Necessary Optimality Conditions for Vector Reverse Convex Minimization Problems via a Conjugate Duality
In this paper, we are concerned with a vector reverse convex minimization problem ( P ) . For such a problem, by means of the so-called Fenchel–Lagrange duality, we provide necessary optimality conditions for proper efficiency in the sense of Geoffrion. This duality is used after a decomposition of...
Uloženo v:
| Vydáno v: | Vietnam journal of mathematics Ročník 52; číslo 1; s. 265 - 282 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.03.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2305-221X, 2305-2228 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we are concerned with a vector reverse convex minimization problem
(
P
)
. For such a problem, by means of the so-called Fenchel–Lagrange duality, we provide necessary optimality conditions for proper efficiency in the sense of Geoffrion. This duality is used after a decomposition of problem
(
P
)
into a family of convex vector minimization subproblems and scalarization of these subproblems. The optimality conditions are expressed in terms of subdifferentials and normal cones in the sense of convex analysis. The obtained results are new in the literature of vector reverse convex programming. Moreover, some of them extend with improvement some similar results given in the literature, from the scalar case to the vectorial one. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2305-221X 2305-2228 |
| DOI: | 10.1007/s10013-022-00602-2 |