Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning
Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic ap...
Uložené v:
| Vydané v: | Service oriented computing and applications Ročník 18; číslo 2; s. 163 - 182 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.06.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1863-2386, 1863-2394 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic approaches. Initially, the data is collected in the form of diverse classes, which include Id, gender, date of birth, etc. The data has been preprocessed, normalized, and graphically represented to improve its quality and detect any errors. Later, machine learning models, such as decision tree, extra tree classifier, extreme gradient boosting classifier, light gradient boosting machine classifier, random forest, and artificial neural network, are initially trained without optimizing hyperparameters and then fine-tuned by integrating various hyperparameter optimizers such as grid search CV, random search, hyperband, and genetic search. During experimentation, it is found that optimizing the models using random search optimizer computed the highest accuracy of 100% as compared to the rest of the hyperparameter optimizers. In the context of ‘Service Oriented Computing and Applications,’ our multi-disease prediction system offers valuable innovation. It aligns with the goal of enhancing healthcare services, patient outcomes, and healthcare efficiency. Our pioneering integration of metaheuristic algorithms and machine learning introduces intelligent healthcare solutions, with the study’s focus on hyperparameter optimization and achieving 100% accuracy demonstrates practical significance in SOC and its applications. |
|---|---|
| AbstractList | Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic approaches. Initially, the data is collected in the form of diverse classes, which include Id, gender, date of birth, etc. The data has been preprocessed, normalized, and graphically represented to improve its quality and detect any errors. Later, machine learning models, such as decision tree, extra tree classifier, extreme gradient boosting classifier, light gradient boosting machine classifier, random forest, and artificial neural network, are initially trained without optimizing hyperparameters and then fine-tuned by integrating various hyperparameter optimizers such as grid search CV, random search, hyperband, and genetic search. During experimentation, it is found that optimizing the models using random search optimizer computed the highest accuracy of 100% as compared to the rest of the hyperparameter optimizers. In the context of ‘Service Oriented Computing and Applications,’ our multi-disease prediction system offers valuable innovation. It aligns with the goal of enhancing healthcare services, patient outcomes, and healthcare efficiency. Our pioneering integration of metaheuristic algorithms and machine learning introduces intelligent healthcare solutions, with the study’s focus on hyperparameter optimization and achieving 100% accuracy demonstrates practical significance in SOC and its applications. |
| Author | Singh, Jagandeep Kumar, Yogesh Sandhu, Jasminder Kaur |
| Author_xml | – sequence: 1 givenname: Jagandeep surname: Singh fullname: Singh, Jagandeep organization: Department of CSE, Chandigarh University – sequence: 2 givenname: Jasminder Kaur surname: Sandhu fullname: Sandhu, Jasminder Kaur organization: Department of CSE, Chandigarh University – sequence: 3 givenname: Yogesh orcidid: 0000-0002-2879-0441 surname: Kumar fullname: Kumar, Yogesh email: yogesh.arora10744@gmail.com organization: Department of CSE, School of Technology, Pandit Deendayal Energy University |
| BookMark | eNp9kE1PAyEQhompiV_9A55IPKN8tCx7NMavpMaLnskUZluaLrsCPdRf79oaTTyUCyTzPszMc0ZGsYtIyKXg14Lz6iYLUWnBuFSMc2UkM0fkVBitmFT1ZPT7NvqEjHNe8eEoWRldnZL2BQsscZNCLsGxOWT0dLntMfWQoMWCiXZ9CW34hBK6SJsu0XazLoH5kHGIUz-E3K4G0VMfYBG7HDINkbbgliEiXSOkGOLighw3sM44_rnPyfvD_dvdE5u9Pj7f3c6YU6IurJo4hZX2XGKjnNcVOiknft7MwSCYRk-NqxUgN3MF4BqNw6Iw8bUwkjvh1Tm52v_bp-5jg7nYVbdJcWhplZzq2tTTqRlScp9yqcs5YWP7FFpIWyu4_TZr92btYNbuzNpvyPyDXCg7NSVBWB9G1R7NQ5-4wPQ31QHqC4BhkoY |
| CitedBy_id | crossref_primary_10_1007_s44290_025_00301_0 crossref_primary_10_1007_s10462_024_10975_0 crossref_primary_10_1016_j_mex_2024_102995 |
| Cites_doi | 10.1109/ACCESS.2022.3207287 10.3390/info11060332 10.1109/ICCMC53470.2022.9753909 10.1002/ima.22495 10.4018/978-1-4666-5888-2.ch626 10.1007/s11831-022-09853-1 10.1007/s42979-021-00815-1 10.1007/s12559-017-9542-9 10.1088/1742-6596/1142/1/012012 10.1007/s00521-020-04984-7 10.3390/computers11090136 10.1016/j.eswa.2018.03.024 10.1016/j.asoc.2018.11.001 10.1016/j.procs.2018.10.307 10.3109/0954898X.2011.638355 10.1007/s10489-014-0645-7 10.1186/s12882-021-02474-z 10.1007/s10489-016-0767-1 10.1109/ICIPTM54933.2022.9754010 10.1016/j.ejor.2022.03.054 10.1016/j.compbiomed.2022.105858 10.1007/s00521-017-2952-5 10.1007/s11831-021-09648-w 10.1109/ACCESS.2022.3147821 10.1038/s41598-022-23678-9 10.1007/s11831-022-09818-4 10.1007/s13042-018-00913-2 10.1186/s13040-018-0164-x 10.1016/j.cie.2021.107739 10.1016/j.bspc.2020.102257 10.1109/ICCIC.2018.8782340 10.1007/s11831-022-09807-7 10.3390/e23010018 10.1007/s00366-011-0241-y 10.1007/s42979-021-00592-x 10.1109/ACCESS.2020.3029728 10.1109/AEECA55500.2022.9918857 10.1002/ima.22650 10.1007/s11831-022-09737-4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11761-023-00382-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1863-2394 |
| EndPage | 182 |
| ExternalDocumentID | 10_1007_s11761_023_00382_8 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-74c3e76d02ef3cd67ec224dbfba8ea8f658c93ae08b3aacf6e239a4d91820c1d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146962100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-2386 |
| IngestDate | Tue Oct 07 06:09:58 EDT 2025 Sat Nov 29 01:50:26 EST 2025 Tue Nov 18 22:08:19 EST 2025 Fri Feb 21 02:39:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Medical data Artificial neural network Hyperparameters Metaheuristics Machine learning Random search |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-74c3e76d02ef3cd67ec224dbfba8ea8f658c93ae08b3aacf6e239a4d91820c1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2879-0441 |
| PQID | 3256989558 |
| PQPubID | 2044172 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3256989558 crossref_primary_10_1007_s11761_023_00382_8 crossref_citationtrail_10_1007_s11761_023_00382_8 springer_journals_10_1007_s11761_023_00382_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Service oriented computing and applications |
| PublicationTitleAbbrev | SOCA |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | BabuGSRaoSTRaoRRAutomated assessment for Alzheimer's disease diagnosis from MRI images: meta-heuristic assisted deep learning modelInt J Imaging Syst Technol202232254456310.1002/ima.22650 KumarYGuptaSDeep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular Edema, DRUSEN and healthy eyes: an experimental reviewArch Computat Methods Eng20233052154110.1007/s11831-022-09807-7 EshtayMFarisHObeidNImproving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problemsExpert Syst Appl201810413415210.1016/j.eswa.2018.03.024 AmpomahEKQinZNyameGEvaluation of tree-based ensemble machine learning models in predicting stock price direction of movementInformation202011633210.3390/info11060332 Gupta A, Koul A, Kumar Y (2022) Pancreatic cancer detection using machine and deep learning techniques. In: 2022 2nd international conference on innovative practices in technology and management (ICIPTM). IEEE, vol 2, pp 151–155 AmirsadriSMousaviradSJEbrahimpour-KomlehHA Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network trainingNeural Comput Appl2018303707372010.1007/s00521-017-2952-5 GandomiAHYangXSAlaviAHCuckoo search algorithm: a metaheuristic approach to solve structural optimization problemsEng Comput201329173510.1007/s00366-011-0241-y OyeladeONEzugwuAESMohamedTIAbualigahLEbola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithmIEEE Access202210161501617710.1109/ACCESS.2022.3147821 KumarYGuptaSSinglaRA systematic review of artificial intelligence techniques in cancer prediction and diagnosisArch Computat Methods Eng2022292043207010.1007/s11831-021-09648-w SinghPKottathRAn ensemble approach to meta-heuristic algorithms: comparative analysis and its applicationsComput Ind Eng202116210.1016/j.cie.2021.107739 Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Comput Methods Eng 1–34 Micheli-TzanakouEArtificial neural networks: an overviewNetw Comput Neural Syst2011221–420823010.3109/0954898X.2011.638355 ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728 MienyeIDSunYA survey of ensemble learning: concepts, algorithms, applications, and prospectsIEEE Access202210991299914910.1109/ACCESS.2022.3207287 Nadimi-ShahrakiMHZamaniHMirjaliliSEnhanced whale optimization algorithm for medical feature selection: a COVID-19 case studyComput Biol Med202214810.1016/j.compbiomed.2022.105858 TrognonACherifiYIHabibiIDemangeLPrudentCUsing machine-learning strategies to solve psychometric problemsSci Rep20221211892210.1038/s41598-022-23678-9 Alzubi J, Nayyar A, Kumar A (2018) Machine learning from theory to algorithms: an overview. In: Journal of physics: conference series. IOP Publishing, vol 1142, p 012012 Lu Y, Ye T, Zheng J (2022) Decision tree algorithm in machine learning. In: 2022 IEEE international conference on advances in electrical engineering and computer applications (AEECA). IEEE, pp 1014–1017 ChitradeviDPrabhaSPrabhuADDiagnosis of Alzheimer disease in MR brain images using optimization techniquesNeural Comput Appl20213322323710.1007/s00521-020-04984-7 CanayazMMH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray imagesBiomed Signal Process Control20216410.1016/j.bspc.2020.102257 Brownlee J (2016) Supervised and unsupervised machine learning algorithms. Mach Learn Mastery 16(03) KumarYKoulASisodiaPSShafiJKavitaVGheisariMDavoodiMBHeart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical thingsWirel Commun Mob Comput20212021116 BhardwajPBhandariGKumarYAn investigational approach for the prediction of gastric cancer using artificial intelligence techniques: a systematic reviewArch Computat Methods Eng2022294379440010.1007/s11831-022-09737-4 Kumar Y, Kaul S, Sood K (2019) Effective use of the machine learning approaches on different clouds. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India SarkerIHMachine learning: algorithms, real-world applications and research directionsSN Comput Sci20212316010.1007/s42979-021-00592-x FarisHAljarahIMirjaliliSTraining feedforward neural networks using multi-verse optimizer for binary classification problemsAppl Intell20164532233210.1007/s10489-016-0767-1 AlfianGSyafrudinMFahrurroziIFitriyaniNLAtmajiFTDWidodoTRheeJPredicting breast cancer from risk factors using SVM and extra-trees-based feature selection methodComputers202211913610.3390/computers11090136 RoostaeeSGhaffaryHRDiagnosis of heart disease based on meta heuristic algorithms and clustering methodsJ Electr Comput Eng Innov (JECEI)201642105110 Kumar GD, Deepa V, Vineela N, Emmanuel G (2022) Detection of Parkinson’s disease using LightGBM Classifier. In: 2022 6th International conference on computing methodologies and communication (ICCMC). IEEE, pp 1292–1297 SarkerIHDeep learning: a comprehensive overview on techniques, taxonomy, applications and research directionsSN Comput Sci20212642010.1007/s42979-021-00815-1 Wang J, Xu J, Wang X (2018) Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning. https://arxiv.org/abs/1801.01596 FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019102901292010.1007/s13042-018-00913-2 Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2) TaoZHuilingLWenwenWXiaYGA-SVM based feature selection and parameter optimization in hospitalization expense modelingAppl Soft Comput20197532333210.1016/j.asoc.2018.11.001 IlyasHAliSPonumMHasanOMahmoodMTIftikharMMalikMHChronic kidney disease diagnosis using decision tree algorithmsBMC Nephrol202122111110.1186/s12882-021-02474-z Lauri J, Dutta S, Grassia M, Ajwani D (2020) Learning fine-grained search space pruning and heuristics for combinatorial optimization. https://arxiv.org/abs/2001.01230 