvarezFWeak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaceSIAM J. Optim.200414377378220859421079.90096
Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. https://doi.org/10.1007/s10440-019-00297-7 (2019)
KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044
MaingéPEApproximation methods for common fixed points of nonexpansive mappings in Hilbert spacesJ. Math. Anal. Appl.2007325146947922735381111.47058
Alakoya, T.O., Taiwo, A., Mewomo, O.T., Cho, Y.J.: An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. https://doi.org/10.1007/s11565-020-00354-2
SüliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.65001x + 433 pp
OgbuisiFUMewomoOTConvergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problems, Adv. Pure ApplMath.2019104339353401520607138594
JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo II202069371173541681361461.65196
CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.201114831833527805661229.58018
CensorYBortfeldTMartinBTrofimovAA unified approach for inversion problems in intensity modulated radiation therapyPhys. Med. Biol.20065123532365
Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. https://doi.org/10.1007/s10915-020-01385-9
TianMJiangB-NViscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert spaceNumer. Funct. Anal. Optim.20194090292339370691412.58008
ReichSTuyenTMTrangNMParallel iterative methods for solving the split common fixed point problem in Hilbert spacesNumer. Funct. Anal. Optim.20204177880540805291442.47064
Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019)
CensorYElfvingTA multiprojection algorithm using Bregman projections in product spaceNumer. Algorithms1994822123913092220828.65065
Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl., (123). https://doi.org/10.1186/s13660-017-1397-9 (2017)
GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in HilbertOptimization20196811332390215407007063
BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009
HanDRHeHJYangHYuanXMA customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraintsNumer. Math.201412716720031912191295.90046
MoudafiASplit monotone variational inclusionsJ. Optim. Theory Appl.201115027528328189201231.90358
OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin202027112715241027051442.47050
IzuchukwuCOkekeCCMewomoOTSystems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappingsUkrainian Math. J.20197114801501
ReichSTuyenTMTwo projection methods for solving the multiple-set split common null point problem in Hilbert spacesOptimization20206919131934413906207249879
TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.20003843144617411470997.90062
AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.200191-231118459310991.65056
Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl., accepted . to appear (2020)
ReichSTuyenTMA new algorithm for solving the split common null point problem in Hilbert spacesNumer. Algorithms202083789805405526907160103
Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces Optimization. https://doi.org/10.1080/02331934.2018.1522636 (2018)
HeHLingCXuHKA relaxed projection method for split variational inequalitiesJ. Optim. Theory Appl.201516621323333661111323.65079
Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space Optimization. https://doi.org/10.1080/02331934.2020.1716752 (2020)
Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems Optimization. https://doi.org/10.1080/02331934.2020.1723586 (2020)
ThongDVShehuYIyiolaOSWeak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappingsNumer. Algorithms20198479582340988681439.47047
Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2020063 (2020)
JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063607211749
AttouchHPeypouquetJRedontPA dynamical approach to an inertial forward-backward algorithm for convex minimizationSIAM J. Optim.201424123225631641301295.90044
CholamjiakPShehuYInertial forward-backward splitting method in Banach spaces with application to compressed sensingAppl. Math.201964409435398722607088749
GibaliAThongDVTuanPATwo simple projection-type methods for solving variational inequalitiesAnal. Math. Phys.2019922032225403813007152002
ShehuYLiXHDongQLAn efficient projection-type method for monotone variational inequalities in Hilbert spacesNumer. Algorithms202084365388408970307202163
YangJLiuHLiuZModified subgradient extragradient algorithms for solving monotone variational inequalitiesOptimization201867122247225838924931415.49010
Palta, J.R., Mackie, T.R.: Intensity modulated radiation therapy: The state of the art. Medical Physical Monograph. American Association of Physists in Medicine, 29. Medical Physical Publishing, Madison (2003)
HendrickxJMOlshevskyAMatrix P-norms are NP-hard to approximate if ${P\neq } 1, 2,\infty $P ≠ 1, 2,∞SIAM J. Matrix Anal. Appl.2010312802281227406341216.68117
PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. and Math. Phys.196445117
Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. arXiv:1808.08084
KimJKSalahuddinSLimWHGeneral nonconvex split variational inequality problemsKorean J. Math.20172546948137499181467.47033
CottleRWYaoJCPseudo-monotone complementarity problems in Hilbert spaceJ. Optim. Theory Appl.19927528129511915880795.90071
FicheraGSul pproblem elastostatico di signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.1963341381420128.18305
Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy, pp 102–192. Edizioni Odersi, Gubbio (1968)
Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4). Art. No. 98, 23 pp (2020)
Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization. https://doi.org/10.1080/02331934.2020.1808648 (2020)
CensorYGibaliAReichSAlgorithms for the split variational inequality problemNumer. Algorithms20125930132328731361239.65041
CengLCAnsariQHYaoJCRelaxed extragradient methods for finding minimum-norm solutions of the split feasibility problemNonlinear Anal.2012752116212528709041236.47066
PhamVHNguyenDHAnhTVA strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problemVietnam J. Math.20204818720440683791437.49046
TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solvin
Y Censor (1081_CR12) 1994; 8
LO Jolaoso (1081_CR30) 2020; 69
P Tseng (1081_CR59) 2000; 38
1081_CR1
BT Polyak (1081_CR43) 1964; 4
F Alvarez (1081_CR4) 2001; 9
P Cholamjiak (1081_CR16) 2019; 64
JM Hendrickx (1081_CR26) 2010; 31
1081_CR5
GN Ogwo (1081_CR39) 2020; 27
1081_CR2
DV Thong (1081_CR56) 2019; 84
JK Kim (1081_CR34) 2017; 25
1081_CR42
FU Ogbuisi (1081_CR38) 2019; 10
M Tian (1081_CR57) 2019; 40
J Zhao (1081_CR63) 2015; 64
Y Censor (1081_CR14) 2012; 59
B-S He (1081_CR25) 2004; 300
F Alvarez (1081_CR3) 2004; 14
RW Cottle (1081_CR18) 1992; 75
DR Han (1081_CR23) 2014; 127
S Reich (1081_CR44) 2020; 83
1081_CR49
C Byrne (1081_CR9) 2004; 20
1081_CR47
Y Censor (1081_CR15) 2011; 148
Y Censor (1081_CR11) 2006; 51
H He (1081_CR24) 2015; 166
LC Ceng (1081_CR10) 2012; 75
LO Jolaoso (1081_CR32) 2020; 185
PE Maingé (1081_CR36) 2007; 325
Q Wu (1081_CR60) 2003; 52
A Gibali (1081_CR22) 2019; 9
S Reich (1081_CR45) 2020; 69
1081_CR33
1081_CR31
J Zhao (1081_CR64) 2019; 82
VH Pham (1081_CR41) 2020; 48
Y Censor (1081_CR13) 2012; 59
G Fichera (1081_CR20) 1963; 34
Y Shehu (1081_CR48) 2020; 84
S Reich (1081_CR46) 2020; 41
GM Korpelevich (1081_CR35) 1976; 12
A Gibali (1081_CR21) 2019; 68
A Taiwo (1081_CR53) 2020; 69
A Moudafi (1081_CR37) 2011; 150
E Süli (1081_CR50) 2003
HK Xu (1081_CR61) 2010; 26
1081_CR28
GN Ogwo (1081_CR40) 2020; 53
1081_CR27
C Izuchukwu (1081_CR29) 2019; 71
DV Thong (1081_CR55) 2019; 80
A Beck (1081_CR7) 2009; 2
1081_CR8
J Yang (1081_CR62) 2018; 67
1081_CR54
H Attouch (1081_CR6) 2014; 24
1081_CR51
1081_CR52
Q Dong (1081_CR19) 2018; 70
1081_CR17
1081_CR58
References_xml – reference: FicheraGSul pproblem elastostatico di signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.1963341381420128.18305
– reference: PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. and Math. Phys.196445117
– reference: Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl., accepted . to appear (2020)
– reference: KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044
– reference: ReichSTuyenTMA new algorithm for solving the split common null point problem in Hilbert spacesNumer. Algorithms202083789805405526907160103
– reference: TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solving Split Equality Common Fixed Point Problem for quasi-pseudocontractive mappings in Hilbert spacesRic. Mat.202069123525940981831439.47056
– reference: CensorYGibaliAReichSAlgorithms for the split variational inequality problemNumer. Algorithms20125930132328731361239.65041
– reference: Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. https://doi.org/10.1007/s10915-020-01385-9
– reference: CensorYElfvingTA multiprojection algorithm using Bregman projections in product spaceNumer. Algorithms1994822123913092220828.65065
– reference: CengLCAnsariQHYaoJCRelaxed extragradient methods for finding minimum-norm solutions of the split feasibility problemNonlinear Anal.2012752116212528709041236.47066
– reference: XuHKIterative methods for the split feasibility problem in infinite dimensional Hilbert spacesInv. Probl.20102610501827197791213.65085
– reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.201114831833527805661229.58018
– reference: HeB-SYangZ-HYuanX-MAn approximate proximal-extragradient type method for monotone variational inequalitiesJ. Math. Anal. Appl.200430036237420982151068.65087
– reference: ZhaoJSolving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators normsOptimization2015642619263034118241326.47104
– reference: CensorYBortfeldTMartinBTrofimovAA unified approach for inversion problems in intensity modulated radiation therapyPhys. Med. Biol.20065123532365
– reference: Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space Optimization. https://doi.org/10.1080/02331934.2020.1716752 (2020)
– reference: MoudafiASplit monotone variational inclusionsJ. Optim. Theory Appl.201115027528328189201231.90358
– reference: ReichSTuyenTMTrangNMParallel iterative methods for solving the split common fixed point problem in Hilbert spacesNumer. Funct. Anal. Optim.20204177880540805291442.47064
– reference: GibaliAThongDVTuanPATwo simple projection-type methods for solving variational inequalitiesAnal. Math. Phys.2019922032225403813007152002
– reference: TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.20003843144617411470997.90062
– reference: JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo II202069371173541681361461.65196
– reference: WuQMohanRNiemierkoASchmidt-UllrichROptimization of intensity-modulated radiotherapy plan based on the equivalent uniform doseInt. J. Radiat. Oncol. Biol. Phys.200352224235
– reference: ShehuYLiXHDongQLAn efficient projection-type method for monotone variational inequalities in Hilbert spacesNumer. Algorithms202084365388408970307202163
– reference: ReichSTuyenTMTwo projection methods for solving the multiple-set split common null point problem in Hilbert spacesOptimization20206919131934413906207249879
– reference: HanDRHeHJYangHYuanXMA customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraintsNumer. Math.201412716720031912191295.90046
– reference: GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in HilbertOptimization20196811332390215407007063
– reference: Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019)
– reference: CensorYGibaliAReichSThe split variational inequality problemThe Technion-Israel Institute of Technology, Haifa20125930132328731361239.65041
– reference: YangJLiuHLiuZModified subgradient extragradient algorithms for solving monotone variational inequalitiesOptimization201867122247225838924931415.49010
– reference: HendrickxJMOlshevskyAMatrix P-norms are NP-hard to approximate if ${P\neq } 1, 2,\infty $P ≠ 1, 2,∞SIAM J. Matrix Anal. Appl.2010312802281227406341216.68117
– reference: Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl., (123). https://doi.org/10.1186/s13660-017-1397-9 (2017)
– reference: Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. arXiv:1808.08084
– reference: IzuchukwuCOkekeCCMewomoOTSystems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappingsUkrainian Math. J.20197114801501
– reference: PhamVHNguyenDHAnhTVA strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problemVietnam J. Math.20204818720440683791437.49046
– reference: CholamjiakPShehuYInertial forward-backward splitting method in Banach spaces with application to compressed sensingAppl. Math.201964409435398722607088749
– reference: Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization. https://doi.org/10.1080/02331934.2020.1808648 (2020)
– reference: Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy, pp 102–192. Edizioni Odersi, Gubbio (1968)
– reference: AlvarezFWeak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaceSIAM J. Optim.200414377378220859421079.90096
– reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063607211749
– reference: OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin202027112715241027051442.47050
– reference: AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.200191-231118459310991.65056
– reference: OgbuisiFUMewomoOTConvergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problems, Adv. Pure ApplMath.2019104339353401520607138594
– reference: Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. https://doi.org/10.1007/s10440-019-00297-7 (2019)
– reference: HeHLingCXuHKA relaxed projection method for split variational inequalitiesJ. Optim. Theory Appl.201516621323333661111323.65079
– reference: OgwoGNIzuchukwuCAremuKOMewomoOTOn 𝜃-generalized demimetric mappings and monotone operators in Hadamard spacesDemonstr. Math.202053195111412134907239297
– reference: AttouchHPeypouquetJRedontPA dynamical approach to an inertial forward-backward algorithm for convex minimizationSIAM J. Optim.201424123225631641301295.90044
– reference: CottleRWYaoJCPseudo-monotone complementarity problems in Hilbert spaceJ. Optim. Theory Appl.19927528129511915880795.90071
– reference: Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4). Art. No. 98, 23 pp (2020)
– reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009
– reference: DongQChoYZhongLRassiasTMInertial projection and contraction algorithms for variational inequalitiesJ. Glob. Optim.20187068770437646241390.90568
– reference: KimJKSalahuddinSLimWHGeneral nonconvex split variational inequality problemsKorean J. Math.20172546948137499181467.47033
– reference: Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2020063 (2020)
– reference: Palta, J.R., Mackie, T.R.: Intensity modulated radiation therapy: The state of the art. Medical Physical Monograph. American Association of Physists in Medicine, 29. Medical Physical Publishing, Madison (2003)
– reference: ThongDVShehuYIyiolaOSWeak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappingsNumer. Algorithms20198479582340988681439.47047
– reference: SüliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.65001x + 433 pp
– reference: ThongDVHieuDVInertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problemsNumer. Algorithms20198012831307392723407042050
– reference: Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems Optimization. https://doi.org/10.1080/02331934.2020.1723586 (2020)
– reference: MaingéPEApproximation methods for common fixed points of nonexpansive mappings in Hilbert spacesJ. Math. Anal. Appl.2007325146947922735381111.47058
– reference: Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces Optimization. https://doi.org/10.1080/02331934.2018.1522636 (2018)
– reference: ByrneCA unified treatment for some iterative algorithms in signal processing and image reconstructionInv. Probl.20042010312020446081051.65067
– reference: Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms. https://doi.org/10.1007/s11075-020-00937-2 (2020)
– reference: TianMJiangB-NViscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert spaceNumer. Funct. Anal. Optim.20194090292339370691412.58008
– reference: Alakoya, T.O., Taiwo, A., Mewomo, O.T., Cho, Y.J.: An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. https://doi.org/10.1007/s11565-020-00354-2
– reference: ZhaoJHouDA self-adaptive iterative algorithm for the split common fixed point problemsNumer. Algorithms20198210471063402765607128076
– volume: 10
  start-page: 339
  issue: 4
  year: 2019
  ident: 1081_CR38
  publication-title: Math.
– ident: 1081_CR42
– volume: 185
  start-page: 744
  issue: 3
  year: 2020
  ident: 1081_CR32
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01672-3
– ident: 1081_CR5
  doi: 10.3934/jimo.2020063
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 1081_CR43
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 52
  start-page: 224
  year: 2003
  ident: 1081_CR60
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(01)02585-8
– ident: 1081_CR58
  doi: 10.1186/s13660-017-1397-9
– volume: 8
  start-page: 221
  year: 1994
  ident: 1081_CR12
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02142692
– volume: 25
  start-page: 469
  year: 2017
  ident: 1081_CR34
  publication-title: Korean J. Math.
– volume: 53
  start-page: 95
  issue: 1
  year: 2020
  ident: 1081_CR40
  publication-title: Demonstr. Math.
  doi: 10.1515/dema-2020-0006
– volume-title: An introduction to numerical analysis
  year: 2003
  ident: 1081_CR50
  doi: 10.1017/CBO9780511801181
– ident: 1081_CR31
  doi: 10.1080/02331934.2020.1716752
– volume: 27
  start-page: 127
  issue: 1
  year: 2020
  ident: 1081_CR39
  publication-title: Bull. Belg. Math. Soc. Simon Stevin
  doi: 10.36045/bbms/1590199308
– ident: 1081_CR2
  doi: 10.1007/s11565-020-00354-2
– volume: 69
  start-page: 711
  issue: 3
  year: 2020
  ident: 1081_CR30
  publication-title: Rend. Circ. Mat. Palermo II
  doi: 10.1007/s12215-019-00431-2
– volume: 325
  start-page: 469
  issue: 1
  year: 2007
  ident: 1081_CR36
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.12.066
– volume: 48
  start-page: 187
  year: 2020
  ident: 1081_CR41
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-019-00378-y
– volume: 9
  start-page: 2203
  year: 2019
  ident: 1081_CR22
  publication-title: Anal. Math. Phys.
  doi: 10.1007/s13324-019-00330-w
– ident: 1081_CR49
  doi: 10.1080/02331934.2018.1522636
– ident: 1081_CR54
  doi: 10.1007/s10915-020-01385-9
– ident: 1081_CR17
  doi: 10.1007/s10440-019-00297-7
– ident: 1081_CR47
  doi: 10.1007/s10092-018-0300-5
– volume: 38
  start-page: 431
  year: 2000
  ident: 1081_CR59
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– volume: 82
  start-page: 1047
  year: 2019
  ident: 1081_CR64
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0640-x
– volume: 84
  start-page: 365
  year: 2020
  ident: 1081_CR48
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00758-y
– volume: 24
  start-page: 232
  issue: 1
  year: 2014
  ident: 1081_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/130910294
– volume: 69
  start-page: 1913
  year: 2020
  ident: 1081_CR45
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1686633
– volume: 41
  start-page: 778
  year: 2020
  ident: 1081_CR46
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2019.1681000
– ident: 1081_CR51
– volume: 70
  start-page: 687
  year: 2018
  ident: 1081_CR19
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-017-0506-0
– volume: 71
  start-page: 1480
  year: 2019
  ident: 1081_CR29
  publication-title: Ukrainian Math. J.
– volume: 68
  start-page: 13
  issue: 1
  year: 2019
  ident: 1081_CR21
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1490417
– ident: 1081_CR1
  doi: 10.1080/02331934.2020.1723586
– volume: 59
  start-page: 301
  year: 2012
  ident: 1081_CR14
  publication-title: The Technion-Israel Institute of Technology, Haifa
– volume: 300
  start-page: 362
  year: 2004
  ident: 1081_CR25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.04.068
– volume: 84
  start-page: 795
  year: 2019
  ident: 1081_CR56
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00780-0
– volume: 64
  start-page: 2619
  year: 2015
  ident: 1081_CR63
  publication-title: Optimization
  doi: 10.1080/02331934.2014.883515
– volume: 9
  start-page: 3
  issue: 1-2
  year: 2001
  ident: 1081_CR4
  publication-title: Set-Valued Anal.
  doi: 10.1023/A:1011253113155
– volume: 67
  start-page: 2247
  issue: 12
  year: 2018
  ident: 1081_CR62
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1523404
– volume: 148
  start-page: 318
  year: 2011
  ident: 1081_CR15
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9757-3
– ident: 1081_CR28
  doi: 10.1080/02331934.2020.1808648
– volume: 75
  start-page: 2116
  year: 2012
  ident: 1081_CR10
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.10.012
– volume: 83
  start-page: 789
  year: 2020
  ident: 1081_CR44
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00703-z
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1081_CR7
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– ident: 1081_CR8
– ident: 1081_CR27
  doi: 10.1007/s11784-020-00834-0
– volume: 80
  start-page: 1283
  year: 2019
  ident: 1081_CR55
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0527-x
– volume: 12
  start-page: 747
  year: 1976
  ident: 1081_CR35
  publication-title: Ekon. Mat. Metody
– ident: 1081_CR52
  doi: 10.1007/s11075-020-00937-2
– volume: 20
  start-page: 103
  year: 2004
  ident: 1081_CR9
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/20/1/006
– volume: 26
  start-page: 105018
  year: 2010
  ident: 1081_CR61
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/26/10/105018
– volume: 59
  start-page: 301
  year: 2012
  ident: 1081_CR13
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9490-5
– volume: 127
  start-page: 167
  year: 2014
  ident: 1081_CR23
  publication-title: Numer. Math.
  doi: 10.1007/s00211-013-0580-2
– volume: 69
  start-page: 235
  issue: 1
  year: 2020
  ident: 1081_CR53
  publication-title: Ric. Mat.
  doi: 10.1007/s11587-019-00460-0
– volume: 14
  start-page: 773
  issue: 3
  year: 2004
  ident: 1081_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403427859
– volume: 150
  start-page: 275
  year: 2011
  ident: 1081_CR37
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9814-6
– volume: 75
  start-page: 281
  year: 1992
  ident: 1081_CR18
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941468
– volume: 51
  start-page: 2353
  year: 2006
  ident: 1081_CR11
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/10/001
– volume: 64
  start-page: 409
  year: 2019
  ident: 1081_CR16
  publication-title: Appl. Math.
  doi: 10.21136/AM.2019.0323-18
– ident: 1081_CR33
  doi: 10.3390/mca25030054
– volume: 40
  start-page: 902
  year: 2019
  ident: 1081_CR57
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2018.1564763
– volume: 34
  start-page: 138
  year: 1963
  ident: 1081_CR20
  publication-title: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
– volume: 31
  start-page: 2802
  year: 2010
  ident: 1081_CR26
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/09076773X
– volume: 166
  start-page: 213
  year: 2015
  ident: 1081_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0598-3
SSID ssj0010027
Score 2.521267
Snippet In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1419
SubjectTerms Algebra
Algorithms
Computer Science
Exploitation
Hilbert space
Inequality
Methods
Numeric Computing
Numerical Analysis
Operators (mathematics)
Original Paper
Radiation therapy
Theory of Computation
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED50-qAPTqfidEoefNNgm7ZL8yQiDkUcPijsraRpKoLr5toN_Pde0mxDwb342iRH4S6573K57wDOYy7QKaeMKq5TGna1pjgzw5hHKU8wP09jaZtN8H4_HgzEs7twK92zyvmZaA_qbKTMHfkVEz6C7yAKg-vxJzVdo0x21bXQWIcNnzHf2Pkjp4ssgom5bLYTT2JEOrErmqlL5zDuMbXJJphGt0j9n45piTZ_JUit3-k1__vHu7DjECe5qU1kD9Z00YKmQ5_E7e2yBdtPCwbXch_Kh8K8uMaFdY_pkiC6JTbDXbwRQ0gynA5pgYiXLKyXjHKCIkiJoisywyjc3TQShLJ19eYXcR1sSGpLZwj-5Kgy9Lw4dgCvvbuX23vqGjRQhTu3olwadhcpuMwCrXQUMg8NM_V1LIVUgf3q5YIHMteG2YyFkRRhrqIwyzwMZIJDaBSjQh8BSYXHNMeZhiGwG7FYYyAnAx3qPNaB5G3w59pJlGMvN000PpIl77LRaIIaTaxGE78NF4s145q7Y-XszlyNidvHZbLUYRsu54awHP5b2vFqaSewxYzt2aLGDjSqyVSfwqaaVe_l5Mxa8TfGJPmE
  priority: 102
  providerName: ProQuest
Title Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity
URI https://link.springer.com/article/10.1007/s11075-021-01081-1
https://www.proquest.com/docview/2918623543
Volume 88
WOSCitedRecordID wos000623809400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5080EfnE7F6Rx58E0D_bk0jyobijjGpuJbSbNUBNfJ2g38771k6Yaigr4maVqSu9x9vdx3AKcR42iUE49KphIatJWiOHKEmEdKh3tumkTCFJtgvV709MT7NiksL2-7lyFJc1Kvkt0QqehsYg1_0ZBRxDxVNHeRVsfB8HEZO9BIy8Q48fxF_yayqTLfz_HZHK18zC9hUWNturX_fecObFvvklwsxGEX1lRWh5r1NInV4xybymIOZVsdtu6WBK75HuQ3mb5wjXMtSkznBJ1bYgLc2TPRfCTj2Zhm6PCSpfCSSUpwCpLj2woyRxBufzQS9GQXyZvvxBawIYnJnCGoBJNCs_Ni3z48dDv3V9fU1megEhW3oExochfBmRj5Sqow8ByUy8RVkeBC-qbVSTnzRao0sZkXhIIHqQyD0chBHOMfQCWbZOoQSMIdTzEcqQkC26EXKcRxwleBSiPlC9YAt9ymWFrycl1D4zVe0S7rZY9x2WOz7LHbgLPlM28L6o5fRzfL3Y-tGuexx11EfH4Y-A04L3d71f3zbEd_G34Mm54WGJPj2IRKMZ2pE9iQ8-Iln7agetnp9QctWL9ltKVvpw5bRuQ_AAbE-Uc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqFQ4QKEglo_WBziBReIkJD4ghPgQK2BVCSpxSx3HQUiQhU0A8af4jcw4zq5AKjcOvSb2HJzn8ZuM5w3AWhJLPJQzwXVsMh5uG8NxZI4xj9aeFH6RJco2m4h7veTyUv4eg5e2FoauVbY-0TrqvK_pH_mWkD6S7yAKg927e05doyi72rbQaGBxYp6fMGSrdroH-H3XhTg6vNg_5q6rANcIt5rHiiRJlIxVHhhtolB4uJqZbxIllQ7sU6-QcaAKQ3JcIoyUDAsdhXnuIfsO0O4XmAjJ-9urgufDrAXFeDa7ip4fmVXiinSaUj2Ms6gWmoJ3PIa5__YgHLHbdwlZe84dzfxvK_Qdph2jZnvNFpiFMVPOwYxj18z5rmoOps6GCrXVD6i6Jd0ox4lND-2KIXtnNoNfXjESXLl9uOUlMno23J2sXzA0wSo0XbNHNbh2f1IZUvWmOvWZuQ49LLOlQQwXpV-T_DC-m4c_n7IQCzBe9kuzCCyTnjAxjiQFxO1IJAYDVRWY0BSJCVTcAb9FQ6qdOjs1CblJR7rShKAUEZRaBKV-BzaGc-4abZIPR6-0sEmdn6rSEWY6sNkCb_T639aWPrb2C74dX5ydpqfd3skyTArCvS3gXIHxevBgVuGrfqyvq8FPu4MY_P1sQL4CxUVY7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD06k4nZoH37Ssn2vzKOpwqGPgB3sraZqK4LqxdgP_ey9puqqoIL4m6bWkd7379XK_AzgJfIpOObIN7ovIcDtCGLgyRszDuUltK4kCpppN-P1-MBzSwYcqfnXavUxJFjUNkqUpzduTOGlXhW-IWmRlsYTC6NQMxD_LrmwaJPH6_dMijyBRl8p34rcYY51Al818L-Oza6rizS8pUuV5uvX_P_MmbOiok5wXarIFSyJtQF1HoETbd4ZDZZOHcqwB63cLYtdsG7JeKg9io6yi9XRGMOglKvGdPhPJUzKajYwUA2GyUGoyTgiKIBneLSdzBOf6ByTBCLco6nwjurENiVRFDUHjGOeStRfnduCxe_VwcW3ovg0GR4PODZ9J0hdGfRY7ggvPtU3U18gSAaOMO2rUTKjvsERIwjPb9Rh1E-65cWwivnF2oZaOU7EHJKKmLXxcKYkDO54dCMR3zBGuSALhML8JVvnKQq5JzWVvjdewomOW2x7itodq20OrCaeLayYFpcevq1ulJoTavLPQphYiQcdznSaclW--mv5Z2v7flh_D6uCyG972-jcHsGZL3VFlkC2o5dOZOIQVPs9fsumR0vp3D9oBvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+methods+for+finding+minimum-norm+solutions+of+the+split+variational+inequality+problem+beyond+monotonicity&rft.jtitle=Numerical+algorithms&rft.au=Ogwo%2C+G.+N.&rft.au=Izuchukwu%2C+C.&rft.au=Mewomo%2C+O.+T.&rft.date=2021-11-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=88&rft.issue=3&rft.spage=1419&rft.epage=1456&rft_id=info:doi/10.1007%2Fs11075-021-01081-1&rft.externalDocID=10_1007_s11075_021_01081_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon