Modeling of a high gain two stage pHEMT LNA using ANN with Bayesian regularization algorithm

This paper presents novel way to achieve fast and accurate Artificial Neural Network (ANN) modeling of Radio Frequency (RF) front end Low Noise Amplifier (LNA). Multilayer perceptron neural network is implemented to model high gain, ultra-low noise pseudomorhic High Electron Mobility Transistor (pHE...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Wireless networks Ročník 30; číslo 4; s. 2329 - 2342
Hlavní autori: Thangaraj, Vignesh, Elangeswaran, Srie Vidhya Janani, Subburaman, Bhuvaneshwari, Kulkarni, Jayshri
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2024
Springer Nature B.V
Predmet:
ISSN:1022-0038, 1572-8196
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents novel way to achieve fast and accurate Artificial Neural Network (ANN) modeling of Radio Frequency (RF) front end Low Noise Amplifier (LNA). Multilayer perceptron neural network is implemented to model high gain, ultra-low noise pseudomorhic High Electron Mobility Transistor (pHEMT) based LNA. Datasets are developed for input and output that is obtained from the Electro-Magnetic simulator. Different neural networks such as PatternNet, FitNet, and CascadeForwardNet with different algorithms are trained, tested, and compared to learn the behavior of the amplifier, and the best model is analyzed. Neural networks are modeled for LNA S-parameters and NF. It is observed that greater than 99% accuracy is achieved for PatternNet Bayesian regularization algorithm with less number of hidden layers and also it is found that the simulation results are almost similar to the developed ANN.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1022-0038
1572-8196
DOI:10.1007/s11276-024-03654-z