Fractional-order three-dimensional thin-film nanofluid flow on an inclined rotating disk
. The aim of the present study is to examine the fractional-order three-dimensional thin-film nanofluid flow over an inclined rotating plane. The basic governing equations are transformed through similarity variables into a set of first-order differential equations. The Caputo derivatives have been...
Saved in:
| Published in: | European physical journal plus Vol. 133; no. 12; p. 500 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2190-5444, 2190-5444 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | .
The aim of the present study is to examine the fractional-order three-dimensional thin-film nanofluid flow over an inclined rotating plane. The basic governing equations are transformed through similarity variables into a set of first-order differential equations. The Caputo derivatives have been used to transform the first-order differential equations into a system of fractional differential equations. The Adams-type predictor-corrector method for the numerical solution of the fractional-differential-equations method has been used for the solution of the fractional-order differential. The classical solution of the problem has been obtained through the RK4 method. The comparison of the classical- and fractional-order results has been made for the various embedded parameters like variable thickness, unsteadiness parameter, Prandtl number, Schmidt number, Brownian-motion parameter and thermophoretic parameter. The important terms of the Nusselt number and Sherwood number have also been analysed physically and numerically for both classical and fractional order. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2190-5444 2190-5444 |
| DOI: | 10.1140/epjp/i2018-12315-4 |