Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning

Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic ap...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Service oriented computing and applications Ročník 18; číslo 2; s. 163 - 182
Hlavní autori: Singh, Jagandeep, Sandhu, Jasminder Kaur, Kumar, Yogesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.06.2024
Springer Nature B.V
Predmet:
ISSN:1863-2386, 1863-2394
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic approaches. Initially, the data is collected in the form of diverse classes, which include Id, gender, date of birth, etc. The data has been preprocessed, normalized, and graphically represented to improve its quality and detect any errors. Later, machine learning models, such as decision tree, extra tree classifier, extreme gradient boosting classifier, light gradient boosting machine classifier, random forest, and artificial neural network, are initially trained without optimizing hyperparameters and then fine-tuned by integrating various hyperparameter optimizers such as grid search CV, random search, hyperband, and genetic search. During experimentation, it is found that optimizing the models using random search optimizer computed the highest accuracy of 100% as compared to the rest of the hyperparameter optimizers. In the context of ‘Service Oriented Computing and Applications,’ our multi-disease prediction system offers valuable innovation. It aligns with the goal of enhancing healthcare services, patient outcomes, and healthcare efficiency. Our pioneering integration of metaheuristic algorithms and machine learning introduces intelligent healthcare solutions, with the study’s focus on hyperparameter optimization and achieving 100% accuracy demonstrates practical significance in SOC and its applications.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1863-2386
1863-2394
DOI:10.1007/s11761-023-00382-8