SA-ASBA: a hybrid model for aspect-based sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting
Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the text. This research shows excessive curiosity in modelling target and context through attention networks to attain effective feature representa...
Saved in:
| Published in: | The Journal of supercomputing Vol. 79; no. 5; pp. 5516 - 5551 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.03.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the text. This research shows excessive curiosity in modelling target and context through attention networks to attain effective feature representations for sentiment detection works. We have proposed a synthetic attention in bidirectional encoder representations from transformers (SA-BERT) with an extreme gradient boosting (XGBoost) classifier to classify sentiment polarity in the review dataset. The proposed model generates dynamic word vector encoding of the aspect and corresponding context of the reviews. Then, the aspect and context of the reviews are meaningfully represented by a transformer that can input the vector word in parallel. After that, the model uses the synthetic attention mechanism to learn essential parts of context and aspects in reviews. Finally, the model places overall representation in the sentiment classification layer to predict sentiment polarity. Both proposed SA-BERT and SA-BERT-XGBoost models achieved the highest accuracy (92.02 and 93.71%) on the restaurant16 and highest F-1 scores (81.19 and 81.64%) on the restaurant14 dataset, respectively. The average accuracy and F1 scores are approximately 2 and 3.04% higher than the baseline models (DLCF-DCA-CDM, R-GAT+BERT, ASGCN-DG, AEN-BERT and BERT-PT). Therefore, proposed models outperform in comparison with baseline models. |
|---|---|
| AbstractList | Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the text. This research shows excessive curiosity in modelling target and context through attention networks to attain effective feature representations for sentiment detection works. We have proposed a synthetic attention in bidirectional encoder representations from transformers (SA-BERT) with an extreme gradient boosting (XGBoost) classifier to classify sentiment polarity in the review dataset. The proposed model generates dynamic word vector encoding of the aspect and corresponding context of the reviews. Then, the aspect and context of the reviews are meaningfully represented by a transformer that can input the vector word in parallel. After that, the model uses the synthetic attention mechanism to learn essential parts of context and aspects in reviews. Finally, the model places overall representation in the sentiment classification layer to predict sentiment polarity. Both proposed SA-BERT and SA-BERT-XGBoost models achieved the highest accuracy (92.02 and 93.71%) on the restaurant16 and highest F-1 scores (81.19 and 81.64%) on the restaurant14 dataset, respectively. The average accuracy and F1 scores are approximately 2 and 3.04% higher than the baseline models (DLCF-DCA-CDM, R-GAT+BERT, ASGCN-DG, AEN-BERT and BERT-PT). Therefore, proposed models outperform in comparison with baseline models. |
| Author | Mewada, Arvind Dewang, Rupesh Kumar |
| Author_xml | – sequence: 1 givenname: Arvind orcidid: 0000-0002-4680-611X surname: Mewada fullname: Mewada, Arvind email: mewadabpl@gmail.com organization: Motilal Nehru National Institute of Technology Allahabad – sequence: 2 givenname: Rupesh Kumar surname: Dewang fullname: Dewang, Rupesh Kumar organization: Motilal Nehru National Institute of Technology Allahabad |
| BookMark | eNp9kctqHDEQRYVxIGMnP5CVIGslevRD8m5sHCdgCMTOWlR3V_fI9EgTSUNmviS_a3XGEMjCmxIF99xS1b0g5z54JOSD4J8E5-3nJISULeNSMl5pLdjhjKxE3aqlrc7JihvJma4r-ZZcpPTEOa9Uq1bkz8OarR-u11cU6ObYRTfQbRhwpmOIFNIO-8w6SDjQhD67bSkUPMzH5BLdJ-cnmo4-bzC7nkLOiyh46jzdRWQ5gvOFncFPe5iQXt_-eHwZ8NvlDcVDjrhFOkUY3OLdhZBycX1H3owwJ3z_8l6Sn19uH2--svvvd99u1vesV8Jk1hos-6MZxwE0gNBNN8qmM9Coph0q6FoEJSVvGm1Atl3bVwPHyvDBKKNGVJfk48l3F8OvPaZsn8I-lgWTVbJuam1qqYtKnlR9DClFHO0uui3EoxXcLgHYUwC2BGD_BmAPBdL_Qb3LsJxnOcv8OqpOaCpz_ITx369eoZ4B-eGfsw |
| CitedBy_id | crossref_primary_10_1016_j_csl_2025_101782 crossref_primary_10_1007_s11042_024_19206_8 crossref_primary_10_1016_j_compbiomed_2024_108444 crossref_primary_10_1007_s11042_023_16685_z crossref_primary_10_1016_j_aej_2025_05_022 crossref_primary_10_1007_s10462_023_10651_9 crossref_primary_10_1007_s10844_023_00785_1 crossref_primary_10_1007_s10515_024_00444_x crossref_primary_10_3390_app15010172 crossref_primary_10_1016_j_eswa_2023_121930 crossref_primary_10_1109_ACCESS_2024_3386969 crossref_primary_10_1007_s11227_023_05139_w crossref_primary_10_1177_14727978251364432 crossref_primary_10_12677_ecl_2024_133787 crossref_primary_10_1007_s11036_024_02303_1 crossref_primary_10_1007_s11227_023_05864_2 crossref_primary_10_1109_ACCESS_2025_3567845 crossref_primary_10_12677_airr_2025_142042 crossref_primary_10_3390_electronics13101993 crossref_primary_10_1109_ACCESS_2024_3418847 crossref_primary_10_3390_app132011608 crossref_primary_10_1016_j_procs_2024_03_193 crossref_primary_10_1007_s11227_023_05813_z crossref_primary_10_1007_s13735_024_00334_8 crossref_primary_10_1016_j_knosys_2025_113987 crossref_primary_10_1142_S0218126625503797 crossref_primary_10_3390_educsci15070797 crossref_primary_10_1016_j_jksuci_2023_101651 crossref_primary_10_3390_bdcc8110141 crossref_primary_10_1007_s12559_024_10331_y crossref_primary_10_1007_s00521_024_09934_1 crossref_primary_10_1007_s10489_025_06298_4 |
| Cites_doi | 10.1109/TCSS.2019.2956957 10.3390/app12052707 10.1049/cit2.12046 10.1016/j.procs.2016.04.070 10.1016/j.knosys.2021.107136 10.1109/TKDE.2015.2485209 10.1016/j.knosys.2021.107338 10.1016/j.neucom.2020.08.013 10.1007/s13042-018-0799-4 10.1007/s13278-021-00794-4 10.1016/j.neucom.2021.03.092 10.1016/j.ipm.2018.12.004 10.1016/j.neucom.2021.12.084 10.3390/app11083640 10.1080/02533839.2021.1933598 10.1109/TASLP.2020.3017093 10.1109/ACCESS.2021.3049294 10.1561/1500000011 10.1016/j.knosys.2022.108586 10.1109/MIS.2013.41 10.1109/ACCESS.2020.3039470 10.1016/j.knosys.2021.107643 10.1016/j.knosys.2022.109409 10.1109/ACCESS.2020.3031665 10.1016/j.ins.2021.04.053 10.1109/ACCESS.2019.2952888 10.1109/ACCESS.2020.2997675 10.1016/j.eswa.2018.10.003 10.1007/s11227-021-04019-5 10.1016/j.neucom.2020.01.024 10.1145/3447756 10.1016/j.knosys.2019.105443 10.1109/ACCESS.2019.2920075 10.1155/2019/1365724 10.18653/v1/D18-1380 10.18653/v1/D18-1377 10.18653/v1/P18-2092 10.1007/978-3-030-30490-4_9 10.18653/v1/2020.acl-main.588 10.18653/v1/2020.coling-main.70 10.1088/1742-6596/1848/1/012064 10.1609/aaai.v32i1.12048 10.1109/ICPR48806.2021.9412167 10.18653/v1/2020.acl-main.295 10.1007/978-3-319-12024-9_5 10.18653/v1/P19-1052 10.3115/v1/P14-2009 10.18653/v1/N18-1202 10.18653/v1/S15-2082 10.1007/978-3-319-93372-6_22 10.18653/v1/D16-1058 10.1145/3468691.3468705 10.3115/v1/S14-2076 10.24963/ijcai.2017/568 10.18653/v1/D16-1021 10.18653/v1/S16-1002 10.18653/v1/N19-1242 10.1002/int.22957 10.18653/v1/D17-1054 10.1609/aaai.v32i1.12049 10.18653/v1/N19-1423 10.3115/v1/S14-2004 10.18653/v1/D19-1464 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-022-04881-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 5551 |
| ExternalDocumentID | 10_1007_s11227_022_04881_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-79e100e9ffda8aa186bf26b9a6367d4ab7ea32206689a27b7c4d0e490d9393fe3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871309500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 30 04:22:15 EST 2025 Sat Nov 29 04:27:43 EST 2025 Tue Nov 18 19:39:50 EST 2025 Fri Feb 21 02:46:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | XGBoost classifier Attention networks BERT encoder Aspect-based sentiment analysis Synthetic attention Pre-training BERT |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-79e100e9ffda8aa186bf26b9a6367d4ab7ea32206689a27b7c4d0e490d9393fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4680-611X |
| PQID | 3256589528 |
| PQPubID | 2043774 |
| PageCount | 36 |
| ParticipantIDs | proquest_journals_3256589528 crossref_primary_10_1007_s11227_022_04881_x crossref_citationtrail_10_1007_s11227_022_04881_x springer_journals_10_1007_s11227_022_04881_x |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CR39 Guixian, Zhang, Zhang, Shaona, Meng, Chen (CR2) 2022; 245 CR38 CR35 CR33 Liang, Hang, Gui, Cambria, Ruifeng (CR21) 2022; 235 Xiao, Xin, Xing, Luo, Dai, Zhan (CR28) 2021; 571 CR31 CR30 Zhou, Huang, Chen, Qinmin Vivian, Wang, He (CR41) 2019; 7 Jindian, Shanshan, Luo (CR44) 2020; 8 Zhang, Li, Xiaofei, Leung, Chen, Ye (CR19) 2020; 28 Yadav, Jiao, Goodwin, Granmo (CR26) 2021; 226 Bai, Zhou, He (CR18) 2022; 78 Yang, Zhang, Jiang, Li (CR59) 2019; 56 Schouten, Frasincar (CR4) 2015; 28 Shuang, Mengyu, Li, Loo, Sen (CR69) 2021; 420 Ayetiran (CR8) 2022; 252 Zhang, Huang, Li, Xue (CR25) 2021; 20 Meng, Wei, Liu, Zhu, Yin (CR64) 2019; 7 Gao, Li, Luo, Li (CR16) 2022; 12 CR5 Xiao, Xin, Xing, Song, Wang, Zhao (CR10) 2021; 229 Pang, Lee (CR1) 2008; 2 CR49 CR48 CR47 CR46 CR45 CR43 Qiannan, Zhu, Dai, Yan (CR67) 2020; 388 Do, Prasad, Maag, Alsadoon (CR40) 2019; 118 Al-Smadi, Talafha, Al-Ayyoub, Jararweh (CR34) 2019; 10 Bensoltane, Zaki (CR32) 2022; 12 Chakraborty, Bhattacharyya, Bag (CR6) 2020; 7 Sun, Han, Cheng, Enming, Wang (CR7) 2020; 8 Aziz, Dimililer (CR55) 2021; 44 Alec, Karthik, Tim, Ilya (CR36) 2018 Anand, Naorem (CR12) 2016; 84 Ullah, Ahmad, Sana, Sattar, Khan, Akbar, Asghar (CR37) 2021; 6 Weichselbraun, Gindl, Scharl (CR15) 2013; 28 Guangtao, Liu, Zhu, Liu, Fuyong (CR11) 2021; 11 CR14 CR58 CR13 CR57 CR56 CR54 CR53 CR52 CR51 Li, Chow, Zhang (CR42) 2020; 8 CR50 Wang, Li, Zhang, Guangluan, Zhang, Sun (CR17) 2021; 450 Mayur, Sekhara, Chaitanya (CR3) 2022; 7 CR29 CR27 Mayi, Biqing, Heng, Junlong, Jiatao, Hongye (CR70) 2022; 478 CR24 CR68 CR23 CR22 CR66 Zhao, Hou, Ou (CR9) 2020; 193 CR65 CR63 CR62 CR61 CR60 Lin, Wang, Song, Li (CR20) 2021; 9 Z Gao (4881_CR16) 2022; 12 HH Do (4881_CR40) 2019; 118 P Zhang (4881_CR25) 2021; 20 4881_CR29 4881_CR27 C Yang (4881_CR59) 2019; 56 4881_CR22 4881_CR66 4881_CR65 4881_CR24 4881_CR68 4881_CR23 K Schouten (4881_CR4) 2015; 28 4881_CR62 4881_CR61 J Zhou (4881_CR41) 2019; 7 4881_CR63 X Guixian (4881_CR2) 2022; 245 A Weichselbraun (4881_CR15) 2013; 28 4881_CR60 4881_CR14 4881_CR58 M Al-Smadi (4881_CR34) 2019; 10 4881_CR54 4881_CR13 4881_CR57 H Ullah (4881_CR37) 2021; 6 4881_CR56 4881_CR51 4881_CR50 4881_CR53 4881_CR52 K Shuang (4881_CR69) 2021; 420 X Guangtao (4881_CR11) 2021; 11 Y Lin (4881_CR20) 2021; 9 EF Ayetiran (4881_CR8) 2022; 252 J Sun (4881_CR7) 2020; 8 P Zhao (4881_CR9) 2020; 193 B Pang (4881_CR1) 2008; 2 X Wang (4881_CR17) 2021; 450 4881_CR48 4881_CR47 4881_CR49 4881_CR43 4881_CR46 N Li (4881_CR42) 2020; 8 4881_CR45 R Alec (4881_CR36) 2018 Z Xiao (4881_CR10) 2021; 229 S Jindian (4881_CR44) 2020; 8 RHH Aziz (4881_CR55) 2021; 44 W Meng (4881_CR64) 2019; 7 W Mayur (4881_CR3) 2022; 7 Q Bai (4881_CR18) 2022; 78 RK Yadav (4881_CR26) 2021; 226 B Zhang (4881_CR19) 2020; 28 B Liang (4881_CR21) 2022; 235 4881_CR39 R Bensoltane (4881_CR32) 2022; 12 4881_CR38 4881_CR5 4881_CR33 4881_CR35 4881_CR31 X Mayi (4881_CR70) 2022; 478 Z Xiao (4881_CR28) 2021; 571 4881_CR30 D Anand (4881_CR12) 2016; 84 X Qiannan (4881_CR67) 2020; 388 K Chakraborty (4881_CR6) 2020; 7 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 7 start-page: 450 issue: 2 year: 2020 end-page: 464 ident: CR6 article-title: A survey of sentiment analysis from social media data publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2019.2956957 – ident: CR49 – ident: CR68 – ident: CR39 – ident: CR51 – volume: 12 start-page: 2707 issue: 5 year: 2022 ident: CR16 article-title: Short text aspect-based sentiment analysis based on CNN+ BiGRU publication-title: Appl Sci doi: 10.3390/app12052707 – volume: 6 start-page: 251 issue: 3 year: 2021 end-page: 264 ident: CR37 article-title: Comparative study for machine learning classifier recommendation to predict political affiliation based on online reviews publication-title: CAAI Trans Intell Technol doi: 10.1049/cit2.12046 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR61 – ident: CR58 – volume: 84 start-page: 86 year: 2016 end-page: 93 ident: CR12 article-title: Semi-supervised aspect based sentiment analysis for movies using review filtering publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.070 – volume: 226 start-page: 107136 year: 2021 ident: CR26 article-title: Positionless aspect based sentiment analysis using attention mechanism publication-title: Know-Based Syst doi: 10.1016/j.knosys.2021.107136 – volume: 28 start-page: 813 issue: 3 year: 2015 end-page: 830 ident: CR4 article-title: Survey on aspect-level sentiment analysis publication-title: IEEE Trans Know Data Eng doi: 10.1109/TKDE.2015.2485209 – volume: 229 start-page: 107338 year: 2021 ident: CR10 article-title: A federated learning system with enhanced feature extraction for human activity recognition publication-title: Know-Based Syst doi: 10.1016/j.knosys.2021.107338 – ident: CR46 – ident: CR50 – volume: 420 start-page: 181 year: 2021 end-page: 196 ident: CR69 article-title: Interactive POS-aware network for aspect-level sentiment classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.013 – volume: 10 start-page: 2163 issue: 8 year: 2019 end-page: 2175 ident: CR34 article-title: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-0799-4 – ident: CR57 – ident: CR60 – ident: CR5 – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 16 ident: CR32 article-title: Towards Arabic aspect-based sentiment analysis: a transfer learning-based approach publication-title: Soc Netw Anal Min doi: 10.1007/s13278-021-00794-4 – volume: 450 start-page: 91 year: 2021 end-page: 103 ident: CR17 article-title: A unified position-aware convolutional neural network for aspect based sentiment analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.092 – volume: 56 start-page: 463 issue: 3 year: 2019 end-page: 478 ident: CR59 article-title: Aspect-based sentiment analysis with alternating coattention networks publication-title: Inf Process Manag doi: 10.1016/j.ipm.2018.12.004 – volume: 478 start-page: 49 year: 2022 end-page: 69 ident: CR70 article-title: Combining dynamic local context focus and dependency cluster attention for aspect-level sentiment classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.084 – volume: 11 start-page: 3640 issue: 8 year: 2021 ident: CR11 article-title: Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention publication-title: Appl Sci doi: 10.3390/app11083640 – ident: CR43 – volume: 44 start-page: 562 issue: 6 year: 2021 end-page: 572 ident: CR55 article-title: Sentixgboost: enhanced sentiment analysis in social media posts with ensemble XGBoost classifier publication-title: J Chin Inst Eng doi: 10.1080/02533839.2021.1933598 – ident: CR66 – ident: CR47 – ident: CR14 – ident: CR53 – ident: CR30 – volume: 28 start-page: 2538 year: 2020 end-page: 2551 ident: CR19 article-title: Knowledge guided capsule attention network for aspect-based sentiment analysis publication-title: IEEE/ACM Trans Audio, Speech, Lang Process doi: 10.1109/TASLP.2020.3017093 – volume: 9 start-page: 8762 year: 2021 end-page: 8770 ident: CR20 article-title: Multi-head self-attention transformation networks for aspect-based sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049294 – ident: CR33 – volume: 2 start-page: 1 year: 2008 end-page: 2 ident: CR1 article-title: Opinion mining and sentiment analysis publication-title: Found Trends Inf Retr doi: 10.1561/1500000011 – volume: 245 start-page: 108586 year: 2022 ident: CR2 article-title: Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning publication-title: Know-Based Syst doi: 10.1016/j.knosys.2022.108586 – ident: CR56 – volume: 28 start-page: 39 issue: 2 year: 2013 end-page: 46 ident: CR15 article-title: Extracting and grounding contextualized sentiment lexicons publication-title: IEEE Intell Syst doi: 10.1109/MIS.2013.41 – volume: 8 start-page: 211152 year: 2020 end-page: 211163 ident: CR7 article-title: Transformer based multi-grained attention network for aspect-based sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039470 – ident: CR63 – ident: CR27 – ident: CR23 – volume: 235 start-page: 107643 year: 2022 ident: CR21 article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107643 – volume: 252 start-page: 109409 year: 2022 ident: CR8 article-title: Attention-based aspect sentiment classification using enhanced learning through CNN-BiLSTM networks publication-title: Know-Based Syst doi: 10.1016/j.knosys.2022.109409 – volume: 8 start-page: 189287 year: 2020 end-page: 189297 ident: CR42 article-title: SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031665 – ident: CR48 – volume: 571 start-page: 65 year: 2021 end-page: 86 ident: CR28 article-title: RTFN: a robust temporal feature network for time series classification publication-title: Inf Sci doi: 10.1016/j.ins.2021.04.053 – volume: 7 start-page: 167240 year: 2019 end-page: 167249 ident: CR64 article-title: Aspect based sentiment analysis with feature enhanced attention CNN-BiLSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2952888 – volume: 8 start-page: 100551 year: 2020 end-page: 100561 ident: CR44 article-title: Enhancing aspect-based sentiment analysis with capsule network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997675 – ident: CR65 – volume: 118 start-page: 272 year: 2019 end-page: 299 ident: CR40 article-title: Deep learning for aspect-based sentiment analysis: a comparative review publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.10.003 – volume: 78 start-page: 4073 issue: 3 year: 2022 end-page: 4094 ident: CR18 article-title: PG-RNN: using position-gated recurrent neural networks for aspect-based sentiment classification publication-title: J Supercomput doi: 10.1007/s11227-021-04019-5 – ident: CR38 – ident: CR52 – volume: 388 start-page: 135 year: 2020 end-page: 143 ident: CR67 article-title: Aspect-based sentiment classification with multi-attention network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.024 – volume: 7 start-page: 1 year: 2022 end-page: 50 ident: CR3 article-title: A survey on sentiment analysis methods, applications, and challenges publication-title: Artif Intell Rev – ident: CR31 – ident: CR13 – volume: 20 start-page: 1 issue: 1 year: 2021 end-page: 21 ident: CR25 article-title: Hybridization between neural computing and nature-inspired algorithms for a sentence similarity model based on the attention mechanism publication-title: ACM Trans Asian Low-Resour Lang Inf Process(TALLIP) doi: 10.1145/3447756 – volume: 193 start-page: 105443 year: 2020 ident: CR9 article-title: Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification publication-title: Know-Based Syst doi: 10.1016/j.knosys.2019.105443 – volume: 7 start-page: 78454 year: 2019 end-page: 78483 ident: CR41 article-title: Deep learning for aspect-level sentiment classification: survey, vision, and challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920075 – year: 2018 ident: CR36 publication-title: Improving language understanding by generative pre-training – ident: CR62 – ident: CR24 – ident: 4881_CR51 – ident: 4881_CR65 doi: 10.1155/2019/1365724 – ident: 4881_CR60 doi: 10.18653/v1/D18-1380 – volume: 193 start-page: 105443 year: 2020 ident: 4881_CR9 publication-title: Know-Based Syst doi: 10.1016/j.knosys.2019.105443 – volume: 7 start-page: 1 year: 2022 ident: 4881_CR3 publication-title: Artif Intell Rev – volume: 450 start-page: 91 year: 2021 ident: 4881_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.092 – volume: 252 start-page: 109409 year: 2022 ident: 4881_CR8 publication-title: Know-Based Syst doi: 10.1016/j.knosys.2022.109409 – ident: 4881_CR22 doi: 10.18653/v1/D18-1377 – volume: 20 start-page: 1 issue: 1 year: 2021 ident: 4881_CR25 publication-title: ACM Trans Asian Low-Resour Lang Inf Process(TALLIP) doi: 10.1145/3447756 – ident: 4881_CR61 doi: 10.18653/v1/P18-2092 – ident: 4881_CR39 doi: 10.1007/978-3-030-30490-4_9 – volume: 478 start-page: 49 year: 2022 ident: 4881_CR70 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.084 – ident: 4881_CR68 doi: 10.18653/v1/2020.acl-main.588 – volume: 118 start-page: 272 year: 2019 ident: 4881_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.10.003 – volume: 28 start-page: 39 issue: 2 year: 2013 ident: 4881_CR15 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2013.41 – ident: 4881_CR45 doi: 10.18653/v1/2020.coling-main.70 – ident: 4881_CR52 doi: 10.1088/1742-6596/1848/1/012064 – volume: 8 start-page: 211152 year: 2020 ident: 4881_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039470 – volume: 9 start-page: 8762 year: 2021 ident: 4881_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049294 – volume: 28 start-page: 2538 year: 2020 ident: 4881_CR19 publication-title: IEEE/ACM Trans Audio, Speech, Lang Process doi: 10.1109/TASLP.2020.3017093 – ident: 4881_CR49 doi: 10.1609/aaai.v32i1.12048 – ident: 4881_CR23 – volume: 44 start-page: 562 issue: 6 year: 2021 ident: 4881_CR55 publication-title: J Chin Inst Eng doi: 10.1080/02533839.2021.1933598 – volume: 11 start-page: 3640 issue: 8 year: 2021 ident: 4881_CR11 publication-title: Appl Sci doi: 10.3390/app11083640 – volume: 8 start-page: 189287 year: 2020 ident: 4881_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031665 – ident: 4881_CR38 doi: 10.1109/ICPR48806.2021.9412167 – volume: 7 start-page: 78454 year: 2019 ident: 4881_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920075 – volume: 2 start-page: 1 year: 2008 ident: 4881_CR1 publication-title: Found Trends Inf Retr doi: 10.1561/1500000011 – volume: 28 start-page: 813 issue: 3 year: 2015 ident: 4881_CR4 publication-title: IEEE Trans Know Data Eng doi: 10.1109/TKDE.2015.2485209 – ident: 4881_CR54 – volume: 12 start-page: 2707 issue: 5 year: 2022 ident: 4881_CR16 publication-title: Appl Sci doi: 10.3390/app12052707 – ident: 4881_CR66 doi: 10.18653/v1/2020.acl-main.295 – ident: 4881_CR14 doi: 10.1007/978-3-319-12024-9_5 – volume: 10 start-page: 2163 issue: 8 year: 2019 ident: 4881_CR34 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-0799-4 – volume: 56 start-page: 463 issue: 3 year: 2019 ident: 4881_CR59 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2018.12.004 – ident: 4881_CR43 doi: 10.18653/v1/P19-1052 – volume: 84 start-page: 86 year: 2016 ident: 4881_CR12 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.070 – volume: 571 start-page: 65 year: 2021 ident: 4881_CR28 publication-title: Inf Sci doi: 10.1016/j.ins.2021.04.053 – volume: 245 start-page: 108586 year: 2022 ident: 4881_CR2 publication-title: Know-Based Syst doi: 10.1016/j.knosys.2022.108586 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 4881_CR32 publication-title: Soc Netw Anal Min doi: 10.1007/s13278-021-00794-4 – ident: 4881_CR46 doi: 10.3115/v1/P14-2009 – ident: 4881_CR35 doi: 10.18653/v1/N18-1202 – volume-title: Improving language understanding by generative pre-training year: 2018 ident: 4881_CR36 – volume: 420 start-page: 181 year: 2021 ident: 4881_CR69 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.013 – ident: 4881_CR47 – ident: 4881_CR57 doi: 10.18653/v1/S15-2082 – ident: 4881_CR27 doi: 10.1007/978-3-319-93372-6_22 – ident: 4881_CR53 – ident: 4881_CR29 doi: 10.18653/v1/D16-1058 – volume: 6 start-page: 251 issue: 3 year: 2021 ident: 4881_CR37 publication-title: CAAI Trans Intell Technol doi: 10.1049/cit2.12046 – volume: 235 start-page: 107643 year: 2022 ident: 4881_CR21 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107643 – volume: 226 start-page: 107136 year: 2021 ident: 4881_CR26 publication-title: Know-Based Syst doi: 10.1016/j.knosys.2021.107136 – ident: 4881_CR33 doi: 10.1145/3468691.3468705 – volume: 78 start-page: 4073 issue: 3 year: 2022 ident: 4881_CR18 publication-title: J Supercomput doi: 10.1007/s11227-021-04019-5 – ident: 4881_CR13 doi: 10.3115/v1/S14-2076 – ident: 4881_CR31 doi: 10.24963/ijcai.2017/568 – ident: 4881_CR30 doi: 10.18653/v1/D16-1021 – ident: 4881_CR58 doi: 10.18653/v1/S16-1002 – volume: 8 start-page: 100551 year: 2020 ident: 4881_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997675 – ident: 4881_CR63 doi: 10.18653/v1/N19-1242 – volume: 388 start-page: 135 year: 2020 ident: 4881_CR67 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.024 – ident: 4881_CR24 doi: 10.1002/int.22957 – volume: 229 start-page: 107338 year: 2021 ident: 4881_CR10 publication-title: Know-Based Syst doi: 10.1016/j.knosys.2021.107338 – ident: 4881_CR5 doi: 10.18653/v1/D17-1054 – ident: 4881_CR48 doi: 10.1609/aaai.v32i1.12049 – volume: 7 start-page: 167240 year: 2019 ident: 4881_CR64 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2952888 – volume: 7 start-page: 450 issue: 2 year: 2020 ident: 4881_CR6 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2019.2956957 – ident: 4881_CR50 doi: 10.18653/v1/N19-1423 – ident: 4881_CR56 doi: 10.3115/v1/S14-2004 – ident: 4881_CR62 doi: 10.18653/v1/D19-1464 |
| SSID | ssj0004373 |
| Score | 2.459602 |
| Snippet | Aspect-based sentiment analysis (ABSA) is a granular-level sentiment analysis task that aims to detect the sentiment polarities of a specified aspect in the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5516 |
| SubjectTerms | Accuracy Algorithms Classification Compilers Computer Science Context Datasets Deep learning Interpreters Language Machine learning Natural language processing Neural networks Processor Architectures Programming Languages Representations Semantics Sentiment analysis Words (language) |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bLwQxFG4ED17cxbLkPHijyc61rbddIR5ExCLeJr0NEhmys4Rf4u_q6XZMCBKep5dpe9rz9fQ75xCyo3OtSyU0zURU0tTkCeVKGWqiXomkRR17Y87VCTs95dfX4iw4hdUN2715kvQndevsFsUxo8g-R6mLqEOOMxlGm8E7-vCq9YZMJu_Kwl2MeJbGwVXm-zY-q6MWY355FvXa5mjhf_-5SOYDuoT-RByWyJStlslCk7kBwkZeIW_DPu0PB_19kHD7ik5b4FPigIOwIL33JUX9ZgB9k3wCAJAhfAkgVf4G6tfKYUfXD2CETs-ZhLsKkFXi0064uo0tFAaH5xehA7T7glMIaJaEm5EnnI3BQf0a-der5PLo8OLgmIYUDVS7vTumTFg3aCvK0kguZcRzVca5EjJPcmZSqZiV7shwuIYLGTPFdGp6NhU9IxKRlDZZI9PVQ2XXCUhmlXJ4QxqH8bhOeRqbREujGF7fVdYhUbNShQ7xy3E890UbeRlnvnAzX_iZL146ZPejzuMkesevpbuNABRhJ9dF4jBhxkUW8w7Zaxa8_fxzaxt_K75J5jCT_YTe1iXT49GT3SKz-nl8V4-2vYS_A4mN-F8 priority: 102 providerName: Springer Nature |
| Title | SA-ASBA: a hybrid model for aspect-based sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting |
| URI | https://link.springer.com/article/10.1007/s11227-022-04881-x https://www.proquest.com/docview/3256589528 |
| Volume | 79 |
| WOSCitedRecordID | wos000871309500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4EL5SkWymoO3MBi87TNBe2irZBAq9VuqSoukV8plVBaNgtqf0n_bmcchwgkeuGSS2I7yYw94_E38zH2ypbW1kZZXqik5rkrMy6Ncdwlk5pAizYNwZzjz2KxkCcnahkDbm2EVfZrYlio3bmlGPnbDG1zIVWRyvcXPzixRtHpaqTQ2GF7VKkM9XxvNl8sV0NmZNadMSvcJMkiT2PaTJc8l6Sp4IRmJy1O-OWfpmnwN_86Ig2W53D_f9_5AbsffU6YdkrykN3xzSO23_M5QJzej9n1esqn69n0HWj4dkWpXBCIcgAdW9AhJ5OT1XNAGUuBFgB0LGoCBKA_hfaqQY8SxwGq2xmQlHDWAGFNAhkFtu0jpDCbr47iABQNBjQTFKyE002AoW0BNwAtobKfsC-H86MPH3kkbuAWZ_SWC-XxF3tV105LrRNZmjotjdJlVgqXayO8xoUEvR2pdCqMsLmb-FxNnMpUVvvsKdttzhv_jIEW3hj0QrRDz0_aXOapy6x2RtCm3hQjlvQyq2ysak7f870a6jGTnCuUcxXkXF2O2OvfbS66mh63Pn3QC7eK87utBsmO2JtePYbb_-7t-e29vWD3iM--A7kdsN3t5qd_ye7aX9uzdjOO2j1mO58EHxNMdY3XZfEVr6v18Q3jfAb_ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJcKJ9iocAc4AQWieMkNhJCu7BVqy6rql1Qb6m_UiqhtGwW6P4S_gW_EdtJiECitx44J7YV59kzHr83A_BUZ1qXSmiSirgkzGQJ4UoZYuKo9KRFTUMw5-M0n8344aHYW4OfnRbG0yq7PTFs1OZU-xj5y8TZ5pSLlPI3Z1-Irxrlb1e7EhoNLHbt6rs7stWvd965__uM0q3J_O02aasKEO3gtiS5sHEUWVGWRnIpY56pkmZKyCzJcsOkyq10KHemmAtJc5VrZiLLRGREIpLSJq7fK7DOEpalA1gfT2Z7-70SM2nutIU7lPGU0Vam04j1Ykpz4tnzftXE5PxPU9j7t39dyQZLt7Xxv83RTbjR-tQ4ahbBLViz1W3Y6OpVYLt93YEfByMyOhiPXqHETysvVcNQCAid444yaE6Jt-oGvSIrlD1A2SZtQS8QOMZ6VTmP2Y2DPi9pYIriSYWeSxOKbbi2XQQYx5P9eTuAj3ajM4M-GIvHi0CzW6I74NSedX4XPlzK9NyDQXVa2fuAMrdKOS9LGufZcs04oybR0qjcBy1UOoS4w0ih26zt_ns-F32-aY-rwuGqCLgqzofw_HebsyZnyYVvb3ZgKtr9qy56JA3hRQfH_vG_e3twcW9P4Nr2_P20mO7Mdh_Cdeo8xobQtwmD5eKrfQRX9bflSb143K4shKPLBuov4UBgdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqqKpeCn2gLo92Dtxai83Tdm9LYdWqaIVYQNwiv7IgVSnaDVX5JfxdZpykgapUQj3Hj8QeZ74ZfzPD2LbNrS2NsjxTUclTlydcGuO4i4YlkRZtHJw5pwdiMpFnZ-rwThR_YLt3V5JNTANlaarqnUtX7vSBb1EcC05MdJLAiCOKXE7RkiFS19H0tI-MTJo7ZoVGkszSuA2b-fsY91VTjzf_uCINmme88v_vvMpetKgTRo2YvGRPfPWKrXQVHaA94K_ZzXTER9Pd0SfQcH5NwVwQSuUAQlvQISqTk95zQDFLoTAA6DatCRCFfgaL6woxJc4DlLkzcCnhogJim4RyFNi385HC7v7RcTsB-YMBFQW5K2E2D0S0GtAEWBAv-w07Ge8ff_7C29IN3OKZrrlQHj_aq7J0WmodydyUcW6UzpNcuFQb4TX-ShDvSKVjYYRN3dCnauhUopLSJ2tsqfpR-bcMtPDGIA7RDrGftKlMY5dY7Ywgs95kAxZ1u1bYNq85fc_3os_ITCtf4MoXYeWLXwP24Xefyyarxz9bb3bCULQnfFEkiBUzqbJYDtjHbvP7xw-Ptv645u_Zs8O9cXHwdfJtgz2nYvcNA26TLdXzK7_Fntqf9cVi_i4I_i0kpgQ2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SA-ASBA%3A+a+hybrid+model+for+aspect-based+sentiment+analysis+using+synthetic+attention+in+pre-trained+language+BERT+model+with+extreme+gradient+boosting&rft.jtitle=The+Journal+of+supercomputing&rft.au=Mewada%2C+Arvind&rft.au=Dewang%2C+Rupesh+Kumar&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=5&rft.spage=5516&rft.epage=5551&rft_id=info:doi/10.1007%2Fs11227-022-04881-x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |