Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization

This article is concerned with the problem of minimizing a smooth function over the Stiefel manifold. In order to address this problem, we introduce two adaptive scaled gradient projection methods that incorporate scaling matrices that depend on the step-size and a parameter that controls the search...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 87; číslo 3; s. 1107 - 1127
Hlavní autoři: Oviedo, Harry, Dalmau, Oscar, Lara, Hugo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2021
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article is concerned with the problem of minimizing a smooth function over the Stiefel manifold. In order to address this problem, we introduce two adaptive scaled gradient projection methods that incorporate scaling matrices that depend on the step-size and a parameter that controls the search direction. These iterative algorithms use a projection operator based on the QR factorization to preserve the feasibility in each iteration. However, for some particular cases, the proposals do not require the use of any projection operator. In addition, we consider a Barzilai and Borwein-like step-size combined with the Zhang–Hager nonmonotone line-search technique in order to accelerate the convergence of the proposed procedures. We proved the global convergence for these schemes, and we evaluate their effectiveness and efficiency through an extensive computational study, comparing our approaches with other state-of-the-art gradient-type algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-020-01001-9