Web-S4AE: a semi-supervised stacked sparse autoencoder model for web robot detection

Web robots are automated computer programs that can be exploited for benign and malicious activities such as website indexing, monitoring, or unauthorized content scraping and scalping. Several methods are available to detect automated web robots through their footprints and behaviors. Although the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 35; číslo 24; s. 17883 - 17898
Hlavní autoři: Jagat, Rikhi Ram, Sisodia, Dilip Singh, Singh, Pradeep
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.08.2023
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Web robots are automated computer programs that can be exploited for benign and malicious activities such as website indexing, monitoring, or unauthorized content scraping and scalping. Several methods are available to detect automated web robots through their footprints and behaviors. Although the accuracy and efficiency of existing methods depend highly on the labeled web log data, countless web requests are generated daily with the help of web robots. Exhaustive and accurate manual labeling of reconstructed sessions is time-consuming and challenging. Further, effective detection of web robots is more challenging with unlabeled or partially labeled data. To address the aforementioned issues, we reformulated web robot detection as a semi-supervised learning problem. In this paper, we propose a deep learning-based Semi-Supervised Stacked Sparse AutoEncoder (Web-S4AE) for web robot detection. The proposed model uses content-based features and features extracted from web access log data to effectively classify web robots. The experiments were conducted on publicly available web log data from a library and information portal to assess the performance of Web-S4AE. The Web-S4AE model was trained in two phases. The first phase; comprises training the model with unlabeled data to extract the hidden information, and in the second phase, the model is fine-tuned using labeled data. The results suggest that incorporating more unlabeled data can significantly improve the classifier's performance. The Web-S4AE model’s performance was also compared with other models such as the Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Multi-Layer Perceptron (MLP).
AbstractList Web robots are automated computer programs that can be exploited for benign and malicious activities such as website indexing, monitoring, or unauthorized content scraping and scalping. Several methods are available to detect automated web robots through their footprints and behaviors. Although the accuracy and efficiency of existing methods depend highly on the labeled web log data, countless web requests are generated daily with the help of web robots. Exhaustive and accurate manual labeling of reconstructed sessions is time-consuming and challenging. Further, effective detection of web robots is more challenging with unlabeled or partially labeled data. To address the aforementioned issues, we reformulated web robot detection as a semi-supervised learning problem. In this paper, we propose a deep learning-based Semi-Supervised Stacked Sparse AutoEncoder (Web-S4AE) for web robot detection. The proposed model uses content-based features and features extracted from web access log data to effectively classify web robots. The experiments were conducted on publicly available web log data from a library and information portal to assess the performance of Web-S4AE. The Web-S4AE model was trained in two phases. The first phase; comprises training the model with unlabeled data to extract the hidden information, and in the second phase, the model is fine-tuned using labeled data. The results suggest that incorporating more unlabeled data can significantly improve the classifier's performance. The Web-S4AE model’s performance was also compared with other models such as the Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Multi-Layer Perceptron (MLP).
Author Singh, Pradeep
Sisodia, Dilip Singh
Jagat, Rikhi Ram
Author_xml – sequence: 1
  givenname: Rikhi Ram
  orcidid: 0000-0002-5794-6660
  surname: Jagat
  fullname: Jagat, Rikhi Ram
  email: rrjagat.phd2019.cse@nitrr.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology Raipur
– sequence: 2
  givenname: Dilip Singh
  surname: Sisodia
  fullname: Sisodia, Dilip Singh
  organization: Department of Computer Science and Engineering, National Institute of Technology Raipur
– sequence: 3
  givenname: Pradeep
  surname: Singh
  fullname: Singh, Pradeep
  organization: Department of Computer Science and Engineering, National Institute of Technology Raipur
BookMark eNp9kM1LAzEQxYNUsFX_AU8Bz9HJx-5mvZXiFxQ8qHgMSXZWtrabmqQW_3u3VhA8eJl3mPebebwJGfWhR0LOOFxwgOoyARSCMxCSgS5LzbYHZMyVlExCoUdkDLUa1qWSR2SS0gIAVKmLMXl6Qcce1fT6ilqacNWxtFlj_OgSNjRl6992urYxIbWbHLD3ocFIV8Nc0jZEukVHY3Ah0wYz-tyF_oQctnaZ8PRHj8nzzfXT7I7NH27vZ9M585LXmVWFdoUWUDRN5Txy6xxXVQt1o70WtbUKZFtrX9kCHEfhSqukH7ZoVeMbkMfkfH93HcP7BlM2i7CJ_fDSCK2E0CVX9eDSe5ePIaWIrfFdtrucOdpuaTiYXYdm36EZOjTfHZrtgIo_6Dp2Kxs__4fkHkqDuX_F-JvqH-oLaLaHOg
CitedBy_id crossref_primary_10_3390_electronics14101945
crossref_primary_10_1016_j_asoc_2025_113481
crossref_primary_10_33019_society_v13i1_767
crossref_primary_10_1016_j_jnca_2024_103975
Cites_doi 10.1007/s13748-016-0094-0
10.48550/arXiv.1903.01003
10.1007/978-3-030-04834-1_21
10.18517/ijaseit.7.3.1563
10.1007/978-3-319-89743-1_27
10.1109/HPCC/SmartCity/DSS.2018.00252
10.1016/j.comnet.2021.108742
10.3390/electronics10192347
10.1002/nem.2100
10.1080/02664763.2020.1864815
10.1016/j.ejor.2010.06.038
10.1177/1461348419830815
10.7551/mitpress/7503.003.0024
10.1109/ACCESS.2018.2858277
10.1007/s11042-022-14258-0
10.1109/TBME.2021.3110767
10.1007/s10100-018-0531-1
10.1007/s10115-013-0706-y
10.1038/s41598-019-55320-6
10.1109/ICCW.2018.8403759
10.1186/s42400-019-0023-1
10.1016/j.knosys.2020.105875
10.1177/0165551516673293
10.1109/CyberSecurity49315.2020.9138856
10.1016/j.asoc.2012.08.028
10.1038/381607a0
10.4236/jdaip.2015.31001
10.48550/arXiv.1306.6709
10.1016/j.inffus.2017.10.006
10.1007/978-981-16-9605-3_64
10.1016/j.rse.2022.112947
10.1007/s11042-018-6273-1
10.1007/978-3-642-35289-8_26
10.1109/ICOIN48656.2020.9016522
10.1007/s10489-020-01754-9
10.1145/3339252.3339267
10.5555/1756006.1756025
10.1080/02331934.2011.654343
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08668-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 17898
ExternalDocumentID 10_1007_s00521_023_08668_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-758b58205dd7bce1abb147f09d8c829aa403f98c7a50b1e2b6a43c9d8ea4dcd03
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995961000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 03:11:14 EST 2025
Sat Nov 29 04:30:39 EST 2025
Tue Nov 18 22:00:34 EST 2025
Fri Feb 21 02:42:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Deep learning
Deep feature extraction
Stacked sparse autoencoder
Semi-supervised learning
Web robot detection
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-758b58205dd7bce1abb147f09d8c829aa403f98c7a50b1e2b6a43c9d8ea4dcd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5794-6660
PQID 2842286149
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2842286149
crossref_citationtrail_10_1007_s00521_023_08668_w
crossref_primary_10_1007_s00521_023_08668_w
springer_journals_10_1007_s00521_023_08668_w
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References KangZFengCWanXStacked sparse autoencoder in cavitation noise signal data classification of hydro turbine based on power spectrumJ Low Freq Noise Vib Act Control20203923324510.1177/1461348419830815
SisodiaDSAugmented session similarity based framework for measuring web user concern from web server logsInt J Adv Sci Eng Inf Technol20177100710.18517/ijaseit.7.3.1563
Zhang B, Yu Y, Li J (2018) Network intrusion detection based on stacked sparse autoencoder and binary tree ensemble method. In: 2018 IEEE international conference on communications workshops (ICC Workshops). IEEE, pp 1–6
Iliou C, Kostoulas T, Tsikrika T, et al. (2019) Towards a framework for detecting advanced web bots. In: Proceedings of the 14th international conference on availability, reliability and security. ACM, New York, NY, USA, pp 1–10
KrawczykBLearning from imbalanced data: open challenges and future directionsProg Artif Intell2016522123210.1007/s13748-016-0094-0
Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 437–478
TrigueroIGarcíaSHerreraFSelf-labeled techniques for semi-supervised learning: taxonomy, software and empirical studyKnowl Inf Syst20154224528410.1007/s10115-013-0706-y
SagheerAKotbMUnsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problemsSci Rep201991903810.1038/s41598-019-55320-6
OnakOErenlerTSerinagaogluYA novel data-adaptive regression framework based on multivariate adaptive regression splines for electrocardiographic imagingIEEE Trans Biomed Eng20226996397410.1109/TBME.2021.3110767
Akrout I, Feriani A, Akrout M (2019) Hacking google reCAPTCHA v3 using reinforcement learning. ArXiv 1–5. https://doi.org/10.48550/arXiv.1903.01003
Chen H, He H, Starr A (2020) An overview of web robots detection techniques. In: 2020 international conference on cyber security and protection of digital services (Cyber Security). IEEE, pp 1–6
ErhanDCourvilleABengioYVincentPWhy does unsupervised pre-training help deep learning?J Mach Learn Res20109201208260062310.5555/1756006.17560251242.68219
Chu Z, Gianvecchio S, Wang H (2018) Bot or Human? A behavior-based online bot detection system. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer International Publishing, pp 432–449
JagatRRSisodiaDSSinghPDISET: a distance based semi-supervised self-training for automated users’ agent activity detection from web access logMultimed Tools Appl202210.1007/s11042-022-14258-0
KuterSBolatKAkyurekZA Machine learning-based accuracy enhancement on EUMETSAT H-SAF H35 effective snow-covered area productRemote Sens Environ202227211294710.1016/j.rse.2022.112947
MienyeIDSunYImproved heart disease prediction using particle swarm optimization based stacked sparse autoencoderElectronics202110234710.3390/electronics10192347
Bahi M, Batouche M (2018) Drug-target interaction prediction in drug repositioning based on deep semi-supervised learning. In: IFIP advances in information and communication technology. Springer International Publishing, pp 302–313
ReedSLeeHAnguelovDTraining deep neural networks on noisy labels with bootstrappingSci York20141010
StevanovicDVlajicNAnADetection of malicious and non-malicious website visitors using unsupervised neural network learningAppl Soft Comput20131369870810.1016/j.asoc.2012.08.028
SuchackaGIwańskiJIdentifying legitimate web users and bots with different traffic profiles-an information bottleneck approachKnowl-Based Syst202019710587510.1016/j.knosys.2020.105875
Arai T, Okabe Y, Matsumoto Y, Kawamura K (2020) Detection of Bots in CAPTCHA as a Cloud Service Utilizing Machine Learning. In: 2020 international conference on information networking (ICOIN). IEEE, pp 584–589
GnoumaMLadjailiaAEjbaliRZaiedMStacked sparse autoencoder and history of binary motion image for human activity recognitionMultimed Tools Appl2019782157217910.1007/s11042-018-6273-1
AouediOPiamratKBagadtheyDHandling partially labeled network data: a semi-supervised approach using stacked sparse autoencoderComput Netw202220710874210.1016/j.comnet.2021.108742
Martín A, Ashish A, Paul B, et al. (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 12 Mar 2022
ZhangQYangLTChenZLiPA survey on deep learning for big dataInf Fusion20184214615710.1016/j.inffus.2017.10.006
YanBHanGEffective feature extraction via stacked sparse autoencoder to improve intrusion detection systemIEEE Access20186412384124810.1109/ACCESS.2018.2858277
Parisotto S, Launaro A, Leone N, Schönlieb C-B (2020) Unsupervised clustering of roman pottery profiles from their SSAE representation. arXiv 1–18
OlshausenBAFieldDJEmergence of simple-cell receptive field properties by learning a sparse code for natural imagesNature199638160760910.1038/381607a0
SisodiaDSVermaSVyasOPAgglomerative approach for identification and elimination of web robots from web server logs to extract knowledge about actual visitorsJ Data Anal Inf Process20150311010.4236/jdaip.2015.31001
JagatRRSisodiaDSSinghPSumaVFernandoXDuK-LWangHSemi-supervised self-training approach for web robots activity detection in weblogEvolutionary computing and mobile sustainable networks2022SingaporeSpringer91192410.1007/978-981-16-9605-3_64
Imperva Bad Bot Report 2022. https://www.imperva.com/resources/reports/2022-imperva-bad-bot-report.pdf. Accessed 13 Jun 2022
Andrew N (2011) Sparse autoencoder. CS294A Lectture Notes 72:1–19
Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. 1–59. https://doi.org/10.48550/arXiv.1306.6709
De SchepperTCameloMFamaeyJLatréSTraffic classification at the radio spectrum level using deep learning models trained with synthetic dataInt J Netw Manag20203012010.1002/nem.2100
NalcaciGÖzmenAWeberGWLong-term load forecasting: models based on MARS, ANN and LR methodsCent Eur J Oper Res20192710331049399593510.1007/s10100-018-0531-107100445
TaylanPYerlikaya-ÖzkurtFBilgiç UçakBWeberG-WA new outlier detection method based on convex optimization: application to diagnosis of Parkinson’s diseaseJ Appl Stat20214824212440433074810.1080/02664763.2020.186481507484662
WanSLiYSunKPathMarker: protecting web contents against inside crawlersCybersecurity20192910.1186/s42400-019-0023-1
Lagopoulos A, Tsoumakas G (2019) Web robot detection-Server Logs
Cabri A, Suchacka G, Rovetta S, Masulli F (2018) Online web bot detection using a sequential classification approach. In: 2018 IEEE 20th international conference on high performance computing and communications; IEEE 16th international conference on Smart City; IEEE 4th international conference on data science and systems (HPCC/SmartCity/DSS). IEEE, pp 1536–1540
WeberG-WDefterliOAlparslan GökSZKropatEModeling, inference and optimization of regulatory networks based on time series dataEur J Oper Res2011211114277032610.1016/j.ejor.2010.06.0381221.93024
LagopoulosATsoumakasGContent-aware web robot detectionAppl Intell2020504017402810.1007/s10489-020-01754-9
Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems 19. The MIT Press, pp 153–160
WeberG-WÇavuşoğluZÖzmenAPredicting default probabilities in emerging markets by new conic generalized partial linear models and their optimizationOptimization201261443457290351410.1080/02331934.2011.6543431245.91080
SisodiaDSKhandalVSinghalRFast prediction of web user browsing behaviours using most interesting patternsJ Inf Sci201844749010.1177/0165551516673293
8668_CR15
T De Schepper (8668_CR12) 2020; 30
8668_CR36
8668_CR19
8668_CR18
A Sagheer (8668_CR13) 2019; 9
S Wan (8668_CR24) 2019; 2
G-W Weber (8668_CR39) 2011; 211
Q Zhang (8668_CR7) 2018; 42
8668_CR8
G Suchacka (8668_CR26) 2020; 197
RR Jagat (8668_CR32) 2022
O Onak (8668_CR41) 2022; 69
8668_CR30
8668_CR1
8668_CR3
G-W Weber (8668_CR37) 2012; 61
8668_CR2
8668_CR31
DS Sisodia (8668_CR33) 2017; 7
8668_CR4
G Nalcaci (8668_CR27) 2019; 27
8668_CR25
ID Mienye (8668_CR10) 2021; 10
A Lagopoulos (8668_CR22) 2020; 50
P Taylan (8668_CR42) 2021; 48
D Erhan (8668_CR14) 2010; 9
8668_CR28
M Gnouma (8668_CR9) 2019; 78
B Yan (8668_CR17) 2018; 6
S Kuter (8668_CR40) 2022; 272
DS Sisodia (8668_CR34) 2018; 44
O Aouedi (8668_CR11) 2022; 207
D Stevanovic (8668_CR23) 2013; 13
RR Jagat (8668_CR38) 2022
BA Olshausen (8668_CR29) 1996; 381
I Triguero (8668_CR6) 2015; 42
Z Kang (8668_CR16) 2020; 39
DS Sisodia (8668_CR21) 2015; 03
8668_CR44
S Reed (8668_CR5) 2014; 10
8668_CR20
B Krawczyk (8668_CR35) 2016; 5
8668_CR43
References_xml – reference: Bahi M, Batouche M (2018) Drug-target interaction prediction in drug repositioning based on deep semi-supervised learning. In: IFIP advances in information and communication technology. Springer International Publishing, pp 302–313
– reference: Chu Z, Gianvecchio S, Wang H (2018) Bot or Human? A behavior-based online bot detection system. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer International Publishing, pp 432–449
– reference: Arai T, Okabe Y, Matsumoto Y, Kawamura K (2020) Detection of Bots in CAPTCHA as a Cloud Service Utilizing Machine Learning. In: 2020 international conference on information networking (ICOIN). IEEE, pp 584–589
– reference: YanBHanGEffective feature extraction via stacked sparse autoencoder to improve intrusion detection systemIEEE Access20186412384124810.1109/ACCESS.2018.2858277
– reference: JagatRRSisodiaDSSinghPSumaVFernandoXDuK-LWangHSemi-supervised self-training approach for web robots activity detection in weblogEvolutionary computing and mobile sustainable networks2022SingaporeSpringer91192410.1007/978-981-16-9605-3_64
– reference: SagheerAKotbMUnsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problemsSci Rep201991903810.1038/s41598-019-55320-6
– reference: JagatRRSisodiaDSSinghPDISET: a distance based semi-supervised self-training for automated users’ agent activity detection from web access logMultimed Tools Appl202210.1007/s11042-022-14258-0
– reference: ZhangQYangLTChenZLiPA survey on deep learning for big dataInf Fusion20184214615710.1016/j.inffus.2017.10.006
– reference: Parisotto S, Launaro A, Leone N, Schönlieb C-B (2020) Unsupervised clustering of roman pottery profiles from their SSAE representation. arXiv 1–18
– reference: OlshausenBAFieldDJEmergence of simple-cell receptive field properties by learning a sparse code for natural imagesNature199638160760910.1038/381607a0
– reference: Zhang B, Yu Y, Li J (2018) Network intrusion detection based on stacked sparse autoencoder and binary tree ensemble method. In: 2018 IEEE international conference on communications workshops (ICC Workshops). IEEE, pp 1–6
– reference: OnakOErenlerTSerinagaogluYA novel data-adaptive regression framework based on multivariate adaptive regression splines for electrocardiographic imagingIEEE Trans Biomed Eng20226996397410.1109/TBME.2021.3110767
– reference: KuterSBolatKAkyurekZA Machine learning-based accuracy enhancement on EUMETSAT H-SAF H35 effective snow-covered area productRemote Sens Environ202227211294710.1016/j.rse.2022.112947
– reference: Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 437–478
– reference: SisodiaDSAugmented session similarity based framework for measuring web user concern from web server logsInt J Adv Sci Eng Inf Technol20177100710.18517/ijaseit.7.3.1563
– reference: ErhanDCourvilleABengioYVincentPWhy does unsupervised pre-training help deep learning?J Mach Learn Res20109201208260062310.5555/1756006.17560251242.68219
– reference: Andrew N (2011) Sparse autoencoder. CS294A Lectture Notes 72:1–19
– reference: SuchackaGIwańskiJIdentifying legitimate web users and bots with different traffic profiles-an information bottleneck approachKnowl-Based Syst202019710587510.1016/j.knosys.2020.105875
– reference: KangZFengCWanXStacked sparse autoencoder in cavitation noise signal data classification of hydro turbine based on power spectrumJ Low Freq Noise Vib Act Control20203923324510.1177/1461348419830815
– reference: WanSLiYSunKPathMarker: protecting web contents against inside crawlersCybersecurity20192910.1186/s42400-019-0023-1
– reference: SisodiaDSKhandalVSinghalRFast prediction of web user browsing behaviours using most interesting patternsJ Inf Sci201844749010.1177/0165551516673293
– reference: MienyeIDSunYImproved heart disease prediction using particle swarm optimization based stacked sparse autoencoderElectronics202110234710.3390/electronics10192347
– reference: WeberG-WÇavuşoğluZÖzmenAPredicting default probabilities in emerging markets by new conic generalized partial linear models and their optimizationOptimization201261443457290351410.1080/02331934.2011.6543431245.91080
– reference: Iliou C, Kostoulas T, Tsikrika T, et al. (2019) Towards a framework for detecting advanced web bots. In: Proceedings of the 14th international conference on availability, reliability and security. ACM, New York, NY, USA, pp 1–10
– reference: Imperva Bad Bot Report 2022. https://www.imperva.com/resources/reports/2022-imperva-bad-bot-report.pdf. Accessed 13 Jun 2022
– reference: Martín A, Ashish A, Paul B, et al. (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 12 Mar 2022
– reference: SisodiaDSVermaSVyasOPAgglomerative approach for identification and elimination of web robots from web server logs to extract knowledge about actual visitorsJ Data Anal Inf Process20150311010.4236/jdaip.2015.31001
– reference: Cabri A, Suchacka G, Rovetta S, Masulli F (2018) Online web bot detection using a sequential classification approach. In: 2018 IEEE 20th international conference on high performance computing and communications; IEEE 16th international conference on Smart City; IEEE 4th international conference on data science and systems (HPCC/SmartCity/DSS). IEEE, pp 1536–1540
– reference: Akrout I, Feriani A, Akrout M (2019) Hacking google reCAPTCHA v3 using reinforcement learning. ArXiv 1–5. https://doi.org/10.48550/arXiv.1903.01003
– reference: TrigueroIGarcíaSHerreraFSelf-labeled techniques for semi-supervised learning: taxonomy, software and empirical studyKnowl Inf Syst20154224528410.1007/s10115-013-0706-y
– reference: AouediOPiamratKBagadtheyDHandling partially labeled network data: a semi-supervised approach using stacked sparse autoencoderComput Netw202220710874210.1016/j.comnet.2021.108742
– reference: TaylanPYerlikaya-ÖzkurtFBilgiç UçakBWeberG-WA new outlier detection method based on convex optimization: application to diagnosis of Parkinson’s diseaseJ Appl Stat20214824212440433074810.1080/02664763.2020.186481507484662
– reference: Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems 19. The MIT Press, pp 153–160
– reference: NalcaciGÖzmenAWeberGWLong-term load forecasting: models based on MARS, ANN and LR methodsCent Eur J Oper Res20192710331049399593510.1007/s10100-018-0531-107100445
– reference: WeberG-WDefterliOAlparslan GökSZKropatEModeling, inference and optimization of regulatory networks based on time series dataEur J Oper Res2011211114277032610.1016/j.ejor.2010.06.0381221.93024
– reference: GnoumaMLadjailiaAEjbaliRZaiedMStacked sparse autoencoder and history of binary motion image for human activity recognitionMultimed Tools Appl2019782157217910.1007/s11042-018-6273-1
– reference: StevanovicDVlajicNAnADetection of malicious and non-malicious website visitors using unsupervised neural network learningAppl Soft Comput20131369870810.1016/j.asoc.2012.08.028
– reference: ReedSLeeHAnguelovDTraining deep neural networks on noisy labels with bootstrappingSci York20141010
– reference: Chen H, He H, Starr A (2020) An overview of web robots detection techniques. In: 2020 international conference on cyber security and protection of digital services (Cyber Security). IEEE, pp 1–6
– reference: LagopoulosATsoumakasGContent-aware web robot detectionAppl Intell2020504017402810.1007/s10489-020-01754-9
– reference: KrawczykBLearning from imbalanced data: open challenges and future directionsProg Artif Intell2016522123210.1007/s13748-016-0094-0
– reference: Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. 1–59. https://doi.org/10.48550/arXiv.1306.6709
– reference: De SchepperTCameloMFamaeyJLatréSTraffic classification at the radio spectrum level using deep learning models trained with synthetic dataInt J Netw Manag20203012010.1002/nem.2100
– reference: Lagopoulos A, Tsoumakas G (2019) Web robot detection-Server Logs
– ident: 8668_CR18
– volume: 5
  start-page: 221
  year: 2016
  ident: 8668_CR35
  publication-title: Prog Artif Intell
  doi: 10.1007/s13748-016-0094-0
– ident: 8668_CR43
– ident: 8668_CR3
  doi: 10.48550/arXiv.1903.01003
– ident: 8668_CR20
  doi: 10.1007/978-3-030-04834-1_21
– volume: 7
  start-page: 1007
  year: 2017
  ident: 8668_CR33
  publication-title: Int J Adv Sci Eng Inf Technol
  doi: 10.18517/ijaseit.7.3.1563
– ident: 8668_CR15
  doi: 10.1007/978-3-319-89743-1_27
– volume: 10
  start-page: 10
  year: 2014
  ident: 8668_CR5
  publication-title: Sci York
– ident: 8668_CR25
  doi: 10.1109/HPCC/SmartCity/DSS.2018.00252
– volume: 207
  start-page: 108742
  year: 2022
  ident: 8668_CR11
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108742
– volume: 10
  start-page: 2347
  year: 2021
  ident: 8668_CR10
  publication-title: Electronics
  doi: 10.3390/electronics10192347
– volume: 30
  start-page: 1
  year: 2020
  ident: 8668_CR12
  publication-title: Int J Netw Manag
  doi: 10.1002/nem.2100
– volume: 48
  start-page: 2421
  year: 2021
  ident: 8668_CR42
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2020.1864815
– volume: 211
  start-page: 1
  year: 2011
  ident: 8668_CR39
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.06.038
– ident: 8668_CR30
– volume: 39
  start-page: 233
  year: 2020
  ident: 8668_CR16
  publication-title: J Low Freq Noise Vib Act Control
  doi: 10.1177/1461348419830815
– ident: 8668_CR36
  doi: 10.7551/mitpress/7503.003.0024
– volume: 6
  start-page: 41238
  year: 2018
  ident: 8668_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858277
– year: 2022
  ident: 8668_CR38
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-14258-0
– volume: 69
  start-page: 963
  year: 2022
  ident: 8668_CR41
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3110767
– volume: 27
  start-page: 1033
  year: 2019
  ident: 8668_CR27
  publication-title: Cent Eur J Oper Res
  doi: 10.1007/s10100-018-0531-1
– volume: 42
  start-page: 245
  year: 2015
  ident: 8668_CR6
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0706-y
– volume: 9
  start-page: 19038
  year: 2019
  ident: 8668_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55320-6
– ident: 8668_CR8
  doi: 10.1109/ICCW.2018.8403759
– volume: 2
  start-page: 9
  year: 2019
  ident: 8668_CR24
  publication-title: Cybersecurity
  doi: 10.1186/s42400-019-0023-1
– volume: 197
  start-page: 105875
  year: 2020
  ident: 8668_CR26
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105875
– volume: 44
  start-page: 74
  year: 2018
  ident: 8668_CR34
  publication-title: J Inf Sci
  doi: 10.1177/0165551516673293
– ident: 8668_CR4
  doi: 10.1109/CyberSecurity49315.2020.9138856
– volume: 13
  start-page: 698
  year: 2013
  ident: 8668_CR23
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.08.028
– volume: 381
  start-page: 607
  year: 1996
  ident: 8668_CR29
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 03
  start-page: 1
  year: 2015
  ident: 8668_CR21
  publication-title: J Data Anal Inf Process
  doi: 10.4236/jdaip.2015.31001
– ident: 8668_CR28
  doi: 10.48550/arXiv.1306.6709
– volume: 42
  start-page: 146
  year: 2018
  ident: 8668_CR7
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.10.006
– start-page: 911
  volume-title: Evolutionary computing and mobile sustainable networks
  year: 2022
  ident: 8668_CR32
  doi: 10.1007/978-981-16-9605-3_64
– volume: 272
  start-page: 112947
  year: 2022
  ident: 8668_CR40
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2022.112947
– volume: 78
  start-page: 2157
  year: 2019
  ident: 8668_CR9
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6273-1
– ident: 8668_CR31
– ident: 8668_CR44
  doi: 10.1007/978-3-642-35289-8_26
– ident: 8668_CR2
  doi: 10.1109/ICOIN48656.2020.9016522
– volume: 50
  start-page: 4017
  year: 2020
  ident: 8668_CR22
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01754-9
– ident: 8668_CR1
– ident: 8668_CR19
  doi: 10.1145/3339252.3339267
– volume: 9
  start-page: 201
  year: 2010
  ident: 8668_CR14
  publication-title: J Mach Learn Res
  doi: 10.5555/1756006.1756025
– volume: 61
  start-page: 443
  year: 2012
  ident: 8668_CR37
  publication-title: Optimization
  doi: 10.1080/02331934.2011.654343
SSID ssj0004685
Score 2.3408568
Snippet Web robots are automated computer programs that can be exploited for benign and malicious activities such as website indexing, monitoring, or unauthorized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17883
SubjectTerms Artificial Intelligence
Automation
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision trees
Deep learning
Image Processing and Computer Vision
Machine learning
Multilayer perceptrons
Multilayers
Original Article
Probability and Statistics in Computer Science
Robots
Scalping
Semi-supervised learning
Software
Web portals
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcODCeIrBQDlwg0hNm64ptwlt4jQhNmC3Kq9Jk2Cd1o79fdys3QABEpx6SBtFdmx_bmJ_AJeMjaxhLYmW5hUlORH6QUTlqJDISumFQijuyCaiXk8Mh_F9WRSWVbfdqyNJ56lXxW7FH0xMff2AIgxvCbrYhC0Md6IgbHjoP32ohnREnJi3FHd6eFCWynw_x-dwtMaYX45FXbTp1v-3zj3YLdElaS-3wz5s2MkB1CvmBlIa8iEMnq2ifd7u3BBJMvs6ptl8WniNzBqCeBFNG59TTHotkfM8LbpdGpzA8eYQxLkEvS-ZpSrNibG5u841OYLHbmdwe0dLfgWq0fByiqmCChEBhMZESlsmlWI8GnmxEVr4sZTcC0ax0JEMPcWsr1qSBxpHreRGGy84htokndgTIMrnOtTG8DDWXPNQoqmjGpgVKg50EDeAVWJOdNl8vODAeElWbZOd2BIUW-LEliwacLX6ZrpsvfHr281Ke0lphlmCsdf3BSIQXMB1pa318M-znf7t9TPY8ZcKpx5rQi2fze05bOu3fJzNLtz2fAfyCd5_
  priority: 102
  providerName: Springer Nature
Title Web-S4AE: a semi-supervised stacked sparse autoencoder model for web robot detection
URI https://link.springer.com/article/10.1007/s00521-023-08668-w
https://www.proquest.com/docview/2842286149
Volume 35
WOSCitedRecordID wos000995961000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT_MwEB2xHbiwI8omH7iBRZw4jcMFASriVFXs4hJ5q4T0fU1pUvj7jF2HAhJcuCRSnFhWnmf8vMw8gAPG-tawtkRLi1xIToZ-EFk5ApJZKaNUCMW92ETW7YrHx7wXFtyqcKyy8YneUZtSuzXyY3SjcSxwMMlPhy_UqUa53dUgoTEL8y5LgpNu6KVPn-IivSQnzmDc6R6ehKAZHzrn1kPxaZxQJPVtQd--DkxTtvltg9SPO5fLf23xCiwFxknOJl1kFWbsYA2WGzUHEox7HW4frKI3_KxzQiSp7P9nWo2HzpNU1hDkkGjueB_iRNgSOa5LlwHTYAVeS4cg9yXokcmoVGVNjK39Ea_BBtxddm4vrmjQXKAajbGmOH1QKbKC1JhMacukUoxn_Sg3Qos4l5JHST8XOpNppJiNVVvyRGOpldxoEyWbMDcoB3YLiIq5TrUxPM011zyVaP4ICLNC5YlO8haw5ocXOiQkd7oY_4qPVMoepAJBKjxIxVsLDj--GU7Scfz69m6DTBFMsyqmsLTgqMF2Wvxzbdu_17YDi_GkO9GI7cJcPRrbPVjQr_VzNdqH-fNOt3e97zsoXq9v7t8BNN7qjg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fS9xAEB6sLbQvtbZKz1q7D_pkF7ObzWUjlCJVUdRD8ETxJe6vgwO9nJdcj_5T_o2d3Uu8WqhvPvQpkE0Gkv3mm5ndnRmAdcZ6zrK2Qk2LfEpOijyIXjlOSOqUihIptQjNJtJOR15eZqdzcN_kwvhjlQ0nBqK2hfFr5FtIo5xLNCbZ9-Ed9V2j_O5q00JjCosj92uCIVv57XAX53eD8_297o8DWncVoAbhVlF0kHWCdi-xNtXGMaU1E2kvyqw0kmdKiSjuZdKkKok0c1y3lYgNjjolrLFRjHJfwEsheOS16DS5-iMPM7QAxYjJnyYScZ2kE1L1_Por3uUxxSCiLenksSGcebd_bcgGO7e_8L_9oXfwtvaoyc5UBRZhzg3ew0LTrYLU5PUBuhdO0zOxs7dNFCndbZ-W46FnytJZgj4y0hlehxjoO6LGVeErfFoUEHoFEfTtCVocMip0URHrqnCEbbAE58_ybcswPygG7iMQzYVJjLUiyYwwIlFIbwgA5qTOYhNnLWDNBOemLrju-37c5A-logMocgRFHkCRT1qw-fDOcFpu5MmnVxsk5DX1lPkMBi342mBpNvxvaStPS_sCrw-6J8f58WHn6BO84VMo04itwnw1GrvP8Mr8rPrlaC0oBYHr58bYbwHvRrU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah5807KmTdfUt6EORRmDTd1byddgoN1YO_fve8nabYoK4lMfkhzhLnf5XXMfCJ0T0teK1DlommtSckKwg4DKQSCh5twNGBPUNpsIWy3W60XtpSx-G-1ePEnOchpMlaYkq41UvzZPfDN_M8EN9nwHIHmdOdNVtEZNIL3x1zvPS5mRtikn-DAmvof6edrM9zQ-X00LvPnlidTePM3y__e8jbZy1Ikbs2Oyg1Z0sovKRUcHnCv4Huq-aOF0aOP2CnOc6reBk05GxpqkWmHAkaDy8B2BM6wxn2RDUwVTAQHbTwcD_sVglfF4KIYZVjqzYV7JPnpq3nav75y874IjQSEzB1wIEQAyCJQKhdSEC0Fo2HcjxSTzIs6p6_cjJkMeuIJoT9Q59SWMak6VVK5_gErJMNGHCAuPykAqRYNIUkkDDiYAREI0E5Ev_aiCSMHyWOZFyU1vjNd4Xk7Zsi0GtsWWbfG0gi7ma0azkhy_zq4Wkoxz9UxjuJM9jwEygQ1cFpJbDP9M7ehv08_QRvumGT_etx6O0aY3k73jkioqZeOJPkHr8j0bpONTe2o_AOpd6kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Web-S4AE%3A+a+semi-supervised+stacked+sparse+autoencoder+model+for+web+robot+detection&rft.jtitle=Neural+computing+%26+applications&rft.au=Jagat%2C+Rikhi+Ram&rft.au=Sisodia%2C+Dilip+Singh&rft.au=Singh%2C+Pradeep&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=24&rft.spage=17883&rft.epage=17898&rft_id=info:doi/10.1007%2Fs00521-023-08668-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon