Leveraging knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user video transcoding
The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are i...
Saved in:
| Published in: | The Journal of supercomputing Vol. 76; no. 12; pp. 9388 - 9403 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests. |
|---|---|
| AbstractList | The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests. The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests. |
| Author | Tirado, Francisco Igual, Francisco D. Costero, Luis Olcoz, Katzalin |
| Author_xml | – sequence: 1 givenname: Luis orcidid: 0000-0002-6922-2520 surname: Costero fullname: Costero, Luis email: lcostero@ucm.es organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid – sequence: 2 givenname: Francisco D. surname: Igual fullname: Igual, Francisco D. organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid – sequence: 3 givenname: Katzalin surname: Olcoz fullname: Olcoz, Katzalin organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid – sequence: 4 givenname: Francisco surname: Tirado fullname: Tirado, Francisco organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid |
| BookMark | eNp9kMFOHDEMhiMEEgvlBThF6qU9hMbJTJMcK1Ra1JWqCjhHJuMZZbubQDK7iLdv6FZC6oGTD_b32_5O2GHKiRg7B3kBUppPFUApIyQ4ITWAEe6ALaA3WsjOdodsIZ2SwvadOmYnta6klJ02esFWS9pRwSmmif9O-WlNw0QCq0BRqexiIP7hB-LNRz7mwn_lG4FPWIgXqnlbWneDCSfaUJp5THyzXc9RbBvKd3GgzOeCqYY8tPx37GjEdaWzf_WU3V19vb38LpY_v11fflmKoMHNwvSqHz_31gZJYdT9YB0ZDAiuCxpR0TCYAC7o4HAES-YeUMEYIFhw1qE-Ze_3uQ8lP26pzn7VTk1tpVdd3_RIrbo2pfZToeRaC43-ocQNlmcP0r849Xunvjn1f5161yD7HxTijHPMqf0Z12-jeo_WtidNVF6veoP6Axt9joc |
| CitedBy_id | crossref_primary_10_3390_electronics10192386 |
| Cites_doi | 10.1145/2843889 10.1109/TCC.2015.2474406 10.1145/2964284.2973796 10.23919/DATE.2019.8715256 10.1109/TCSVT.2018.2840351 10.1109/TPDS.2018.2827381 10.1109/TCSVT.2012.2221191 10.1145/2460782.2460791 10.1145/2964284.2964296 10.1109/HPCC-SmartCity-DSS.2016.0061 10.1145/2701126.2701191 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-019-03117-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 9403 |
| ExternalDocumentID | 10_1007_s11227_019_03117_9 |
| GrantInformation_xml | – fundername: European Regional Development Fund grantid: S2018/TCS-4423; TIN 2015-65277-R; RTI2018-093684-B-I00 funderid: http://dx.doi.org/10.13039/501100008530 – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: TIN 2015-65277-R; RTI 2018-093684-B-I00 funderid: http://dx.doi.org/10.13039/501100010198 – fundername: Consejería de Educación, Juventud y Deporte, Comunidad de Madrid grantid: S2018/TCS-4423 funderid: http://dx.doi.org/10.13039/501100008433 – fundername: Ministerio de Educación, Cultura y Deporte grantid: FPU15/02050 funderid: http://dx.doi.org/10.13039/501100003176 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-7525f6588c0ecf35d89e7aca194c3aa2edd7c19c3c9af18e7b1a21fc1c81989a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:52:25 EDT 2025 Tue Nov 18 21:04:18 EST 2025 Sat Nov 29 04:27:38 EST 2025 Fri Feb 21 02:27:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Reinforcement Learning HEVC video transcoding Multi-core architectures Heterogeneous Quality of Service Resource management |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7525f6588c0ecf35d89e7aca194c3aa2edd7c19c3c9af18e7b1a21fc1c81989a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6922-2520 |
| PQID | 2450310324 |
| PQPubID | 2043774 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2450310324 crossref_primary_10_1007_s11227_019_03117_9 crossref_citationtrail_10_1007_s11227_019_03117_9 springer_journals_10_1007_s11227_019_03117_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Farhad SM, Bappi MSI, Ghosh A (2016) Dynamic resource provisioning for video transcoding in IaaS cloud. In: 2016 IEEE 18th International Conference on High Performance Computing and Communications, IEEE, pp 380–384 SuttonRSBartoAGReinforcement learning: an introduction1998CambridgeMIT Press1407.68009 Sembiring K, Beyer A (2013) Dynamic resource allocation for cloud-based media processing. In: ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM Press, pp 49–54 IBM (2005) An architectural blueprint for autonomic computing. Technical Report, IBM Ho HN, Lee E (2015) Model-based reinforcement learning approach for planning in self-adaptive software system. In: International Conference on Ubiquitous Information Management and Communication, pp 103:1–103:8 SullivanGJOhmJRHanWJWiegandTOverview of the high efficiency video coding (HEVC) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191 Costero L, Iranfar A, Zapater M, Igual FD, Olcoz K, Atienza D (2019) MAMUT: multi-agent reinforcement learning for efficient real-time multi-user video transcoding. In: Design, Automation Test in Europe Conference SinghSChanaIQoS-aware autonomic resource management in cloud computingACM Comput Surv201548314610.1145/2843889 Bossen F, Common H (2013) Test conditions and software reference configurations. JCT-VC Doc Gao G, Wen Y, Westphal C (2016) Dynamic resource provisioning with QoS guarantee for video transcoding in online video sharing service. In: 2016 ACM Multimedia Conferecne—MM ’16, pp 868–877 GaoGWenYWestphalCDynamic priority-based resource provisioning for video transcoding with heterogeneous QoSIEEE Trans Circuits Syst Video Technol20192951515152910.1109/TCSVT.2018.2840351 WangLGelenbeEAdaptive dispatching of tasks in the cloudIEEE Trans Cloud Comput201861334510.1109/TCC.2015.2474406 Viitanen M, Koivula A, Lemmetti A, Ylä-Outinen A, Vanne J, Hämäläinen TD (2016) Kvazaar: open-source HEVC/H.265 encoder. In: 24th ACM International Conference on Multimedia IranfarAZapaterMAtienzaDMachine learning-based quality-aware power and thermal management of multistream HEVC encoding on multicore serversIEEE Trans Parallel Distrib Syst201829102268228110.1109/TPDS.2018.2827381 GJ Sullivan (3117_CR11) 2012; 22 G Gao (3117_CR5) 2019; 29 3117_CR13 3117_CR7 RS Sutton (3117_CR12) 1998 L Wang (3117_CR14) 2018; 6 3117_CR6 3117_CR9 3117_CR3 3117_CR2 3117_CR4 3117_CR1 S Singh (3117_CR10) 2015; 48 A Iranfar (3117_CR8) 2018; 29 |
| References_xml | – reference: SinghSChanaIQoS-aware autonomic resource management in cloud computingACM Comput Surv201548314610.1145/2843889 – reference: Viitanen M, Koivula A, Lemmetti A, Ylä-Outinen A, Vanne J, Hämäläinen TD (2016) Kvazaar: open-source HEVC/H.265 encoder. In: 24th ACM International Conference on Multimedia – reference: SuttonRSBartoAGReinforcement learning: an introduction1998CambridgeMIT Press1407.68009 – reference: GaoGWenYWestphalCDynamic priority-based resource provisioning for video transcoding with heterogeneous QoSIEEE Trans Circuits Syst Video Technol20192951515152910.1109/TCSVT.2018.2840351 – reference: Costero L, Iranfar A, Zapater M, Igual FD, Olcoz K, Atienza D (2019) MAMUT: multi-agent reinforcement learning for efficient real-time multi-user video transcoding. In: Design, Automation Test in Europe Conference – reference: Bossen F, Common H (2013) Test conditions and software reference configurations. JCT-VC Doc – reference: Gao G, Wen Y, Westphal C (2016) Dynamic resource provisioning with QoS guarantee for video transcoding in online video sharing service. In: 2016 ACM Multimedia Conferecne—MM ’16, pp 868–877 – reference: Ho HN, Lee E (2015) Model-based reinforcement learning approach for planning in self-adaptive software system. In: International Conference on Ubiquitous Information Management and Communication, pp 103:1–103:8 – reference: Sembiring K, Beyer A (2013) Dynamic resource allocation for cloud-based media processing. In: ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM Press, pp 49–54 – reference: Farhad SM, Bappi MSI, Ghosh A (2016) Dynamic resource provisioning for video transcoding in IaaS cloud. In: 2016 IEEE 18th International Conference on High Performance Computing and Communications, IEEE, pp 380–384 – reference: IBM (2005) An architectural blueprint for autonomic computing. Technical Report, IBM – reference: IranfarAZapaterMAtienzaDMachine learning-based quality-aware power and thermal management of multistream HEVC encoding on multicore serversIEEE Trans Parallel Distrib Syst201829102268228110.1109/TPDS.2018.2827381 – reference: WangLGelenbeEAdaptive dispatching of tasks in the cloudIEEE Trans Cloud Comput201861334510.1109/TCC.2015.2474406 – reference: SullivanGJOhmJRHanWJWiegandTOverview of the high efficiency video coding (HEVC) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191 – volume: 48 start-page: 1 issue: 3 year: 2015 ident: 3117_CR10 publication-title: ACM Comput Surv doi: 10.1145/2843889 – volume: 6 start-page: 33 issue: 1 year: 2018 ident: 3117_CR14 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2015.2474406 – ident: 3117_CR13 doi: 10.1145/2964284.2973796 – ident: 3117_CR7 – ident: 3117_CR2 doi: 10.23919/DATE.2019.8715256 – ident: 3117_CR1 – volume: 29 start-page: 1515 issue: 5 year: 2019 ident: 3117_CR5 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2018.2840351 – volume: 29 start-page: 2268 issue: 10 year: 2018 ident: 3117_CR8 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2018.2827381 – volume-title: Reinforcement learning: an introduction year: 1998 ident: 3117_CR12 – volume: 22 start-page: 1649 issue: 12 year: 2012 ident: 3117_CR11 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2012.2221191 – ident: 3117_CR9 doi: 10.1145/2460782.2460791 – ident: 3117_CR4 doi: 10.1145/2964284.2964296 – ident: 3117_CR3 doi: 10.1109/HPCC-SmartCity-DSS.2016.0061 – ident: 3117_CR6 doi: 10.1145/2701126.2701191 |
| SSID | ssj0004373 |
| Score | 2.248445 |
| Snippet | The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9388 |
| SubjectTerms | Automatic control Compilers Computer Science High Performance Computing in Science and Engineering - CMMSE-2019 Interpreters Knobs Processor Architectures Programming Languages Quality of service Resource management |
| Title | Leveraging knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user video transcoding |
| URI | https://link.springer.com/article/10.1007/s11227-019-03117-9 https://www.proquest.com/docview/2450310324 |
| Volume | 76 |
| WOSCitedRecordID | wos000515902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNOj04MX5idMpOXhQNNCk65ocRRyCYyjTsVt5S1OYaCtt1b_vSz9WFBX0nDSU9_39CDnmDvRlT6P0m9mWnL4BBo4DDDWRRv2IR8W4psnQH43kdKpuq6awrK52r1OShaRumt24ELZMUjEkRJStapmseHbajPXRx5OmG9It88oKHSPp9UTVKvP9G5_VUWNjfkmLFtpm0P7ff26Q9cq6pBclOWySJRNvkXa9uYFWjLxNHocGSbhYUEQXUTUGGQOWlcKDntwAjE8p2rT0LhkzeIfU0LQK9tPnRdUMnce0qEpkNt5BbVtfQnOrAXVi9eIOeRhc3V9es2rrAtPIjjnzPeFFaJdI7RgduV4olfFBA1eINwBhwtDXXGlXK4i4NP6Mg-CR5lra-itwd0krTmKzRyg66iryJYoN9Lp8rw-RK2a-8TQK2DDSskN4DfxAVyPJ7WaMp6AZpmyBGSAwgwKYgeqQs8U3L-VAjl9vd2ucBhVzZoHoeXYgKpqSHXJe47A5_vm1_b9dPyBrwnrnRfFLl7Ty9NUcklX9ls-z9Kgg2g-saOUb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9KFT0IvzE6dTc_CgaGBJ1zU5iiiTzaFsjt3KW5bCRDdZp_59X7p2RVFBz0lDed_fD-BYVLCmqoakX9-15NQscqxUkJMmMqQf6SgZ19RtBq2W6vX0XdoUFmfV7llKMpHUebObkNKVSWpOhEiyVS_CUtWt2XE-erubd0N6s7yyJsdI-VWZtsp8_8ZndZTbmF_Soom2uS7-7z_XYS21LtnFjBw2YMGONqGYbW5gKSNvwWPTEgknC4rYPKrGMebI45nwYCcNxPYpI5uW3Y_bHN9xYtkkDfaz53nVDBuOWFKVyF28g7m2vjGbOg1oxk4vbsPD9VXnss7TrQvcEDtOeeBLPyK7RJmKNZHnD5S2ARoUmvCGKO1gEBihjWc0RkLZoC9QisgIo1z9FXo7UBiNR3YXGDnqOgoUiQ3yugK_hpEn-4H1DQnYQWRUCUQG_NCkI8ndZoynMB-m7IAZEjDDBJihLsHZ_JuX2UCOX2-XM5yGKXPGoaz6biAqmZIlOM9wmB___Nre364fwUq9c9sMmzetxj6sSuepJ4UwZShMJ6_2AJbN23QYTw4TAv4Acijn_w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSysxEB48KuKLd7Fe8-CDcgxtst1u8ihqUSxFrYpvyzSbBUW30q76953spatyFOQ8JxuWzD0z3wzArmhgSzUNab--g-S0LHJsNJCTJTJkH2kpa9d02wm6XXV3py8-oPizavcyJZljGlyXpiStP0dxvQK-CSldyaTmxJSkZ_UfmGpSJOOKuq56txUy0stzzJqCJOU3ZQGb-fcZn01T5W9-SZFmlqc9____vABzhdfJDnM2WYQJmyzBfDnRgRUCvgwPHUusnQ0uYuPXNo4jjnyUKxW2d47Y22fk67LLQY_jGw4tGxZJAPY0rqZh9wnLqhW5ewdhDu43YKmzjGbg7OUK3LRPro9OeTGNgRsS05QHvvRj8leUaVgTe36ktA3QoNBET0RpoygwQhvPaIyFskFfoBSxEUa5uiz0VmEyGSR2DRgF8DoOFKkTisYCv4WxJ_uB9Q0p3ig2qgaiJERoilblbmLGY1g1WXaXGdJlhtllhroGf8ffPOeNOn7cvVnSNyyEdhTKpu8apZKLWYODkp7V8venrf9u-w7MXBy3w85Z93wDZqUL4LP6mE2YTIcvdgumzWt6PxpuZ7z8DrXf8OM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+knowledge-as-a-service+%28KaaS%29+for+QoS-aware+resource+management+in+multi-user+video+transcoding&rft.jtitle=The+Journal+of+supercomputing&rft.au=Costero+Luis&rft.au=Igual%2C+Francisco+D&rft.au=Olcoz+Katzalin&rft.au=Tirado%2C+Francisco&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=12&rft.spage=9388&rft.epage=9403&rft_id=info:doi/10.1007%2Fs11227-019-03117-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |