Fractional-order three-dimensional thin-film nanofluid flow on an inclined rotating disk

. The aim of the present study is to examine the fractional-order three-dimensional thin-film nanofluid flow over an inclined rotating plane. The basic governing equations are transformed through similarity variables into a set of first-order differential equations. The Caputo derivatives have been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European physical journal plus Ročník 133; číslo 12; s. 500
Hlavní autoři: Gul, Taza, Altaf Khan, Muhammad, Khan, Amer, Shuaib, Muhammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Témata:
ISSN:2190-5444, 2190-5444
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:. The aim of the present study is to examine the fractional-order three-dimensional thin-film nanofluid flow over an inclined rotating plane. The basic governing equations are transformed through similarity variables into a set of first-order differential equations. The Caputo derivatives have been used to transform the first-order differential equations into a system of fractional differential equations. The Adams-type predictor-corrector method for the numerical solution of the fractional-differential-equations method has been used for the solution of the fractional-order differential. The classical solution of the problem has been obtained through the RK4 method. The comparison of the classical- and fractional-order results has been made for the various embedded parameters like variable thickness, unsteadiness parameter, Prandtl number, Schmidt number, Brownian-motion parameter and thermophoretic parameter. The important terms of the Nusselt number and Sherwood number have also been analysed physically and numerically for both classical and fractional order.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/i2018-12315-4