Leveraging knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user video transcoding

The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are i...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 76; no. 12; pp. 9388 - 9403
Main Authors: Costero, Luis, Igual, Francisco D., Olcoz, Katzalin, Tirado, Francisco
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2020
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests.
AbstractList The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests.
The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new challenges to improve resource occupation while keeping acceptable rates in terms of QoS. As more application-specific and system-wide metrics are included as QoS dimensions, or under situations in which resource-usage limits are strict, building and serving the most appropriate set of actions (application control knobs and system resource assignment) to concurrent applications in an automatic and optimal fashion become mandatory. In this paper, we propose strategies to build and serve this type of knowledge to concurrent applications by leveraging Reinforcement Learning techniques. Taking multi-user video transcoding as a driving example, our experimental results reveal an excellent adaptation of resource and knob management to heterogeneous QoS requests, and increases in the amount of concurrently served users up to 1.24 × compared with alternative approaches considering homogeneous QoS requests.
Author Tirado, Francisco
Igual, Francisco D.
Costero, Luis
Olcoz, Katzalin
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0002-6922-2520
  surname: Costero
  fullname: Costero, Luis
  email: lcostero@ucm.es
  organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid
– sequence: 2
  givenname: Francisco D.
  surname: Igual
  fullname: Igual, Francisco D.
  organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid
– sequence: 3
  givenname: Katzalin
  surname: Olcoz
  fullname: Olcoz, Katzalin
  organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid
– sequence: 4
  givenname: Francisco
  surname: Tirado
  fullname: Tirado, Francisco
  organization: Departamento de Arquitectura de Computadores y Automática, Universidad Computense de Madrid
BookMark eNp9kMFOHDEMhiMEEgvlBThF6qU9hMbJTJMcK1Ra1JWqCjhHJuMZZbubQDK7iLdv6FZC6oGTD_b32_5O2GHKiRg7B3kBUppPFUApIyQ4ITWAEe6ALaA3WsjOdodsIZ2SwvadOmYnta6klJ02esFWS9pRwSmmif9O-WlNw0QCq0BRqexiIP7hB-LNRz7mwn_lG4FPWIgXqnlbWneDCSfaUJp5THyzXc9RbBvKd3GgzOeCqYY8tPx37GjEdaWzf_WU3V19vb38LpY_v11fflmKoMHNwvSqHz_31gZJYdT9YB0ZDAiuCxpR0TCYAC7o4HAES-YeUMEYIFhw1qE-Ze_3uQ8lP26pzn7VTk1tpVdd3_RIrbo2pfZToeRaC43-ocQNlmcP0r849Xunvjn1f5161yD7HxTijHPMqf0Z12-jeo_WtidNVF6veoP6Axt9joc
CitedBy_id crossref_primary_10_3390_electronics10192386
Cites_doi 10.1145/2843889
10.1109/TCC.2015.2474406
10.1145/2964284.2973796
10.23919/DATE.2019.8715256
10.1109/TCSVT.2018.2840351
10.1109/TPDS.2018.2827381
10.1109/TCSVT.2012.2221191
10.1145/2460782.2460791
10.1145/2964284.2964296
10.1109/HPCC-SmartCity-DSS.2016.0061
10.1145/2701126.2701191
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-03117-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 9403
ExternalDocumentID 10_1007_s11227_019_03117_9
GrantInformation_xml – fundername: European Regional Development Fund
  grantid: S2018/TCS-4423; TIN 2015-65277-R; RTI2018-093684-B-I00
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: TIN 2015-65277-R; RTI 2018-093684-B-I00
  funderid: http://dx.doi.org/10.13039/501100010198
– fundername: Consejería de Educación, Juventud y Deporte, Comunidad de Madrid
  grantid: S2018/TCS-4423
  funderid: http://dx.doi.org/10.13039/501100008433
– fundername: Ministerio de Educación, Cultura y Deporte
  grantid: FPU15/02050
  funderid: http://dx.doi.org/10.13039/501100003176
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-7525f6588c0ecf35d89e7aca194c3aa2edd7c19c3c9af18e7b1a21fc1c81989a3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:52:25 EDT 2025
Tue Nov 18 21:04:18 EST 2025
Sat Nov 29 04:27:38 EST 2025
Fri Feb 21 02:27:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Reinforcement Learning
HEVC video transcoding
Multi-core architectures
Heterogeneous Quality of Service
Resource management
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7525f6588c0ecf35d89e7aca194c3aa2edd7c19c3c9af18e7b1a21fc1c81989a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6922-2520
PQID 2450310324
PQPubID 2043774
PageCount 16
ParticipantIDs proquest_journals_2450310324
crossref_primary_10_1007_s11227_019_03117_9
crossref_citationtrail_10_1007_s11227_019_03117_9
springer_journals_10_1007_s11227_019_03117_9
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Farhad SM, Bappi MSI, Ghosh A (2016) Dynamic resource provisioning for video transcoding in IaaS cloud. In: 2016 IEEE 18th International Conference on High Performance Computing and Communications, IEEE, pp 380–384
SuttonRSBartoAGReinforcement learning: an introduction1998CambridgeMIT Press1407.68009
Sembiring K, Beyer A (2013) Dynamic resource allocation for cloud-based media processing. In: ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM Press, pp 49–54
IBM (2005) An architectural blueprint for autonomic computing. Technical Report, IBM
Ho HN, Lee E (2015) Model-based reinforcement learning approach for planning in self-adaptive software system. In: International Conference on Ubiquitous Information Management and Communication, pp 103:1–103:8
SullivanGJOhmJRHanWJWiegandTOverview of the high efficiency video coding (HEVC) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191
Costero L, Iranfar A, Zapater M, Igual FD, Olcoz K, Atienza D (2019) MAMUT: multi-agent reinforcement learning for efficient real-time multi-user video transcoding. In: Design, Automation Test in Europe Conference
SinghSChanaIQoS-aware autonomic resource management in cloud computingACM Comput Surv201548314610.1145/2843889
Bossen F, Common H (2013) Test conditions and software reference configurations. JCT-VC Doc
Gao G, Wen Y, Westphal C (2016) Dynamic resource provisioning with QoS guarantee for video transcoding in online video sharing service. In: 2016 ACM Multimedia Conferecne—MM ’16, pp 868–877
GaoGWenYWestphalCDynamic priority-based resource provisioning for video transcoding with heterogeneous QoSIEEE Trans Circuits Syst Video Technol20192951515152910.1109/TCSVT.2018.2840351
WangLGelenbeEAdaptive dispatching of tasks in the cloudIEEE Trans Cloud Comput201861334510.1109/TCC.2015.2474406
Viitanen M, Koivula A, Lemmetti A, Ylä-Outinen A, Vanne J, Hämäläinen TD (2016) Kvazaar: open-source HEVC/H.265 encoder. In: 24th ACM International Conference on Multimedia
IranfarAZapaterMAtienzaDMachine learning-based quality-aware power and thermal management of multistream HEVC encoding on multicore serversIEEE Trans Parallel Distrib Syst201829102268228110.1109/TPDS.2018.2827381
GJ Sullivan (3117_CR11) 2012; 22
G Gao (3117_CR5) 2019; 29
3117_CR13
3117_CR7
RS Sutton (3117_CR12) 1998
L Wang (3117_CR14) 2018; 6
3117_CR6
3117_CR9
3117_CR3
3117_CR2
3117_CR4
3117_CR1
S Singh (3117_CR10) 2015; 48
A Iranfar (3117_CR8) 2018; 29
References_xml – reference: SinghSChanaIQoS-aware autonomic resource management in cloud computingACM Comput Surv201548314610.1145/2843889
– reference: Viitanen M, Koivula A, Lemmetti A, Ylä-Outinen A, Vanne J, Hämäläinen TD (2016) Kvazaar: open-source HEVC/H.265 encoder. In: 24th ACM International Conference on Multimedia
– reference: SuttonRSBartoAGReinforcement learning: an introduction1998CambridgeMIT Press1407.68009
– reference: GaoGWenYWestphalCDynamic priority-based resource provisioning for video transcoding with heterogeneous QoSIEEE Trans Circuits Syst Video Technol20192951515152910.1109/TCSVT.2018.2840351
– reference: Costero L, Iranfar A, Zapater M, Igual FD, Olcoz K, Atienza D (2019) MAMUT: multi-agent reinforcement learning for efficient real-time multi-user video transcoding. In: Design, Automation Test in Europe Conference
– reference: Bossen F, Common H (2013) Test conditions and software reference configurations. JCT-VC Doc
– reference: Gao G, Wen Y, Westphal C (2016) Dynamic resource provisioning with QoS guarantee for video transcoding in online video sharing service. In: 2016 ACM Multimedia Conferecne—MM ’16, pp 868–877
– reference: Ho HN, Lee E (2015) Model-based reinforcement learning approach for planning in self-adaptive software system. In: International Conference on Ubiquitous Information Management and Communication, pp 103:1–103:8
– reference: Sembiring K, Beyer A (2013) Dynamic resource allocation for cloud-based media processing. In: ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM Press, pp 49–54
– reference: Farhad SM, Bappi MSI, Ghosh A (2016) Dynamic resource provisioning for video transcoding in IaaS cloud. In: 2016 IEEE 18th International Conference on High Performance Computing and Communications, IEEE, pp 380–384
– reference: IBM (2005) An architectural blueprint for autonomic computing. Technical Report, IBM
– reference: IranfarAZapaterMAtienzaDMachine learning-based quality-aware power and thermal management of multistream HEVC encoding on multicore serversIEEE Trans Parallel Distrib Syst201829102268228110.1109/TPDS.2018.2827381
– reference: WangLGelenbeEAdaptive dispatching of tasks in the cloudIEEE Trans Cloud Comput201861334510.1109/TCC.2015.2474406
– reference: SullivanGJOhmJRHanWJWiegandTOverview of the high efficiency video coding (HEVC) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191
– volume: 48
  start-page: 1
  issue: 3
  year: 2015
  ident: 3117_CR10
  publication-title: ACM Comput Surv
  doi: 10.1145/2843889
– volume: 6
  start-page: 33
  issue: 1
  year: 2018
  ident: 3117_CR14
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2015.2474406
– ident: 3117_CR13
  doi: 10.1145/2964284.2973796
– ident: 3117_CR7
– ident: 3117_CR2
  doi: 10.23919/DATE.2019.8715256
– ident: 3117_CR1
– volume: 29
  start-page: 1515
  issue: 5
  year: 2019
  ident: 3117_CR5
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2018.2840351
– volume: 29
  start-page: 2268
  issue: 10
  year: 2018
  ident: 3117_CR8
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2827381
– volume-title: Reinforcement learning: an introduction
  year: 1998
  ident: 3117_CR12
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  ident: 3117_CR11
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2012.2221191
– ident: 3117_CR9
  doi: 10.1145/2460782.2460791
– ident: 3117_CR4
  doi: 10.1145/2964284.2964296
– ident: 3117_CR3
  doi: 10.1109/HPCC-SmartCity-DSS.2016.0061
– ident: 3117_CR6
  doi: 10.1145/2701126.2701191
SSID ssj0004373
Score 2.248445
Snippet The coexistence of parallel applications in shared computing nodes, each one featuring different Quality of Service (QoS) requirements, carries out new...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9388
SubjectTerms Automatic control
Compilers
Computer Science
High Performance Computing in Science and Engineering - CMMSE-2019
Interpreters
Knobs
Processor Architectures
Programming Languages
Quality of service
Resource management
Title Leveraging knowledge-as-a-service (KaaS) for QoS-aware resource management in multi-user video transcoding
URI https://link.springer.com/article/10.1007/s11227-019-03117-9
https://www.proquest.com/docview/2450310324
Volume 76
WOSCitedRecordID wos000515902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNOj04MX5idMpOXhQNNCk65ocRRyCYyjTsVt5S1OYaCtt1b_vSz9WFBX0nDSU9_39CDnmDvRlT6P0m9mWnL4BBo4DDDWRRv2IR8W4psnQH43kdKpuq6awrK52r1OShaRumt24ELZMUjEkRJStapmseHbajPXRx5OmG9It88oKHSPp9UTVKvP9G5_VUWNjfkmLFtpm0P7ff26Q9cq6pBclOWySJRNvkXa9uYFWjLxNHocGSbhYUEQXUTUGGQOWlcKDntwAjE8p2rT0LhkzeIfU0LQK9tPnRdUMnce0qEpkNt5BbVtfQnOrAXVi9eIOeRhc3V9es2rrAtPIjjnzPeFFaJdI7RgduV4olfFBA1eINwBhwtDXXGlXK4i4NP6Mg-CR5lra-itwd0krTmKzRyg66iryJYoN9Lp8rw-RK2a-8TQK2DDSskN4DfxAVyPJ7WaMp6AZpmyBGSAwgwKYgeqQs8U3L-VAjl9vd2ucBhVzZoHoeXYgKpqSHXJe47A5_vm1_b9dPyBrwnrnRfFLl7Ty9NUcklX9ls-z9Kgg2g-saOUb
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9KFT0IvzE6dTc_CgaGBJ1zU5iiiTzaFsjt3KW5bCRDdZp_59X7p2RVFBz0lDed_fD-BYVLCmqoakX9-15NQscqxUkJMmMqQf6SgZ19RtBq2W6vX0XdoUFmfV7llKMpHUebObkNKVSWpOhEiyVS_CUtWt2XE-erubd0N6s7yyJsdI-VWZtsp8_8ZndZTbmF_Soom2uS7-7z_XYS21LtnFjBw2YMGONqGYbW5gKSNvwWPTEgknC4rYPKrGMebI45nwYCcNxPYpI5uW3Y_bHN9xYtkkDfaz53nVDBuOWFKVyF28g7m2vjGbOg1oxk4vbsPD9VXnss7TrQvcEDtOeeBLPyK7RJmKNZHnD5S2ARoUmvCGKO1gEBihjWc0RkLZoC9QisgIo1z9FXo7UBiNR3YXGDnqOgoUiQ3yugK_hpEn-4H1DQnYQWRUCUQG_NCkI8ndZoynMB-m7IAZEjDDBJihLsHZ_JuX2UCOX2-XM5yGKXPGoaz6biAqmZIlOM9wmB___Nre364fwUq9c9sMmzetxj6sSuepJ4UwZShMJ6_2AJbN23QYTw4TAv4Acijn_w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSysxEB48KuKLd7Fe8-CDcgxtst1u8ihqUSxFrYpvyzSbBUW30q76953spatyFOQ8JxuWzD0z3wzArmhgSzUNab--g-S0LHJsNJCTJTJkH2kpa9d02wm6XXV3py8-oPizavcyJZljGlyXpiStP0dxvQK-CSldyaTmxJSkZ_UfmGpSJOOKuq56txUy0stzzJqCJOU3ZQGb-fcZn01T5W9-SZFmlqc9____vABzhdfJDnM2WYQJmyzBfDnRgRUCvgwPHUusnQ0uYuPXNo4jjnyUKxW2d47Y22fk67LLQY_jGw4tGxZJAPY0rqZh9wnLqhW5ewdhDu43YKmzjGbg7OUK3LRPro9OeTGNgRsS05QHvvRj8leUaVgTe36ktA3QoNBET0RpoygwQhvPaIyFskFfoBSxEUa5uiz0VmEyGSR2DRgF8DoOFKkTisYCv4WxJ_uB9Q0p3ig2qgaiJERoilblbmLGY1g1WXaXGdJlhtllhroGf8ffPOeNOn7cvVnSNyyEdhTKpu8apZKLWYODkp7V8venrf9u-w7MXBy3w85Z93wDZqUL4LP6mE2YTIcvdgumzWt6PxpuZ7z8DrXf8OM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+knowledge-as-a-service+%28KaaS%29+for+QoS-aware+resource+management+in+multi-user+video+transcoding&rft.jtitle=The+Journal+of+supercomputing&rft.au=Costero+Luis&rft.au=Igual%2C+Francisco+D&rft.au=Olcoz+Katzalin&rft.au=Tirado%2C+Francisco&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=12&rft.spage=9388&rft.epage=9403&rft_id=info:doi/10.1007%2Fs11227-019-03117-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon