Lebesgue inequalities for Chebyshev thresholding greedy algorithms

We establish estimates for the Lebesgue parameters of the Chebyshev weak thresholding greedy algorithm in the case of general bases in Banach spaces. These generalize and slightly improve earlier results in Dilworth et al. (Rev Mat Complut 28(2):393–409, 2015), and are complemented with examples sho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Revista matemática complutense Ročník 33; číslo 3; s. 695 - 722
Hlavní autori: Berná, P. M., Blasco, Ó., Garrigós, G., Hernández, E., Oikhberg, T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2020
Springer Nature B.V
Predmet:
ISSN:1139-1138, 1988-2807
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We establish estimates for the Lebesgue parameters of the Chebyshev weak thresholding greedy algorithm in the case of general bases in Banach spaces. These generalize and slightly improve earlier results in Dilworth et al. (Rev Mat Complut 28(2):393–409, 2015), and are complemented with examples showing the optimality of the bounds. Our results also clarify certain bounds recently announced in Shao and Ye (J Inequal Appl 2018(1):102, 2018), and answer some questions left open in that paper.
AbstractList We establish estimates for the Lebesgue parameters of the Chebyshev weak thresholding greedy algorithm in the case of general bases in Banach spaces. These generalize and slightly improve earlier results in Dilworth et al. (Rev Mat Complut 28(2):393–409, 2015), and are complemented with examples showing the optimality of the bounds. Our results also clarify certain bounds recently announced in Shao and Ye (J Inequal Appl 2018(1):102, 2018), and answer some questions left open in that paper.
We establish estimates for the Lebesgue parameters of the Chebyshev weak thresholding greedy algorithm in the case of general bases in Banach spaces. These generalize and slightly improve earlier results in Dilworth et al. (Rev Mat Complut 28(2):393–409, 2015), and are complemented with examples showing the optimality of the bounds. Our results also clarify certain bounds recently announced in Shao and Ye (J Inequal Appl 2018(1):102, 2018), and answer some questions left open in that paper.
Author Berná, P. M.
Hernández, E.
Garrigós, G.
Oikhberg, T.
Blasco, Ó.
Author_xml – sequence: 1
  givenname: P. M.
  orcidid: 0000-0001-7685-0886
  surname: Berná
  fullname: Berná, P. M.
  email: pablo.berna@uam.es
  organization: Departamento de Matemáticas, Universidad Autónoma de Madrid
– sequence: 2
  givenname: Ó.
  surname: Blasco
  fullname: Blasco, Ó.
  organization: Departamento de Análisis Matemático, Universidad de Valencia
– sequence: 3
  givenname: G.
  surname: Garrigós
  fullname: Garrigós, G.
  organization: Departamento de Matemáticas, Universidad de Murcia
– sequence: 4
  givenname: E.
  surname: Hernández
  fullname: Hernández, E.
  organization: Departamento de Matemáticas, Universidad Autónoma de Madrid
– sequence: 5
  givenname: T.
  surname: Oikhberg
  fullname: Oikhberg, T.
  organization: Department of Mathematics, University of Illinois Urbana-Champaign
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9HJfiZHLX5BwYueQ7I72U3ZbtokFfrv3bqC4KGXmTm8z8zwzMn54AYk5IbBHQOo7gPLWJlRYIICZCmn4ozMmOCcphyq83FmmaBj4ZdkHsIaoBA5z2fkcYUaQ7vHxA6426veRoshMc4nyw71IXT4lcTOY-hc39ihTVqP2BwS1bfO29htwhW5MKoPeP3bF-Tz-elj-UpX7y9vy4cVrTMmIq3yplEmN6zQhhe6gVQJhAwUaJGXChpMS1bpApRO60Iw0JiXpRFYFFVaViZbkNtp79a73R5DlGu398N4UqZ5DmVVcC7GFJ9StXcheDSytlFF64bole0lA3k0JidjcjQmf4zJI5r-Q7febpQ_nIayCQpjeGjR_311gvoGj9GAdg
CitedBy_id crossref_primary_10_1007_s00041_020_09727_9
crossref_primary_10_1016_j_jat_2022_105831
crossref_primary_10_3390_axioms11050186
crossref_primary_10_1007_s00041_023_09997_z
crossref_primary_10_1007_s00365_021_09531_8
Cites_doi 10.1007/s00365-018-9415-9
10.1007/s00365-013-9209-z
10.4064/sm159-1-4
10.1016/j.jat.2016.11.008
10.1186/s13660-018-1694-y
10.4153/CJM-1974-067-0
10.1007/978-3-642-67844-8
10.4064/sm-31-4-347-362
10.1007/s00365-002-0525-y
10.1007/BF01741579
10.1007/s13163-014-0163-5
10.1007/978-3-642-51633-7
10.4064/sm146-3-2
10.1006/jath.2000.3512
10.1016/j.jmaa.2018.09.065
10.1007/s003659900090
10.1007/s13163-017-0221-x
10.1007/s13163-016-0204-3
10.1017/CBO9780511762291
10.4064/-4-1-197-205
ContentType Journal Article
Copyright Universidad Complutense de Madrid 2019
Universidad Complutense de Madrid 2019.
Copyright_xml – notice: Universidad Complutense de Madrid 2019
– notice: Universidad Complutense de Madrid 2019.
DBID AAYXX
CITATION
DOI 10.1007/s13163-019-00328-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1988-2807
EndPage 722
ExternalDocumentID 10_1007_s13163_019_00328_9
GrantInformation_xml – fundername: Fundación Séneca
  grantid: 19368/PI/14; 19368/PI/14
  funderid: http://dx.doi.org/10.13039/100007801
– fundername: European Union’s Horizon, Marie Sklodowska-Curie grant
  grantid: 777822
– fundername: Ministerio de Economía y Competitividad
  grantid: MTM-2016-76566-P; MTM-2016-76566-P
  funderid: http://dx.doi.org/10.13039/501100003329
– fundername: Ministerio de Economía y Competitividad
  grantid: MTM-2014-53009-P; MTM2017-83262-C2-2-P
  funderid: http://dx.doi.org/10.13039/501100003329
GroupedDBID -EM
06D
0R~
0VY
123
1N0
203
2KG
2LR
2VQ
2WC
30V
4.4
406
408
40D
67Z
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FZZ
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
ITM
IWAJR
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PT4
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-74ddaf4f15bf85bd02a9e030a0b946a0de2617b50ab2c5910be466f9e557267f3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567467200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1139-1138
IngestDate Tue Oct 07 09:48:00 EDT 2025
Sat Nov 29 02:52:23 EST 2025
Tue Nov 18 22:14:27 EST 2025
Fri Feb 21 02:34:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 41A46
46B15
41A65
Quasi-greedy basis
Thresholding greedy algorithm
Semi-greedy bases
Thresholding Chebyshev greedy algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-74ddaf4f15bf85bd02a9e030a0b946a0de2617b50ab2c5910be466f9e557267f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7685-0886
PQID 2440675889
PQPubID 2044457
PageCount 28
ParticipantIDs proquest_journals_2440675889
crossref_citationtrail_10_1007_s13163_019_00328_9
crossref_primary_10_1007_s13163_019_00328_9
springer_journals_10_1007_s13163_019_00328_9
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Revista matemática complutense
PublicationTitleAbbrev Rev Mat Complut
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Ciesielski (CR7) 1968; 31
Konyagin, Temlyakov (CR15) 1999; 5
Temlyakov (CR24) 1998; 8
Berná (CR3) 2019; 417
Temlyakov, Yang, Ye (CR26) 2011; 17
Albiac, Ansorena (CR1) 2017; 30
CR17
Berná, Blasco, Garrigós (CR5) 2017; 30
Konyagin, Temlyakov (CR16) 2002; 28
Dilworth, Kutzarova, Oikhberg (CR10) 2015; 28
Berná, Blasco (CR4) 2017; 215
Garrigós, Hernández, Oikhberg (CR12) 2013; 38
Dilworth, Kalton, Kutzarova, Temlyakov (CR9) 2003; 19
Shao, Ye (CR19) 2018; 2018
Dilworth, Kalton, Kutzarova (CR8) 2003; 159
CR2
Katznelson (CR14) 1976
Ruckle (CR18) 1974; 26
Weisz (CR27) 2001; 146
Singer (CR21) 1981
Berná, Blasco, Garrigós, Hernández, Oikhberg (CR6) 2018; 48
Dovbysh, Nikolskii, Sudakov (CR11) 1986; 34
Temlyakov (CR23) 2011
Temlyakov, Tikhonov (CR25) 2015
Hajek, Montesinos Santalucía, Vanderwerff, Zizler (CR13) 2008
Wojtaszczyk (CR28) 2000; 107
Singer (CR20) 1970
Temlyakov (CR22) 1998; 14
I Singer (328_CR20) 1970
G Garrigós (328_CR12) 2013; 38
SJ Dilworth (328_CR9) 2003; 19
PM Berná (328_CR3) 2019; 417
I Singer (328_CR21) 1981
PM Berná (328_CR4) 2017; 215
C Shao (328_CR19) 2018; 2018
VN Temlyakov (328_CR26) 2011; 17
VN Temlyakov (328_CR22) 1998; 14
PM Berná (328_CR6) 2018; 48
P Hajek (328_CR13) 2008
SV Konyagin (328_CR15) 1999; 5
Z Ciesielski (328_CR7) 1968; 31
F Weisz (328_CR27) 2001; 146
SV Konyagin (328_CR16) 2002; 28
SJ Dilworth (328_CR10) 2015; 28
PM Berná (328_CR5) 2017; 30
328_CR17
F Albiac (328_CR1) 2017; 30
VN Temlyakov (328_CR24) 1998; 8
328_CR2
Y Katznelson (328_CR14) 1976
VN Temlyakov (328_CR23) 2011
P Wojtaszczyk (328_CR28) 2000; 107
WH Ruckle (328_CR18) 1974; 26
LN Dovbysh (328_CR11) 1986; 34
SJ Dilworth (328_CR8) 2003; 159
VN Temlyakov (328_CR25) 2015
References_xml – volume: 28
  start-page: 305
  year: 2002
  end-page: 328
  ident: CR16
  article-title: Greedy approximation with regard to bases and general minimal systems
  publication-title: Serdica Math. J.
– volume: 48
  start-page: 415
  issue: 3
  year: 2018
  end-page: 451
  ident: CR6
  article-title: Embeddings and Lebesgue-type inequalities for the greedy algorithm in Banach spaces
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-018-9415-9
– volume: 38
  start-page: 447
  issue: 3
  year: 2013
  end-page: 470
  ident: CR12
  article-title: Lebesgue-type inequalities for quasi-greedy bases
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-013-9209-z
– ident: CR2
– volume: 159
  start-page: 67
  issue: 1
  year: 2003
  end-page: 101
  ident: CR8
  article-title: On the existence of almost greedy bases in Banach spaces
  publication-title: Stud. Math.
  doi: 10.4064/sm159-1-4
– volume: 215
  start-page: 28
  year: 2017
  end-page: 39
  ident: CR4
  article-title: Characterization of greedy bases in Banach spaces
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2016.11.008
– volume: 5
  start-page: 365
  year: 1999
  end-page: 379
  ident: CR15
  article-title: A remark on greedy approximation in Banach spaces
  publication-title: East. J. Approx.
– volume: 2018
  start-page: 102
  issue: 1
  year: 2018
  ident: CR19
  article-title: Lebesgue constants for Chebyshev thresholding greedy algorithms
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1694-y
– volume: 26
  start-page: 721
  year: 1974
  end-page: 733
  ident: CR18
  article-title: On the classification of biorthogonal sequences
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1974-067-0
– year: 1981
  ident: CR21
  publication-title: Bases in Banach Spaces II
  doi: 10.1007/978-3-642-67844-8
– year: 1976
  ident: CR14
  publication-title: An Introduction to Harmonic Analysis
– volume: 8
  start-page: 249
  year: 1998
  end-page: 265
  ident: CR24
  article-title: The best m-term approximation and greedy algorithms
  publication-title: Adv. Comput.
– volume: 31
  start-page: 339
  year: 1968
  end-page: 346
  ident: CR7
  article-title: A bounded orthonormal system of polygonals
  publication-title: Stud. Math.
  doi: 10.4064/sm-31-4-347-362
– volume: 19
  start-page: 575
  year: 2003
  end-page: 597
  ident: CR9
  article-title: The thresholding greedy algorithm, greedy bases, and duality
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-002-0525-y
– year: 2008
  ident: CR13
  publication-title: Biorthogonal Systems in Banach Spaces
– ident: CR17
– volume: 34
  start-page: 2050
  issue: 6
  year: 1986
  end-page: 2060
  ident: CR11
  article-title: How good can a nonhereditary family be?
  publication-title: J. Sov. Math.
  doi: 10.1007/BF01741579
– volume: 17
  start-page: 127
  year: 2011
  end-page: 138
  ident: CR26
  article-title: Lebesgue-type inequalities for greedy approximation with respect to quasi-greedy bases
  publication-title: East J. Approx.
– volume: 28
  start-page: 393
  issue: 2
  year: 2015
  end-page: 409
  ident: CR10
  article-title: Lebesgue constants for the weak greedy algorithm
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-014-0163-5
– year: 1970
  ident: CR20
  publication-title: Bases in Banach Spaces I
  doi: 10.1007/978-3-642-51633-7
– volume: 146
  start-page: 227
  issue: 3
  year: 2001
  end-page: 243
  ident: CR27
  article-title: On the Fejér means of bounded Ciesielski systems
  publication-title: Stud. Math.
  doi: 10.4064/sm146-3-2
– volume: 107
  start-page: 293
  year: 2000
  end-page: 314
  ident: CR28
  article-title: Greedy algorithm for general biorthogonal systems
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2000.3512
– volume: 417
  start-page: 218
  year: 2019
  end-page: 225
  ident: CR3
  article-title: Equivalence between almost-greedy and semi-greedy bases
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.09.065
– volume: 14
  start-page: 569
  year: 1998
  end-page: 587
  ident: CR22
  article-title: Greedy algorithm and n-term trigonometric approximation
  publication-title: Const. Approx.
  doi: 10.1007/s003659900090
– volume: 30
  start-page: 369
  year: 2017
  end-page: 392
  ident: CR5
  article-title: Lebesgue inequalities for the greedy algorithm in general bases
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-017-0221-x
– volume: 30
  start-page: 13
  issue: 1
  year: 2017
  end-page: 24
  ident: CR1
  article-title: Characterization of 1-almost greedy bases
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-016-0204-3
– year: 2011
  ident: CR23
  publication-title: Greedy Approximation
  doi: 10.1017/CBO9780511762291
– year: 2015
  ident: CR25
  article-title: Sparse approximation with bases
  publication-title: Advanced Courses in Mathematics
– volume: 30
  start-page: 13
  issue: 1
  year: 2017
  ident: 328_CR1
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-016-0204-3
– volume: 146
  start-page: 227
  issue: 3
  year: 2001
  ident: 328_CR27
  publication-title: Stud. Math.
  doi: 10.4064/sm146-3-2
– ident: 328_CR17
  doi: 10.4064/-4-1-197-205
– volume: 28
  start-page: 393
  issue: 2
  year: 2015
  ident: 328_CR10
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-014-0163-5
– volume: 215
  start-page: 28
  year: 2017
  ident: 328_CR4
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2016.11.008
– volume-title: Greedy Approximation
  year: 2011
  ident: 328_CR23
  doi: 10.1017/CBO9780511762291
– volume-title: Biorthogonal Systems in Banach Spaces
  year: 2008
  ident: 328_CR13
– volume-title: An Introduction to Harmonic Analysis
  year: 1976
  ident: 328_CR14
– volume: 31
  start-page: 339
  year: 1968
  ident: 328_CR7
  publication-title: Stud. Math.
  doi: 10.4064/sm-31-4-347-362
– volume: 28
  start-page: 305
  year: 2002
  ident: 328_CR16
  publication-title: Serdica Math. J.
– volume: 26
  start-page: 721
  year: 1974
  ident: 328_CR18
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1974-067-0
– volume: 14
  start-page: 569
  year: 1998
  ident: 328_CR22
  publication-title: Const. Approx.
  doi: 10.1007/s003659900090
– volume: 38
  start-page: 447
  issue: 3
  year: 2013
  ident: 328_CR12
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-013-9209-z
– volume: 34
  start-page: 2050
  issue: 6
  year: 1986
  ident: 328_CR11
  publication-title: J. Sov. Math.
  doi: 10.1007/BF01741579
– volume-title: Bases in Banach Spaces II
  year: 1981
  ident: 328_CR21
  doi: 10.1007/978-3-642-67844-8
– volume: 30
  start-page: 369
  year: 2017
  ident: 328_CR5
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-017-0221-x
– volume: 2018
  start-page: 102
  issue: 1
  year: 2018
  ident: 328_CR19
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1694-y
– volume-title: Advanced Courses in Mathematics
  year: 2015
  ident: 328_CR25
– volume: 417
  start-page: 218
  year: 2019
  ident: 328_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.09.065
– volume: 19
  start-page: 575
  year: 2003
  ident: 328_CR9
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-002-0525-y
– volume-title: Bases in Banach Spaces I
  year: 1970
  ident: 328_CR20
  doi: 10.1007/978-3-642-51633-7
– volume: 48
  start-page: 415
  issue: 3
  year: 2018
  ident: 328_CR6
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-018-9415-9
– volume: 8
  start-page: 249
  year: 1998
  ident: 328_CR24
  publication-title: Adv. Comput.
– volume: 17
  start-page: 127
  year: 2011
  ident: 328_CR26
  publication-title: East J. Approx.
– volume: 159
  start-page: 67
  issue: 1
  year: 2003
  ident: 328_CR8
  publication-title: Stud. Math.
  doi: 10.4064/sm159-1-4
– volume: 107
  start-page: 293
  year: 2000
  ident: 328_CR28
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2000.3512
– ident: 328_CR2
– volume: 5
  start-page: 365
  year: 1999
  ident: 328_CR15
  publication-title: East. J. Approx.
SSID ssj0059484
Score 2.2363536
Snippet We establish estimates for the Lebesgue parameters of the Chebyshev weak thresholding greedy algorithm in the case of general bases in Banach spaces. These...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 695
SubjectTerms Algebra
Analysis
Applications of Mathematics
Banach spaces
Chebyshev approximation
Geometry
Greedy algorithms
Mathematics
Mathematics and Statistics
Parameter estimation
Topology
Title Lebesgue inequalities for Chebyshev thresholding greedy algorithms
URI https://link.springer.com/article/10.1007/s13163-019-00328-9
https://www.proquest.com/docview/2440675889
Volume 33
WOSCitedRecordID wos000567467200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1988-2807
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059484
  issn: 1139-1138
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWMrDTuwRKiqGUiFe6hbZsVMqlRY1aX8_ZzdpBAIkWLLYOUV3Pt93Od9nhM5ZpE3EKSNG-CmhgcrApYwgIUttQFSxr12jcDfu9Xi_L-7LprC8Ou1elSTdTl03u4W-rTnaphtLAkfEKlqDcMetOz48vlT7r-UfcbVkwDYEHrxslflexudwVGPML2VRF2062__7zh20VaJLfLVYDrtoxYz30Obdkpo130fXXVBoPpgZDPhy0VIJyTIG7Irbr8b-rTZzXICF87IwhSEjh60Yy9FgMh0Wr2_5AXru3Dy1b0l5kQJJwcMKElOtZUYzn6mMM6W9QAoD3i09JWgkPW0sL7tinlRBygBAKEOjKBOGsTiI4iw8RI3xZGyOEJYyhAxD01CxkAqteap840nDNQehcdhEfqXPJC1Zxu1lF6Ok5ke2-klAP4nTTyKa6GL5zvuCY-PX2a3KTEnpb3kCIMWlPhyGLyuz1MM_Szv-2_QTtBHYhNsdMmuhRjGdmVO0ns6LYT49c-vwA3-T1i0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3E6NQ--aaEfSds86nBM7IbolL2FpEm3wdxk7fb3e-naDUUFfelL0qNccne_6-V-QeiS-kr7IaGWZk5sEVcmYFKaWR6NTUCUgaPyRuEoaLfDbpc9Fk1haXnavSxJ5p562ezmOabmaJpuDAmcxVbRGoGIZQ7yPT2_lv7X8I_ktWTANhY8wqJV5nsZn8PREmN-KYvm0aax87_v3EXbBbrEN_PtsIdW9GgfbbUW1KzpAbqNQKFpb6ox4Mt5SyUkyxiwK673tflbrWc4gxVOi8IUhowcXDEWw954Msj6b-khemncdepNq7hIwYrBwjIrIEqJhCQOlUlIpbJdwTRYt7AlI76wlTa87JLaQroxBQAhNfH9hGlKA9cPEu8IVUbjkT5GWAgPMgxFPEk9wpQKY-loW-hQhSA08KrIKfXJ44Jl3Fx2MeRLfmSjHw764bl-OKuiq8U773OOjV9n18pl4oW9pRxASp76hDB8XS7LcvhnaSd_m36BNpqdVsSj-_bDKdp0TfKdHziroUo2meoztB7PskE6Oc_35AeS4tkR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgIAQHdkShQA7cIGoWO4mPUKhAlKoSi3qz7NhpK5W2atJ-P-MsDSBAQlxysWNFMx77TcbvGaFz4knlBZiYitqhiR0RQUgparok1Bui8G2ZEoVbfrsddLu084HFn552L0qSGadBqzSNkvpERvWS-Obauv6oCThaEM6ky2gF60uDdL7-9FqsxVqLJK0rA84x4RHktJnvx_i8NZV480uJNN15mlv__-ZttJmjTuMqmyY7aEmNdtHG40KyNd5D1y0wdNybKQNwZ0a1hCTaAExrNPpK_8VWcyMBz8d5wcqATB2WaIMPe-PpIOm_xfvopXn73Lgz8wsWzBAiLzF9LCWPcGQTEQVESMvhVEHUc0tQ7HFLKq3XLojFhRMSABZCYc-LqCLEdzw_cg9QZTQeqUNkcO5C5iGxK4iLqZRBKGxlcRXIAAb13SqyC9uyMFcf15dgDFmpm6ztw8A-LLUPo1V0sXhnkmlv_Nq7VriM5XEYMwAvaUoUQPNl4aKy-efRjv7W_QytdW6arHXffjhG647OydNzaDVUSaYzdYJWw3kyiKen6fR8B1Hy4fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lebesgue+inequalities+for+Chebyshev+thresholding+greedy+algorithms&rft.jtitle=Revista+matem%C3%A1tica+complutense&rft.au=Bern%C3%A1%2C+P.+M.&rft.au=Blasco%2C+%C3%93.&rft.au=Garrig%C3%B3s%2C+G.&rft.au=Hern%C3%A1ndez%2C+E.&rft.date=2020-09-01&rft.pub=Springer+International+Publishing&rft.issn=1139-1138&rft.eissn=1988-2807&rft.volume=33&rft.issue=3&rft.spage=695&rft.epage=722&rft_id=info:doi/10.1007%2Fs13163-019-00328-9&rft.externalDocID=10_1007_s13163_019_00328_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1139-1138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1139-1138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1139-1138&client=summon