Shankar K, Manickam P, Devika G, Ilayaraja M (2018) Optimal feature selection for chronic kidney disease classification using deep learning classifier. In: 2018 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE, pp 1–5 RashidTAFattahPAwlaDKUsing accuracy measure for improving the training of LSTM with metaheuristic algorithmsProcedia Comput Sci201814032433310.1016/j.procs.2018.10.307 Karimi-MamaghanMMohammadiMPasdeloupBMeyerPLearning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problemEur J Oper Res2023304312961330448806410.1016/j.ejor.2022.03.054 MirjaliliSHow effective is the Grey Wolf optimizer in training multi-layer perceptronsAppl Intell20154315016110.1007/s10489-014-0645-7 Gallo C (2015) Artificial neural networks tutorial. In: Encyclopedia of information science and technology, Third Edition. IGI Global, pp 6369–6378 HuARazmjooyNBrain tumor diagnosis based on metaheuristics and deep learningInt J Imaging Syst Technol202131265766910.1002/ima.22495 Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search, genetic algorithm: a big comparison for NAS. https://arxiv.org/abs/1912.06059 SipperMFuWAhujaKMooreJHInvestigating the parameter space of evolutionary algorithmsBioData Min20181111410.1186/s13040-018-0164-x KaurSKumarYKoulAA systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challengesArch Computat Methods Eng202210.1007/s11831-022-09853-1 XuYLiuXCaoXHuangCLiuEQianSZhangJArtificial intelligence: a powerful paradigm for scientific researchInnov202124 ChaudharyAKolheSKamalRAn improved random forest classifier for multi-class classificationInf Process Agric201634215222 AljarahIAl-ZoubiAMFarisHHassonahMAMirjaliliSSaadehHSimultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithmCogn Comput20181047849510.1007/s12559-017-9542-9 Karimnahas (2018) Medical data. Kaggle. https://www.kaggle.com/datasets/karimnahas/medicaldata LinardatosPPapastefanopoulosVKotsiantisSExplainable ai: a review of machine learning interpretability methodsEntropy20202311810.3390/e23010018 382_CR9 ON Oyelade (382_CR29) 2022; 10 382_CR10 H Faris (382_CR17) 2019; 10 TA Rashid (382_CR27) 2018; 140 382_CR12 Z Tao (382_CR16) 2019; 75 382_CR1 M Eshtay (382_CR21) 2018; 104 G Alfian (382_CR36) 2022; 11 E Micheli-Tzanakou (382_CR40) 2011; 22 M Canayaz (382_CR24) 2021; 64 382_CR47 M Sipper (382_CR46) 2018; 11 S Kaur (382_CR48) 2022 ZM Elgamal (382_CR28) 2020; 8 A Chaudhary (382_CR31) 2016; 3 382_CR43 382_CR45 MH Nadimi-Shahraki (382_CR26) 2022; 148 P Bhardwaj (382_CR50) 2022; 29 A Trognon (382_CR39) 2022; 12 GS Babu (382_CR13) 2022; 32 ID Mienye (382_CR37) 2022; 10 S Amirsadri (382_CR19) 2018; 30 P Linardatos (382_CR2) 2020; 23 AH Gandomi (382_CR3) 2013; 29 P Singh (382_CR4) 2021; 162 Y Kumar (382_CR7) 2021; 2021 382_CR38 I Aljarah (382_CR15) 2018; 10 382_CR32 382_CR34 IH Sarker (382_CR11) 2021; 2 IH Sarker (382_CR8) 2021; 2 M Karimi-Mamaghan (382_CR6) 2023; 304 Y Kumar (382_CR44) 2023; 30 382_CR42 Y Xu (382_CR5) 2021; 2 382_CR41 S Roostaee (382_CR25) 2016; 4 EK Ampomah (382_CR35) 2020; 11 A Hu (382_CR20) 2021; 31 382_CR22 D Chitradevi (382_CR23) 2021; 33 H Ilyas (382_CR33) 2021; 22 H Faris (382_CR14) 2016; 45 S Mirjalili (382_CR18) 2015; 43 Y Kumar (382_CR49) 2022; 29 382_CR30 |
| References_xml | – reference: Brownlee J (2016) Supervised and unsupervised machine learning algorithms. Mach Learn Mastery 16(03) – reference: CanayazMMH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray imagesBiomed Signal Process Control20216410.1016/j.bspc.2020.102257 – reference: RashidTAFattahPAwlaDKUsing accuracy measure for improving the training of LSTM with metaheuristic algorithmsProcedia Comput Sci201814032433310.1016/j.procs.2018.10.307 – reference: MirjaliliSHow effective is the Grey Wolf optimizer in training multi-layer perceptronsAppl Intell20154315016110.1007/s10489-014-0645-7 – reference: RoostaeeSGhaffaryHRDiagnosis of heart disease based on meta heuristic algorithms and clustering methodsJ Electr Comput Eng Innov (JECEI)201642105110 – reference: Alzubi J, Nayyar A, Kumar A (2018) Machine learning from theory to algorithms: an overview. In: Journal of physics: conference series. IOP Publishing, vol 1142, p 012012 – reference: ChitradeviDPrabhaSPrabhuADDiagnosis of Alzheimer disease in MR brain images using optimization techniquesNeural Comput Appl20213322323710.1007/s00521-020-04984-7 – reference: KumarYGuptaSDeep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular Edema, DRUSEN and healthy eyes: an experimental reviewArch Computat Methods Eng20233052154110.1007/s11831-022-09807-7 – reference: Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search, genetic algorithm: a big comparison for NAS. https://arxiv.org/abs/1912.06059 – reference: KaurSKumarYKoulAA systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challengesArch Computat Methods Eng202210.1007/s11831-022-09853-1 – reference: FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019102901292010.1007/s13042-018-00913-2 – reference: EshtayMFarisHObeidNImproving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problemsExpert Syst Appl201810413415210.1016/j.eswa.2018.03.024 – reference: HuARazmjooyNBrain tumor diagnosis based on metaheuristics and deep learningInt J Imaging Syst Technol202131265766910.1002/ima.22495 – reference: Kumar Y, Kaul S, Sood K (2019) Effective use of the machine learning approaches on different clouds. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India – reference: ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728 – reference: BabuGSRaoSTRaoRRAutomated assessment for Alzheimer's disease diagnosis from MRI images: meta-heuristic assisted deep learning modelInt J Imaging Syst Technol202232254456310.1002/ima.22650 – reference: FarisHAljarahIMirjaliliSTraining feedforward neural networks using multi-verse optimizer for binary classification problemsAppl Intell20164532233210.1007/s10489-016-0767-1 – reference: SarkerIHDeep learning: a comprehensive overview on techniques, taxonomy, applications and research directionsSN Comput Sci20212642010.1007/s42979-021-00815-1 – reference: IlyasHAliSPonumMHasanOMahmoodMTIftikharMMalikMHChronic kidney disease diagnosis using decision tree algorithmsBMC Nephrol202122111110.1186/s12882-021-02474-z – reference: Gupta A, Koul A, Kumar Y (2022) Pancreatic cancer detection using machine and deep learning techniques. In: 2022 2nd international conference on innovative practices in technology and management (ICIPTM). IEEE, vol 2, pp 151–155 – reference: MienyeIDSunYA survey of ensemble learning: concepts, algorithms, applications, and prospectsIEEE Access202210991299914910.1109/ACCESS.2022.3207287 – reference: XuYLiuXCaoXHuangCLiuEQianSZhangJArtificial intelligence: a powerful paradigm for scientific researchInnov202124 – reference: KumarYKoulASisodiaPSShafiJKavitaVGheisariMDavoodiMBHeart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical thingsWirel Commun Mob Comput20212021116 – reference: OyeladeONEzugwuAESMohamedTIAbualigahLEbola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithmIEEE Access202210161501617710.1109/ACCESS.2022.3147821 – reference: KumarYGuptaSSinglaRA systematic review of artificial intelligence techniques in cancer prediction and diagnosisArch Computat Methods Eng2022292043207010.1007/s11831-021-09648-w – reference: Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Comput Methods Eng 1–34 – reference: SipperMFuWAhujaKMooreJHInvestigating the parameter space of evolutionary algorithmsBioData Min20181111410.1186/s13040-018-0164-x – reference: Nadimi-ShahrakiMHZamaniHMirjaliliSEnhanced whale optimization algorithm for medical feature selection: a COVID-19 case studyComput Biol Med202214810.1016/j.compbiomed.2022.105858 – reference: Karimnahas (2018) Medical data. Kaggle. https://www.kaggle.com/datasets/karimnahas/medicaldata – reference: AmirsadriSMousaviradSJEbrahimpour-KomlehHA Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network trainingNeural Comput Appl2018303707372010.1007/s00521-017-2952-5 – reference: Lu Y, Ye T, Zheng J (2022) Decision tree algorithm in machine learning. In: 2022 IEEE international conference on advances in electrical engineering and computer applications (AEECA). IEEE, pp 1014–1017 – reference: ChaudharyAKolheSKamalRAn improved random forest classifier for multi-class classificationInf Process Agric201634215222 – reference: Wang J, Xu J, Wang X (2018) Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning. https://arxiv.org/abs/1801.01596 – reference: AmpomahEKQinZNyameGEvaluation of tree-based ensemble machine learning models in predicting stock price direction of movementInformation202011633210.3390/info11060332 – reference: TrognonACherifiYIHabibiIDemangeLPrudentCUsing machine-learning strategies to solve psychometric problemsSci Rep20221211892210.1038/s41598-022-23678-9 – reference: Lauri J, Dutta S, Grassia M, Ajwani D (2020) Learning fine-grained search space pruning and heuristics for combinatorial optimization. https://arxiv.org/abs/2001.01230 – reference: AlfianGSyafrudinMFahrurroziIFitriyaniNLAtmajiFTDWidodoTRheeJPredicting breast cancer from risk factors using SVM and extra-trees-based feature selection methodComputers202211913610.3390/computers11090136 – reference: TaoZHuilingLWenwenWXiaYGA-SVM based feature selection and parameter optimization in hospitalization expense modelingAppl Soft Comput20197532333210.1016/j.asoc.2018.11.001 – reference: Shankar K, Manickam P, Devika G, Ilayaraja M (2018) Optimal feature selection for chronic kidney disease classification using deep learning classifier. In: 2018 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE, pp 1–5 – reference: SarkerIHMachine learning: algorithms, real-world applications and research directionsSN Comput Sci20212316010.1007/s42979-021-00592-x – reference: Karimi-MamaghanMMohammadiMPasdeloupBMeyerPLearning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problemEur J Oper Res2023304312961330448806410.1016/j.ejor.2022.03.054 – reference: GandomiAHYangXSAlaviAHCuckoo search algorithm: a metaheuristic approach to solve structural optimization problemsEng Comput201329173510.1007/s00366-011-0241-y – reference: LinardatosPPapastefanopoulosVKotsiantisSExplainable ai: a review of machine learning interpretability methodsEntropy20202311810.3390/e23010018 – reference: Micheli-TzanakouEArtificial neural networks: an overviewNetw Comput Neural Syst2011221–420823010.3109/0954898X.2011.638355 – reference: Gallo C (2015) Artificial neural networks tutorial. In: Encyclopedia of information science and technology, Third Edition. IGI Global, pp 6369–6378 – reference: BhardwajPBhandariGKumarYAn investigational approach for the prediction of gastric cancer using artificial intelligence techniques: a systematic reviewArch Computat Methods Eng2022294379440010.1007/s11831-022-09737-4 – reference: Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2) – reference: AljarahIAl-ZoubiAMFarisHHassonahMAMirjaliliSSaadehHSimultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithmCogn Comput20181047849510.1007/s12559-017-9542-9 – reference: Kumar GD, Deepa V, Vineela N, Emmanuel G (2022) Detection of Parkinson’s disease using LightGBM Classifier. In: 2022 6th International conference on computing methodologies and communication (ICCMC). IEEE, pp 1292–1297 – reference: SinghPKottathRAn ensemble approach to meta-heuristic algorithms: comparative analysis and its applicationsComput Ind Eng202116210.1016/j.cie.2021.107739 – volume: 10 start-page: 99129 year: 2022 ident: 382_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3207287 – volume: 11 start-page: 332 issue: 6 year: 2020 ident: 382_CR35 publication-title: Information doi: 10.3390/info11060332 – ident: 382_CR38 doi: 10.1109/ICCMC53470.2022.9753909 – volume: 31 start-page: 657 issue: 2 year: 2021 ident: 382_CR20 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22495 – ident: 382_CR41 doi: 10.4018/978-1-4666-5888-2.ch626 – year: 2022 ident: 382_CR48 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-022-09853-1 – volume: 2 start-page: 420 issue: 6 year: 2021 ident: 382_CR11 publication-title: SN Comput Sci doi: 10.1007/s42979-021-00815-1 – volume: 10 start-page: 478 year: 2018 ident: 382_CR15 publication-title: Cogn Comput doi: 10.1007/s12559-017-9542-9 – ident: 382_CR32 doi: 10.1088/1742-6596/1142/1/012012 – ident: 382_CR43 – volume: 33 start-page: 223 year: 2021 ident: 382_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04984-7 – volume: 3 start-page: 215 issue: 4 year: 2016 ident: 382_CR31 publication-title: Inf Process Agric – volume: 11 start-page: 136 issue: 9 year: 2022 ident: 382_CR36 publication-title: Computers doi: 10.3390/computers11090136 – volume: 104 start-page: 134 year: 2018 ident: 382_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.03.024 – ident: 382_CR30 – volume: 75 start-page: 323 year: 2019 ident: 382_CR16 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.001 – volume: 140 start-page: 324 year: 2018 ident: 382_CR27 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.10.307 – volume: 22 start-page: 208 issue: 1–4 year: 2011 ident: 382_CR40 publication-title: Netw Comput Neural Syst doi: 10.3109/0954898X.2011.638355 – volume: 43 start-page: 150 year: 2015 ident: 382_CR18 publication-title: Appl Intell doi: 10.1007/s10489-014-0645-7 – volume: 22 start-page: 1 issue: 1 year: 2021 ident: 382_CR33 publication-title: BMC Nephrol doi: 10.1186/s12882-021-02474-z – volume: 2 issue: 4 year: 2021 ident: 382_CR5 publication-title: Innov – ident: 382_CR9 – volume: 45 start-page: 322 year: 2016 ident: 382_CR14 publication-title: Appl Intell doi: 10.1007/s10489-016-0767-1 – ident: 382_CR10 doi: 10.1109/ICIPTM54933.2022.9754010 – volume: 304 start-page: 1296 issue: 3 year: 2023 ident: 382_CR6 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2022.03.054 – volume: 148 year: 2022 ident: 382_CR26 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105858 – volume: 30 start-page: 3707 year: 2018 ident: 382_CR19 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2952-5 – volume: 4 start-page: 105 issue: 2 year: 2016 ident: 382_CR25 publication-title: J Electr Comput Eng Innov (JECEI) – volume: 29 start-page: 2043 year: 2022 ident: 382_CR49 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-021-09648-w – volume: 10 start-page: 16150 year: 2022 ident: 382_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147821 – volume: 12 start-page: 18922 issue: 1 year: 2022 ident: 382_CR39 publication-title: Sci Rep doi: 10.1038/s41598-022-23678-9 – ident: 382_CR45 – ident: 382_CR47 doi: 10.1007/s11831-022-09818-4 – ident: 382_CR12 – volume: 10 start-page: 2901 year: 2019 ident: 382_CR17 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-00913-2 – volume: 11 start-page: 1 year: 2018 ident: 382_CR46 publication-title: BioData Min doi: 10.1186/s13040-018-0164-x – volume: 162 year: 2021 ident: 382_CR4 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107739 – volume: 64 year: 2021 ident: 382_CR24 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102257 – ident: 382_CR22 doi: 10.1109/ICCIC.2018.8782340 – volume: 30 start-page: 521 year: 2023 ident: 382_CR44 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-022-09807-7 – volume: 23 start-page: 18 issue: 1 year: 2020 ident: 382_CR2 publication-title: Entropy doi: 10.3390/e23010018 – volume: 29 start-page: 17 year: 2013 ident: 382_CR3 publication-title: Eng Comput doi: 10.1007/s00366-011-0241-y – volume: 2 start-page: 160 issue: 3 year: 2021 ident: 382_CR8 publication-title: SN Comput Sci doi: 10.1007/s42979-021-00592-x – volume: 8 start-page: 186638 year: 2020 ident: 382_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029728 – ident: 382_CR34 doi: 10.1109/AEECA55500.2022.9918857 – ident: 382_CR42 – volume: 32 start-page: 544 issue: 2 year: 2022 ident: 382_CR13 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22650 – ident: 382_CR1 – volume: 2021 start-page: 1 year: 2021 ident: 382_CR7 publication-title: Wirel Commun Mob Comput – volume: 29 start-page: 4379 year: 2022 ident: 382_CR50 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-022-09737-4 |
| SSID | ssj0000327867 |
| Score | 2.4069707 |
| Snippet | Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 163 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Clustering Computer Appl. in Administrative Data Processing Computer Science Computer Systems Organization and Communication Networks Datasets Decision trees e-Commerce/e-business Graphical representations Health care Health services Heuristic methods IT in Business Machine learning Management of Computing and Information Systems Neural networks Optimization Searching Software Engineering/Programming and Operating Systems Special Issue Paper Support vector machines |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0hd00dyRIiJCxPipd2qvAqTWIfWjt-Pk6arQIAE56Ru5cT5nPqzjdCp4DSWORigzOFuYhGfSBlHhCtli-HFQaSEazaRjkZsPOa3PimsbNjuTUjSndRtstsArtwEMIbYcBbY8SpaA7hj1hzv7p-Wf1YCGqbMtY4dMHg1YFLis2W-F_MZkVo380tk1AHOsPu_T91Cm97BxBf1jthGK6bYQd2meQP2tryLpjemEi9mUVdqJhbNNH6BW-ncVgOfWpYMnsF5MvWJmhi8W-zoh8QHdbA2lSNyFVgUGuuatDcp8aTAU8fRNNg3pXjeQ4_Dq4fLa-J7LxAFRlmRNFLUpIkOQpNTpZPUKAB7LXMpmBEsB8dFcSpMwCQVQuWJCSkXkea2ILwaaLqPOsWsMAcIB3GoTZQkqUxAgoq5koZJIRIT5FpFcQ8NGv1nyhcmt_0xXrO2pLLVZwb6zJw-M9ZDZ8tn3uqyHL_O7jfLmnkTLTMKzh5nPI5h-LxZxnb4Z2mHf5t-hDZCcIRqelkfdar5whyjdfVeTcr5idu6H6rf6jg priority: 102 providerName: Springer Nature |
| Title | Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning |
| URI | https://link.springer.com/article/10.1007/s11761-023-00382-8 https://www.proquest.com/docview/3256989558 |
| Volume | 18 |
| WOSCitedRecordID | wos001146962100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: P5Z dateStart: 20230301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: K7- dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: M7S dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-2394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH7aCoddBhugdesqH3YbFkkcJ_YJbRNo0rSqgoEQl8i_QiutKWvD_n6eHYdqSHDZJZcklqXn98N-n78P4JOSjOsaHVDXuDfxGZ9qzXMqjfFkeDzJjQpiE-VkIq6u5DQeuK0jrLKPiSFQ26XxZ-RHDHOzFJJzcXz7h3rVKN9djRIaL2ErzbLUr_MfJX04Y0lYVoogIpsKnARmpyLem-luz6W4h6eYtKjvj2Fg-Dc3bQrORz3SkHpOd_530rvwOhad5Eu3St7AC9e8hZ1e0IFE_96DxU_Xqpm769ibqc9wlsxwp7ryDOELj5whS4wxi3h5k2DFSwIkkcZGD7GuDeCuhqjGEtsB-eZrMm_IIuA2HYlCFTf7cHF68uvbdxr1GKhBR21pmRvmysImmauZsUXpDBYAVtdaCadEjcWMkUy5RGimlKkLlzGpcis9SbxJLTuAQbNs3DsgCc-sy4ui1AWOYLg02gmtVOGS2pqcDyHtLVGZSFbuNTN-VxuaZW-9Cq1XBetVYgifH_657ag6nv161Jusim67rjb2GsJhb_TN66dHe__8aB_gVYbFUAcxG8GgXd25j7Bt_rbz9WoMW19PJtOzcVi8Y48-PcfnlF_j8-z88h4SS_ja |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JTxRBFH5BNJELuIZB1DroSSv2dHXXciDEqAQyMPGACbe2tpZJmB6YaSD-KX-jr6qrmWgiNw6eu_sl1fXVW-otH8AbrVhpajyApsbYJFh8akxZUGVtGIZXZoXVkWxCjMfy5ER9XYFffS9MKKvsdWJU1G5mwx35B4a2WUlVlnL3_IIG1qiQXe0pNDpYjPzPawzZFjsHn3F_3-b53pfjT_s0sQpQi3BrqSgs84K7LPc1s44Lb9GMOVMbLb2WNZpkq5j2mTRMa1tznzOlC6fCqHM7dAzl3oP7BZMizOofCXpzp5OxXMhIWjuUuGi0hjz16XTdekPBMXbPGQ35OFREf9rCpYP7V042mrq9jf_tJz2C9eRUk4_dKXgMK755Ahs9YQVJ-uspTI98q0_9ZTedmgYL7sgpRuLzMAF9GiqDyAx16DQ1pxL06EksuaQpkUWcb2PxWkN044jrChUnCzJpyDTWpXqSiDh-PINvd7Lo57DazBq_CSQrc-cLzoXhKMGWyhovjdbcZ7WzRTmAYb_zlU3D2AMnyFm1HCMd0FIhWqqIlkoO4N3NN-fdKJJb397uIVIltbSolvgYwPseZMvH_5a2dbu01_Bw__josDo8GI9ewFqOjl9XTrcNq-380r-EB_aqnSzmr-KBIfD9rsH3G0tmVEU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgIMSFsoodH7iBRRpnsY8IqEBAhcQibpG30Eo0rdrA9zN2HAoIkBDnOJZlezJvMm_eILQvOI1lDgYoc4hNrMcnUsYR4UpZMbw4iJRwzSbSToc9PvKbD1X8ju1epySrmgar0lSUR0OdH00K31oQfhPwN8SmtsCmp9FMZJsG2Xj99uH9L0tAw5S5NrItBssA_5T4ypnvp_nsnSaQ80uW1DmfdvP_y15ECx544uPqpiyhKVMso2bd1AF7G19B_WtTiq55qRScifVyGnchWh1ZlfC-Zc_gAXxn-r6AEwPqxY6WSHyyB2tTOoJXgUWhsa7IfL0x7hW477ibBvtmFU-r6L59dndyTnxPBqLAWEuSRoqaNNFBaHKqdJIaBSBAy1wKZgTLAdAoToUJmKRCqDwxIeUi0twKxauWpmuoUQwKs45wEIfaREmSygRmUDFX0jApRGKCXKso3kCt-iwy5QXLbd-M52witWz3M4P9zNx-ZmwDHby_M6zkOn4dvV0fceZNd5xRAIGc8TiGx4f1kU4e_zzb5t-G76G5m9N2dnXRudxC8yFgpYqBto0a5ejF7KBZ9Vr2xqNdd6PfACc69gA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristic-based+hyperparameter+optimization+for+multi-disease+detection+and+diagnosis+in+machine+learning&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Singh%2C+Jagandeep&rft.au=Sandhu%2C+Jasminder+Kaur&rft.au=Kumar%2C+Yogesh&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=18&rft.issue=2&rft.spage=163&rft.epage=182&rft_id=info:doi/10.1007%2Fs11761-023-00382-8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon |