SA-ASBA: a hybrid model for aspect-based sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting

Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the text. This research shows excessive curiosity in modelling target and context through attention networks to attain effective feature representa...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 79; no. 5; pp. 5516 - 5551
Main Authors: Mewada, Arvind, Dewang, Rupesh Kumar
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2023
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the text. This research shows excessive curiosity in modelling target and context through attention networks to attain effective feature representations for sentiment detection works. We have proposed a synthetic attention in bidirectional encoder representations from transformers (SA-BERT) with an extreme gradient boosting (XGBoost) classifier to classify sentiment polarity in the review dataset. The proposed model generates dynamic word vector encoding of the aspect and corresponding context of the reviews. Then, the aspect and context of the reviews are meaningfully represented by a transformer that can input the vector word in parallel. After that, the model uses the synthetic attention mechanism to learn essential parts of context and aspects in reviews. Finally, the model places overall representation in the sentiment classification layer to predict sentiment polarity. Both proposed SA-BERT and SA-BERT-XGBoost models achieved the highest accuracy (92.02 and 93.71%) on the restaurant16 and highest F-1 scores (81.19 and 81.64%) on the restaurant14 dataset, respectively. The average accuracy and F1 scores are approximately 2 and 3.04% higher than the baseline models (DLCF-DCA-CDM, R-GAT+BERT, ASGCN-DG, AEN-BERT and BERT-PT). Therefore, proposed models outperform in comparison with baseline models.
AbstractList Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the text. This research shows excessive curiosity in modelling target and context through attention networks to attain effective feature representations for sentiment detection works. We have proposed a synthetic attention in bidirectional encoder representations from transformers (SA-BERT) with an extreme gradient boosting (XGBoost) classifier to classify sentiment polarity in the review dataset. The proposed model generates dynamic word vector encoding of the aspect and corresponding context of the reviews. Then, the aspect and context of the reviews are meaningfully represented by a transformer that can input the vector word in parallel. After that, the model uses the synthetic attention mechanism to learn essential parts of context and aspects in reviews. Finally, the model places overall representation in the sentiment classification layer to predict sentiment polarity. Both proposed SA-BERT and SA-BERT-XGBoost models achieved the highest accuracy (92.02 and 93.71%) on the restaurant16 and highest F-1 scores (81.19 and 81.64%) on the restaurant14 dataset, respectively. The average accuracy and F1 scores are approximately 2 and 3.04% higher than the baseline models (DLCF-DCA-CDM, R-GAT+BERT, ASGCN-DG, AEN-BERT and BERT-PT). Therefore, proposed models outperform in comparison with baseline models.
Author Mewada, Arvind
Dewang, Rupesh Kumar
Author_xml – sequence: 1
  givenname: Arvind
  orcidid: 0000-0002-4680-611X
  surname: Mewada
  fullname: Mewada, Arvind
  email: mewadabpl@gmail.com
  organization: Motilal Nehru National Institute of Technology Allahabad
– sequence: 2
  givenname: Rupesh Kumar
  surname: Dewang
  fullname: Dewang, Rupesh Kumar
  organization: Motilal Nehru National Institute of Technology Allahabad
BookMark eNp9kctqHDEQRYVxIGMnP5CVIGslevRD8m5sHCdgCMTOWlR3V_fI9EgTSUNmviS_a3XGEMjCmxIF99xS1b0g5z54JOSD4J8E5-3nJISULeNSMl5pLdjhjKxE3aqlrc7JihvJma4r-ZZcpPTEOa9Uq1bkz8OarR-u11cU6ObYRTfQbRhwpmOIFNIO-8w6SDjQhD67bSkUPMzH5BLdJ-cnmo4-bzC7nkLOiyh46jzdRWQ5gvOFncFPe5iQXt_-eHwZ8NvlDcVDjrhFOkUY3OLdhZBycX1H3owwJ3z_8l6Sn19uH2--svvvd99u1vesV8Jk1hos-6MZxwE0gNBNN8qmM9Coph0q6FoEJSVvGm1Atl3bVwPHyvDBKKNGVJfk48l3F8OvPaZsn8I-lgWTVbJuam1qqYtKnlR9DClFHO0uui3EoxXcLgHYUwC2BGD_BmAPBdL_Qb3LsJxnOcv8OqpOaCpz_ITx369eoZ4B-eGfsw
CitedBy_id crossref_primary_10_1016_j_csl_2025_101782
crossref_primary_10_1007_s11042_024_19206_8
crossref_primary_10_1016_j_compbiomed_2024_108444
crossref_primary_10_1007_s11042_023_16685_z
crossref_primary_10_1016_j_aej_2025_05_022
crossref_primary_10_1007_s10462_023_10651_9
crossref_primary_10_1007_s10844_023_00785_1
crossref_primary_10_1007_s10515_024_00444_x
crossref_primary_10_3390_app15010172
crossref_primary_10_1016_j_eswa_2023_121930
crossref_primary_10_1109_ACCESS_2024_3386969
crossref_primary_10_1007_s11227_023_05139_w
crossref_primary_10_1177_14727978251364432
crossref_primary_10_12677_ecl_2024_133787
crossref_primary_10_1007_s11036_024_02303_1
crossref_primary_10_1007_s11227_023_05864_2
crossref_primary_10_1109_ACCESS_2025_3567845
crossref_primary_10_12677_airr_2025_142042
crossref_primary_10_3390_electronics13101993
crossref_primary_10_1109_ACCESS_2024_3418847
crossref_primary_10_3390_app132011608
crossref_primary_10_1016_j_procs_2024_03_193
crossref_primary_10_1007_s11227_023_05813_z
crossref_primary_10_1007_s13735_024_00334_8
crossref_primary_10_1016_j_knosys_2025_113987
crossref_primary_10_1142_S0218126625503797
crossref_primary_10_3390_educsci15070797
crossref_primary_10_1016_j_jksuci_2023_101651
crossref_primary_10_3390_bdcc8110141
crossref_primary_10_1007_s12559_024_10331_y
crossref_primary_10_1007_s00521_024_09934_1
crossref_primary_10_1007_s10489_025_06298_4
Cites_doi 10.1109/TCSS.2019.2956957
10.3390/app12052707
10.1049/cit2.12046
10.1016/j.procs.2016.04.070
10.1016/j.knosys.2021.107136
10.1109/TKDE.2015.2485209
10.1016/j.knosys.2021.107338
10.1016/j.neucom.2020.08.013
10.1007/s13042-018-0799-4
10.1007/s13278-021-00794-4
10.1016/j.neucom.2021.03.092
10.1016/j.ipm.2018.12.004
10.1016/j.neucom.2021.12.084
10.3390/app11083640
10.1080/02533839.2021.1933598
10.1109/TASLP.2020.3017093
10.1109/ACCESS.2021.3049294
10.1561/1500000011
10.1016/j.knosys.2022.108586
10.1109/MIS.2013.41
10.1109/ACCESS.2020.3039470
10.1016/j.knosys.2021.107643
10.1016/j.knosys.2022.109409
10.1109/ACCESS.2020.3031665
10.1016/j.ins.2021.04.053
10.1109/ACCESS.2019.2952888
10.1109/ACCESS.2020.2997675
10.1016/j.eswa.2018.10.003
10.1007/s11227-021-04019-5
10.1016/j.neucom.2020.01.024
10.1145/3447756
10.1016/j.knosys.2019.105443
10.1109/ACCESS.2019.2920075
10.1155/2019/1365724
10.18653/v1/D18-1380
10.18653/v1/D18-1377
10.18653/v1/P18-2092
10.1007/978-3-030-30490-4_9
10.18653/v1/2020.acl-main.588
10.18653/v1/2020.coling-main.70
10.1088/1742-6596/1848/1/012064
10.1609/aaai.v32i1.12048
10.1109/ICPR48806.2021.9412167
10.18653/v1/2020.acl-main.295
10.1007/978-3-319-12024-9_5
10.18653/v1/P19-1052
10.3115/v1/P14-2009
10.18653/v1/N18-1202
10.18653/v1/S15-2082
10.1007/978-3-319-93372-6_22
10.18653/v1/D16-1058
10.1145/3468691.3468705
10.3115/v1/S14-2076
10.24963/ijcai.2017/568
10.18653/v1/D16-1021
10.18653/v1/S16-1002
10.18653/v1/N19-1242
10.1002/int.22957
10.18653/v1/D17-1054
10.1609/aaai.v32i1.12049
10.18653/v1/N19-1423
10.3115/v1/S14-2004
10.18653/v1/D19-1464
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-022-04881-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 5551
ExternalDocumentID 10_1007_s11227_022_04881_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-79e100e9ffda8aa186bf26b9a6367d4ab7ea32206689a27b7c4d0e490d9393fe3
IEDL.DBID BENPR
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871309500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 04:22:15 EST 2025
Sat Nov 29 04:27:43 EST 2025
Tue Nov 18 19:39:50 EST 2025
Fri Feb 21 02:46:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords XGBoost classifier
Attention networks
BERT encoder
Aspect-based sentiment analysis
Synthetic attention
Pre-training BERT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-79e100e9ffda8aa186bf26b9a6367d4ab7ea32206689a27b7c4d0e490d9393fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4680-611X
PQID 3256589528
PQPubID 2043774
PageCount 36
ParticipantIDs proquest_journals_3256589528
crossref_primary_10_1007_s11227_022_04881_x
crossref_citationtrail_10_1007_s11227_022_04881_x
springer_journals_10_1007_s11227_022_04881_x
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR39
Guixian, Zhang, Zhang, Shaona, Meng, Chen (CR2) 2022; 245
CR38
CR35
CR33
Liang, Hang, Gui, Cambria, Ruifeng (CR21) 2022; 235
Xiao, Xin, Xing, Luo, Dai, Zhan (CR28) 2021; 571
CR31
CR30
Zhou, Huang, Chen, Qinmin Vivian, Wang, He (CR41) 2019; 7
Jindian, Shanshan, Luo (CR44) 2020; 8
Zhang, Li, Xiaofei, Leung, Chen, Ye (CR19) 2020; 28
Yadav, Jiao, Goodwin, Granmo (CR26) 2021; 226
Bai, Zhou, He (CR18) 2022; 78
Yang, Zhang, Jiang, Li (CR59) 2019; 56
Schouten, Frasincar (CR4) 2015; 28
Shuang, Mengyu, Li, Loo, Sen (CR69) 2021; 420
Ayetiran (CR8) 2022; 252
Zhang, Huang, Li, Xue (CR25) 2021; 20
Meng, Wei, Liu, Zhu, Yin (CR64) 2019; 7
Gao, Li, Luo, Li (CR16) 2022; 12
CR5
Xiao, Xin, Xing, Song, Wang, Zhao (CR10) 2021; 229
Pang, Lee (CR1) 2008; 2
CR49
CR48
CR47
CR46
CR45
CR43
Qiannan, Zhu, Dai, Yan (CR67) 2020; 388
Do, Prasad, Maag, Alsadoon (CR40) 2019; 118
Al-Smadi, Talafha, Al-Ayyoub, Jararweh (CR34) 2019; 10
Bensoltane, Zaki (CR32) 2022; 12
Chakraborty, Bhattacharyya, Bag (CR6) 2020; 7
Sun, Han, Cheng, Enming, Wang (CR7) 2020; 8
Aziz, Dimililer (CR55) 2021; 44
Alec, Karthik, Tim, Ilya (CR36) 2018
Anand, Naorem (CR12) 2016; 84
Ullah, Ahmad, Sana, Sattar, Khan, Akbar, Asghar (CR37) 2021; 6
Weichselbraun, Gindl, Scharl (CR15) 2013; 28
Guangtao, Liu, Zhu, Liu, Fuyong (CR11) 2021; 11
CR14
CR58
CR13
CR57
CR56
CR54
CR53
CR52
CR51
Li, Chow, Zhang (CR42) 2020; 8
CR50
Wang, Li, Zhang, Guangluan, Zhang, Sun (CR17) 2021; 450
Mayur, Sekhara, Chaitanya (CR3) 2022; 7
CR29
CR27
Mayi, Biqing, Heng, Junlong, Jiatao, Hongye (CR70) 2022; 478
CR24
CR68
CR23
CR22
CR66
Zhao, Hou, Ou (CR9) 2020; 193
CR65
CR63
CR62
CR61
CR60
Lin, Wang, Song, Li (CR20) 2021; 9
Z Gao (4881_CR16) 2022; 12
HH Do (4881_CR40) 2019; 118
P Zhang (4881_CR25) 2021; 20
4881_CR29
4881_CR27
C Yang (4881_CR59) 2019; 56
4881_CR22
4881_CR66
4881_CR65
4881_CR24
4881_CR68
4881_CR23
K Schouten (4881_CR4) 2015; 28
4881_CR62
4881_CR61
J Zhou (4881_CR41) 2019; 7
4881_CR63
X Guixian (4881_CR2) 2022; 245
A Weichselbraun (4881_CR15) 2013; 28
4881_CR60
4881_CR14
4881_CR58
M Al-Smadi (4881_CR34) 2019; 10
4881_CR54
4881_CR13
4881_CR57
H Ullah (4881_CR37) 2021; 6
4881_CR56
4881_CR51
4881_CR50
4881_CR53
4881_CR52
K Shuang (4881_CR69) 2021; 420
X Guangtao (4881_CR11) 2021; 11
Y Lin (4881_CR20) 2021; 9
EF Ayetiran (4881_CR8) 2022; 252
J Sun (4881_CR7) 2020; 8
P Zhao (4881_CR9) 2020; 193
B Pang (4881_CR1) 2008; 2
X Wang (4881_CR17) 2021; 450
4881_CR48
4881_CR47
4881_CR49
4881_CR43
4881_CR46
N Li (4881_CR42) 2020; 8
4881_CR45
R Alec (4881_CR36) 2018
Z Xiao (4881_CR10) 2021; 229
S Jindian (4881_CR44) 2020; 8
RHH Aziz (4881_CR55) 2021; 44
W Meng (4881_CR64) 2019; 7
W Mayur (4881_CR3) 2022; 7
Q Bai (4881_CR18) 2022; 78
RK Yadav (4881_CR26) 2021; 226
B Zhang (4881_CR19) 2020; 28
B Liang (4881_CR21) 2022; 235
4881_CR39
R Bensoltane (4881_CR32) 2022; 12
4881_CR38
4881_CR5
4881_CR33
4881_CR35
4881_CR31
X Mayi (4881_CR70) 2022; 478
Z Xiao (4881_CR28) 2021; 571
4881_CR30
D Anand (4881_CR12) 2016; 84
X Qiannan (4881_CR67) 2020; 388
K Chakraborty (4881_CR6) 2020; 7
References_xml – ident: CR45
– ident: CR22
– volume: 7
  start-page: 450
  issue: 2
  year: 2020
  end-page: 464
  ident: CR6
  article-title: A survey of sentiment analysis from social media data
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2019.2956957
– ident: CR49
– ident: CR68
– ident: CR39
– ident: CR51
– volume: 12
  start-page: 2707
  issue: 5
  year: 2022
  ident: CR16
  article-title: Short text aspect-based sentiment analysis based on CNN+ BiGRU
  publication-title: Appl Sci
  doi: 10.3390/app12052707
– volume: 6
  start-page: 251
  issue: 3
  year: 2021
  end-page: 264
  ident: CR37
  article-title: Comparative study for machine learning classifier recommendation to predict political affiliation based on online reviews
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/cit2.12046
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR61
– ident: CR58
– volume: 84
  start-page: 86
  year: 2016
  end-page: 93
  ident: CR12
  article-title: Semi-supervised aspect based sentiment analysis for movies using review filtering
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.070
– volume: 226
  start-page: 107136
  year: 2021
  ident: CR26
  article-title: Positionless aspect based sentiment analysis using attention mechanism
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2021.107136
– volume: 28
  start-page: 813
  issue: 3
  year: 2015
  end-page: 830
  ident: CR4
  article-title: Survey on aspect-level sentiment analysis
  publication-title: IEEE Trans Know Data Eng
  doi: 10.1109/TKDE.2015.2485209
– volume: 229
  start-page: 107338
  year: 2021
  ident: CR10
  article-title: A federated learning system with enhanced feature extraction for human activity recognition
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2021.107338
– ident: CR46
– ident: CR50
– volume: 420
  start-page: 181
  year: 2021
  end-page: 196
  ident: CR69
  article-title: Interactive POS-aware network for aspect-level sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.013
– volume: 10
  start-page: 2163
  issue: 8
  year: 2019
  end-page: 2175
  ident: CR34
  article-title: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0799-4
– ident: CR57
– ident: CR60
– ident: CR5
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  end-page: 16
  ident: CR32
  article-title: Towards Arabic aspect-based sentiment analysis: a transfer learning-based approach
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-021-00794-4
– volume: 450
  start-page: 91
  year: 2021
  end-page: 103
  ident: CR17
  article-title: A unified position-aware convolutional neural network for aspect based sentiment analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.092
– volume: 56
  start-page: 463
  issue: 3
  year: 2019
  end-page: 478
  ident: CR59
  article-title: Aspect-based sentiment analysis with alternating coattention networks
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2018.12.004
– volume: 478
  start-page: 49
  year: 2022
  end-page: 69
  ident: CR70
  article-title: Combining dynamic local context focus and dependency cluster attention for aspect-level sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.084
– volume: 11
  start-page: 3640
  issue: 8
  year: 2021
  ident: CR11
  article-title: Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention
  publication-title: Appl Sci
  doi: 10.3390/app11083640
– ident: CR43
– volume: 44
  start-page: 562
  issue: 6
  year: 2021
  end-page: 572
  ident: CR55
  article-title: Sentixgboost: enhanced sentiment analysis in social media posts with ensemble XGBoost classifier
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2021.1933598
– ident: CR66
– ident: CR47
– ident: CR14
– ident: CR53
– ident: CR30
– volume: 28
  start-page: 2538
  year: 2020
  end-page: 2551
  ident: CR19
  article-title: Knowledge guided capsule attention network for aspect-based sentiment analysis
  publication-title: IEEE/ACM Trans Audio, Speech, Lang Process
  doi: 10.1109/TASLP.2020.3017093
– volume: 9
  start-page: 8762
  year: 2021
  end-page: 8770
  ident: CR20
  article-title: Multi-head self-attention transformation networks for aspect-based sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049294
– ident: CR33
– volume: 2
  start-page: 1
  year: 2008
  end-page: 2
  ident: CR1
  article-title: Opinion mining and sentiment analysis
  publication-title: Found Trends Inf Retr
  doi: 10.1561/1500000011
– volume: 245
  start-page: 108586
  year: 2022
  ident: CR2
  article-title: Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2022.108586
– ident: CR56
– volume: 28
  start-page: 39
  issue: 2
  year: 2013
  end-page: 46
  ident: CR15
  article-title: Extracting and grounding contextualized sentiment lexicons
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2013.41
– volume: 8
  start-page: 211152
  year: 2020
  end-page: 211163
  ident: CR7
  article-title: Transformer based multi-grained attention network for aspect-based sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039470
– ident: CR63
– ident: CR27
– ident: CR23
– volume: 235
  start-page: 107643
  year: 2022
  ident: CR21
  article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107643
– volume: 252
  start-page: 109409
  year: 2022
  ident: CR8
  article-title: Attention-based aspect sentiment classification using enhanced learning through CNN-BiLSTM networks
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2022.109409
– volume: 8
  start-page: 189287
  year: 2020
  end-page: 189297
  ident: CR42
  article-title: SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031665
– ident: CR48
– volume: 571
  start-page: 65
  year: 2021
  end-page: 86
  ident: CR28
  article-title: RTFN: a robust temporal feature network for time series classification
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.04.053
– volume: 7
  start-page: 167240
  year: 2019
  end-page: 167249
  ident: CR64
  article-title: Aspect based sentiment analysis with feature enhanced attention CNN-BiLSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2952888
– volume: 8
  start-page: 100551
  year: 2020
  end-page: 100561
  ident: CR44
  article-title: Enhancing aspect-based sentiment analysis with capsule network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997675
– ident: CR65
– volume: 118
  start-page: 272
  year: 2019
  end-page: 299
  ident: CR40
  article-title: Deep learning for aspect-based sentiment analysis: a comparative review
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.10.003
– volume: 78
  start-page: 4073
  issue: 3
  year: 2022
  end-page: 4094
  ident: CR18
  article-title: PG-RNN: using position-gated recurrent neural networks for aspect-based sentiment classification
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04019-5
– ident: CR38
– ident: CR52
– volume: 388
  start-page: 135
  year: 2020
  end-page: 143
  ident: CR67
  article-title: Aspect-based sentiment classification with multi-attention network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.024
– volume: 7
  start-page: 1
  year: 2022
  end-page: 50
  ident: CR3
  article-title: A survey on sentiment analysis methods, applications, and challenges
  publication-title: Artif Intell Rev
– ident: CR31
– ident: CR13
– volume: 20
  start-page: 1
  issue: 1
  year: 2021
  end-page: 21
  ident: CR25
  article-title: Hybridization between neural computing and nature-inspired algorithms for a sentence similarity model based on the attention mechanism
  publication-title: ACM Trans Asian Low-Resour Lang Inf Process(TALLIP)
  doi: 10.1145/3447756
– volume: 193
  start-page: 105443
  year: 2020
  ident: CR9
  article-title: Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2019.105443
– volume: 7
  start-page: 78454
  year: 2019
  end-page: 78483
  ident: CR41
  article-title: Deep learning for aspect-level sentiment classification: survey, vision, and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920075
– year: 2018
  ident: CR36
  publication-title: Improving language understanding by generative pre-training
– ident: CR62
– ident: CR24
– ident: 4881_CR51
– ident: 4881_CR65
  doi: 10.1155/2019/1365724
– ident: 4881_CR60
  doi: 10.18653/v1/D18-1380
– volume: 193
  start-page: 105443
  year: 2020
  ident: 4881_CR9
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2019.105443
– volume: 7
  start-page: 1
  year: 2022
  ident: 4881_CR3
  publication-title: Artif Intell Rev
– volume: 450
  start-page: 91
  year: 2021
  ident: 4881_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.092
– volume: 252
  start-page: 109409
  year: 2022
  ident: 4881_CR8
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2022.109409
– ident: 4881_CR22
  doi: 10.18653/v1/D18-1377
– volume: 20
  start-page: 1
  issue: 1
  year: 2021
  ident: 4881_CR25
  publication-title: ACM Trans Asian Low-Resour Lang Inf Process(TALLIP)
  doi: 10.1145/3447756
– ident: 4881_CR61
  doi: 10.18653/v1/P18-2092
– ident: 4881_CR39
  doi: 10.1007/978-3-030-30490-4_9
– volume: 478
  start-page: 49
  year: 2022
  ident: 4881_CR70
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.084
– ident: 4881_CR68
  doi: 10.18653/v1/2020.acl-main.588
– volume: 118
  start-page: 272
  year: 2019
  ident: 4881_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.10.003
– volume: 28
  start-page: 39
  issue: 2
  year: 2013
  ident: 4881_CR15
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2013.41
– ident: 4881_CR45
  doi: 10.18653/v1/2020.coling-main.70
– ident: 4881_CR52
  doi: 10.1088/1742-6596/1848/1/012064
– volume: 8
  start-page: 211152
  year: 2020
  ident: 4881_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039470
– volume: 9
  start-page: 8762
  year: 2021
  ident: 4881_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049294
– volume: 28
  start-page: 2538
  year: 2020
  ident: 4881_CR19
  publication-title: IEEE/ACM Trans Audio, Speech, Lang Process
  doi: 10.1109/TASLP.2020.3017093
– ident: 4881_CR49
  doi: 10.1609/aaai.v32i1.12048
– ident: 4881_CR23
– volume: 44
  start-page: 562
  issue: 6
  year: 2021
  ident: 4881_CR55
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2021.1933598
– volume: 11
  start-page: 3640
  issue: 8
  year: 2021
  ident: 4881_CR11
  publication-title: Appl Sci
  doi: 10.3390/app11083640
– volume: 8
  start-page: 189287
  year: 2020
  ident: 4881_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031665
– ident: 4881_CR38
  doi: 10.1109/ICPR48806.2021.9412167
– volume: 7
  start-page: 78454
  year: 2019
  ident: 4881_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920075
– volume: 2
  start-page: 1
  year: 2008
  ident: 4881_CR1
  publication-title: Found Trends Inf Retr
  doi: 10.1561/1500000011
– volume: 28
  start-page: 813
  issue: 3
  year: 2015
  ident: 4881_CR4
  publication-title: IEEE Trans Know Data Eng
  doi: 10.1109/TKDE.2015.2485209
– ident: 4881_CR54
– volume: 12
  start-page: 2707
  issue: 5
  year: 2022
  ident: 4881_CR16
  publication-title: Appl Sci
  doi: 10.3390/app12052707
– ident: 4881_CR66
  doi: 10.18653/v1/2020.acl-main.295
– ident: 4881_CR14
  doi: 10.1007/978-3-319-12024-9_5
– volume: 10
  start-page: 2163
  issue: 8
  year: 2019
  ident: 4881_CR34
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0799-4
– volume: 56
  start-page: 463
  issue: 3
  year: 2019
  ident: 4881_CR59
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2018.12.004
– ident: 4881_CR43
  doi: 10.18653/v1/P19-1052
– volume: 84
  start-page: 86
  year: 2016
  ident: 4881_CR12
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.070
– volume: 571
  start-page: 65
  year: 2021
  ident: 4881_CR28
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.04.053
– volume: 245
  start-page: 108586
  year: 2022
  ident: 4881_CR2
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2022.108586
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 4881_CR32
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-021-00794-4
– ident: 4881_CR46
  doi: 10.3115/v1/P14-2009
– ident: 4881_CR35
  doi: 10.18653/v1/N18-1202
– volume-title: Improving language understanding by generative pre-training
  year: 2018
  ident: 4881_CR36
– volume: 420
  start-page: 181
  year: 2021
  ident: 4881_CR69
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.013
– ident: 4881_CR47
– ident: 4881_CR57
  doi: 10.18653/v1/S15-2082
– ident: 4881_CR27
  doi: 10.1007/978-3-319-93372-6_22
– ident: 4881_CR53
– ident: 4881_CR29
  doi: 10.18653/v1/D16-1058
– volume: 6
  start-page: 251
  issue: 3
  year: 2021
  ident: 4881_CR37
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/cit2.12046
– volume: 235
  start-page: 107643
  year: 2022
  ident: 4881_CR21
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107643
– volume: 226
  start-page: 107136
  year: 2021
  ident: 4881_CR26
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2021.107136
– ident: 4881_CR33
  doi: 10.1145/3468691.3468705
– volume: 78
  start-page: 4073
  issue: 3
  year: 2022
  ident: 4881_CR18
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04019-5
– ident: 4881_CR13
  doi: 10.3115/v1/S14-2076
– ident: 4881_CR31
  doi: 10.24963/ijcai.2017/568
– ident: 4881_CR30
  doi: 10.18653/v1/D16-1021
– ident: 4881_CR58
  doi: 10.18653/v1/S16-1002
– volume: 8
  start-page: 100551
  year: 2020
  ident: 4881_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997675
– ident: 4881_CR63
  doi: 10.18653/v1/N19-1242
– volume: 388
  start-page: 135
  year: 2020
  ident: 4881_CR67
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.024
– ident: 4881_CR24
  doi: 10.1002/int.22957
– volume: 229
  start-page: 107338
  year: 2021
  ident: 4881_CR10
  publication-title: Know-Based Syst
  doi: 10.1016/j.knosys.2021.107338
– ident: 4881_CR5
  doi: 10.18653/v1/D17-1054
– ident: 4881_CR48
  doi: 10.1609/aaai.v32i1.12049
– volume: 7
  start-page: 167240
  year: 2019
  ident: 4881_CR64
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2952888
– volume: 7
  start-page: 450
  issue: 2
  year: 2020
  ident: 4881_CR6
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2019.2956957
– ident: 4881_CR50
  doi: 10.18653/v1/N19-1423
– ident: 4881_CR56
  doi: 10.3115/v1/S14-2004
– ident: 4881_CR62
  doi: 10.18653/v1/D19-1464
SSID ssj0004373
Score 2.459602
Snippet Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5516
SubjectTerms Accuracy
Algorithms
Classification
Compilers
Computer Science
Context
Datasets
Deep learning
Interpreters
Language
Machine learning
Natural language processing
Neural networks
Processor Architectures
Programming Languages
Representations
Semantics
Sentiment analysis
Words (language)
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bLwQxFG4ED17cxbLkPHijyc61rbddIR5ExCLeJr0NEhmys4Rf4u_q6XZMCBKep5dpe9rz9fQ75xCyo3OtSyU0zURU0tTkCeVKGWqiXomkRR17Y87VCTs95dfX4iw4hdUN2715kvQndevsFsUxo8g-R6mLqEOOMxlGm8E7-vCq9YZMJu_Kwl2MeJbGwVXm-zY-q6MWY355FvXa5mjhf_-5SOYDuoT-RByWyJStlslCk7kBwkZeIW_DPu0PB_19kHD7ik5b4FPigIOwIL33JUX9ZgB9k3wCAJAhfAkgVf4G6tfKYUfXD2CETs-ZhLsKkFXi0064uo0tFAaH5xehA7T7glMIaJaEm5EnnI3BQf0a-der5PLo8OLgmIYUDVS7vTumTFg3aCvK0kguZcRzVca5EjJPcmZSqZiV7shwuIYLGTPFdGp6NhU9IxKRlDZZI9PVQ2XXCUhmlXJ4QxqH8bhOeRqbREujGF7fVdYhUbNShQ7xy3E890UbeRlnvnAzX_iZL146ZPejzuMkesevpbuNABRhJ9dF4jBhxkUW8w7Zaxa8_fxzaxt_K75J5jCT_YTe1iXT49GT3SKz-nl8V4-2vYS_A4mN-F8
  priority: 102
  providerName: Springer Nature
Title SA-ASBA: a hybrid model for aspect-based sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting
URI https://link.springer.com/article/10.1007/s11227-022-04881-x
https://www.proquest.com/docview/3256589528
Volume 79
WOSCitedRecordID wos000871309500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4EL5SkWymoO3MBi87TNBe2irZBAq9VuqSoukV8plVBaNgtqf0n_bmcchwgkeuGSS2I7yYw94_E38zH2ypbW1kZZXqik5rkrMy6Ncdwlk5pAizYNwZzjz2KxkCcnahkDbm2EVfZrYlio3bmlGPnbDG1zIVWRyvcXPzixRtHpaqTQ2GF7VKkM9XxvNl8sV0NmZNadMSvcJMkiT2PaTJc8l6Sp4IRmJy1O-OWfpmnwN_86Ig2W53D_f9_5AbsffU6YdkrykN3xzSO23_M5QJzej9n1esqn69n0HWj4dkWpXBCIcgAdW9AhJ5OT1XNAGUuBFgB0LGoCBKA_hfaqQY8SxwGq2xmQlHDWAGFNAhkFtu0jpDCbr47iABQNBjQTFKyE002AoW0BNwAtobKfsC-H86MPH3kkbuAWZ_SWC-XxF3tV105LrRNZmjotjdJlVgqXayO8xoUEvR2pdCqMsLmb-FxNnMpUVvvsKdttzhv_jIEW3hj0QrRDz0_aXOapy6x2RtCm3hQjlvQyq2ysak7f870a6jGTnCuUcxXkXF2O2OvfbS66mh63Pn3QC7eK87utBsmO2JtePYbb_-7t-e29vWD3iM--A7kdsN3t5qd_ye7aX9uzdjOO2j1mO58EHxNMdY3XZfEVr6v18Q3jfAb_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJcKJ9iocAc4AQWieMkNhJCu7BVqy6rql1Qb6m_UiqhtGwW6P4S_gW_EdtJiECitx44J7YV59kzHr83A_BUZ1qXSmiSirgkzGQJ4UoZYuKo9KRFTUMw5-M0n8344aHYW4OfnRbG0yq7PTFs1OZU-xj5y8TZ5pSLlPI3Z1-Irxrlb1e7EhoNLHbt6rs7stWvd965__uM0q3J_O02aasKEO3gtiS5sHEUWVGWRnIpY56pkmZKyCzJcsOkyq10KHemmAtJc5VrZiLLRGREIpLSJq7fK7DOEpalA1gfT2Z7-70SM2nutIU7lPGU0Vam04j1Ykpz4tnzftXE5PxPU9j7t39dyQZLt7Xxv83RTbjR-tQ4ahbBLViz1W3Y6OpVYLt93YEfByMyOhiPXqHETysvVcNQCAid444yaE6Jt-oGvSIrlD1A2SZtQS8QOMZ6VTmP2Y2DPi9pYIriSYWeSxOKbbi2XQQYx5P9eTuAj3ajM4M-GIvHi0CzW6I74NSedX4XPlzK9NyDQXVa2fuAMrdKOS9LGufZcs04oybR0qjcBy1UOoS4w0ih26zt_ns-F32-aY-rwuGqCLgqzofw_HebsyZnyYVvb3ZgKtr9qy56JA3hRQfH_vG_e3twcW9P4Nr2_P20mO7Mdh_Cdeo8xobQtwmD5eKrfQRX9bflSb143K4shKPLBuov4UBgdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqqKpeCn2gLo92Dtxai83Tdm9LYdWqaIVYQNwiv7IgVSnaDVX5JfxdZpykgapUQj3Hj8QeZ74ZfzPD2LbNrS2NsjxTUclTlydcGuO4i4YlkRZtHJw5pwdiMpFnZ-rwThR_YLt3V5JNTANlaarqnUtX7vSBb1EcC05MdJLAiCOKXE7RkiFS19H0tI-MTJo7ZoVGkszSuA2b-fsY91VTjzf_uCINmme88v_vvMpetKgTRo2YvGRPfPWKrXQVHaA94K_ZzXTER9Pd0SfQcH5NwVwQSuUAQlvQISqTk95zQDFLoTAA6DatCRCFfgaL6woxJc4DlLkzcCnhogJim4RyFNi385HC7v7RcTsB-YMBFQW5K2E2D0S0GtAEWBAv-w07Ge8ff_7C29IN3OKZrrlQHj_aq7J0WmodydyUcW6UzpNcuFQb4TX-ShDvSKVjYYRN3dCnauhUopLSJ2tsqfpR-bcMtPDGIA7RDrGftKlMY5dY7Ywgs95kAxZ1u1bYNq85fc_3os_ITCtf4MoXYeWLXwP24Xefyyarxz9bb3bCULQnfFEkiBUzqbJYDtjHbvP7xw-Ptv645u_Zs8O9cXHwdfJtgz2nYvcNA26TLdXzK7_Fntqf9cVi_i4I_i0kpgQ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SA-ASBA%3A+a+hybrid+model+for+aspect-based+sentiment+analysis+using+synthetic+attention+in+pre-trained+language+BERT+model+with+extreme+gradient+boosting&rft.jtitle=The+Journal+of+supercomputing&rft.au=Mewada%2C+Arvind&rft.au=Dewang%2C+Rupesh+Kumar&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=5&rft.spage=5516&rft.epage=5551&rft_id=info:doi/10.1007%2Fs11227-022-04881-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon