Leveraging knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user video transcoding

The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 76; číslo 12; s. 9388 - 9403
Hlavní autoři: Costero, Luis, Igual, Francisco D., Olcoz, Katzalin, Tirado, Francisco
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2020
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-019-03117-9