Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning

Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Service oriented computing and applications Ročník 18; číslo 2; s. 163 - 182
Hlavní autoři: Singh, Jagandeep, Sandhu, Jasminder Kaur, Kumar, Yogesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.06.2024
Springer Nature B.V
Témata:
ISSN:1863-2386, 1863-2394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic approaches. Initially, the data is collected in the form of diverse classes, which include Id, gender, date of birth, etc. The data has been preprocessed, normalized, and graphically represented to improve its quality and detect any errors. Later, machine learning models, such as decision tree, extra tree classifier, extreme gradient boosting classifier, light gradient boosting machine classifier, random forest, and artificial neural network, are initially trained without optimizing hyperparameters and then fine-tuned by integrating various hyperparameter optimizers such as grid search CV, random search, hyperband, and genetic search. During experimentation, it is found that optimizing the models using random search optimizer computed the highest accuracy of 100% as compared to the rest of the hyperparameter optimizers. In the context of ‘Service Oriented Computing and Applications,’ our multi-disease prediction system offers valuable innovation. It aligns with the goal of enhancing healthcare services, patient outcomes, and healthcare efficiency. Our pioneering integration of metaheuristic algorithms and machine learning introduces intelligent healthcare solutions, with the study’s focus on hyperparameter optimization and achieving 100% accuracy demonstrates practical significance in SOC and its applications.
AbstractList Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease prediction system using AI-based metaheuristic approaches. Initially, the data is collected in the form of diverse classes, which include Id, gender, date of birth, etc. The data has been preprocessed, normalized, and graphically represented to improve its quality and detect any errors. Later, machine learning models, such as decision tree, extra tree classifier, extreme gradient boosting classifier, light gradient boosting machine classifier, random forest, and artificial neural network, are initially trained without optimizing hyperparameters and then fine-tuned by integrating various hyperparameter optimizers such as grid search CV, random search, hyperband, and genetic search. During experimentation, it is found that optimizing the models using random search optimizer computed the highest accuracy of 100% as compared to the rest of the hyperparameter optimizers. In the context of ‘Service Oriented Computing and Applications,’ our multi-disease prediction system offers valuable innovation. It aligns with the goal of enhancing healthcare services, patient outcomes, and healthcare efficiency. Our pioneering integration of metaheuristic algorithms and machine learning introduces intelligent healthcare solutions, with the study’s focus on hyperparameter optimization and achieving 100% accuracy demonstrates practical significance in SOC and its applications.
Author Singh, Jagandeep
Kumar, Yogesh
Sandhu, Jasminder Kaur
Author_xml – sequence: 1
  givenname: Jagandeep
  surname: Singh
  fullname: Singh, Jagandeep
  organization: Department of CSE, Chandigarh University
– sequence: 2
  givenname: Jasminder Kaur
  surname: Sandhu
  fullname: Sandhu, Jasminder Kaur
  organization: Department of CSE, Chandigarh University
– sequence: 3
  givenname: Yogesh
  orcidid: 0000-0002-2879-0441
  surname: Kumar
  fullname: Kumar, Yogesh
  email: yogesh.arora10744@gmail.com
  organization: Department of CSE, School of Technology, Pandit Deendayal Energy University
BookMark eNp9kE1PAyEQhompiV_9A55IPKN8tCx7NMavpMaLnskUZluaLrsCPdRf79oaTTyUCyTzPszMc0ZGsYtIyKXg14Lz6iYLUWnBuFSMc2UkM0fkVBitmFT1ZPT7NvqEjHNe8eEoWRldnZL2BQsscZNCLsGxOWT0dLntMfWQoMWCiXZ9CW34hBK6SJsu0XazLoH5kHGIUz-E3K4G0VMfYBG7HDINkbbgliEiXSOkGOLighw3sM44_rnPyfvD_dvdE5u9Pj7f3c6YU6IurJo4hZX2XGKjnNcVOiknft7MwSCYRk-NqxUgN3MF4BqNw6Iw8bUwkjvh1Tm52v_bp-5jg7nYVbdJcWhplZzq2tTTqRlScp9yqcs5YWP7FFpIWyu4_TZr92btYNbuzNpvyPyDXCg7NSVBWB9G1R7NQ5-4wPQ31QHqC4BhkoY
CitedBy_id crossref_primary_10_1007_s44290_025_00301_0
crossref_primary_10_1007_s10462_024_10975_0
crossref_primary_10_1016_j_mex_2024_102995
Cites_doi 10.1109/ACCESS.2022.3207287
10.3390/info11060332
10.1109/ICCMC53470.2022.9753909
10.1002/ima.22495
10.4018/978-1-4666-5888-2.ch626
10.1007/s11831-022-09853-1
10.1007/s42979-021-00815-1
10.1007/s12559-017-9542-9
10.1088/1742-6596/1142/1/012012
10.1007/s00521-020-04984-7
10.3390/computers11090136
10.1016/j.eswa.2018.03.024
10.1016/j.asoc.2018.11.001
10.1016/j.procs.2018.10.307
10.3109/0954898X.2011.638355
10.1007/s10489-014-0645-7
10.1186/s12882-021-02474-z
10.1007/s10489-016-0767-1
10.1109/ICIPTM54933.2022.9754010
10.1016/j.ejor.2022.03.054
10.1016/j.compbiomed.2022.105858
10.1007/s00521-017-2952-5
10.1007/s11831-021-09648-w
10.1109/ACCESS.2022.3147821
10.1038/s41598-022-23678-9
10.1007/s11831-022-09818-4
10.1007/s13042-018-00913-2
10.1186/s13040-018-0164-x
10.1016/j.cie.2021.107739
10.1016/j.bspc.2020.102257
10.1109/ICCIC.2018.8782340
10.1007/s11831-022-09807-7
10.3390/e23010018
10.1007/s00366-011-0241-y
10.1007/s42979-021-00592-x
10.1109/ACCESS.2020.3029728
10.1109/AEECA55500.2022.9918857
10.1002/ima.22650
10.1007/s11831-022-09737-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11761-023-00382-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1863-2394
EndPage 182
ExternalDocumentID 10_1007_s11761_023_00382_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-74c3e76d02ef3cd67ec224dbfba8ea8f658c93ae08b3aacf6e239a4d91820c1d3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146962100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-2386
IngestDate Tue Oct 07 06:09:58 EDT 2025
Sat Nov 29 01:50:26 EST 2025
Tue Nov 18 22:08:19 EST 2025
Fri Feb 21 02:39:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Medical data
Artificial neural network
Hyperparameters
Metaheuristics
Machine learning
Random search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-74c3e76d02ef3cd67ec224dbfba8ea8f658c93ae08b3aacf6e239a4d91820c1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2879-0441
PQID 3256989558
PQPubID 2044172
PageCount 20
ParticipantIDs proquest_journals_3256989558
crossref_primary_10_1007_s11761_023_00382_8
crossref_citationtrail_10_1007_s11761_023_00382_8
springer_journals_10_1007_s11761_023_00382_8
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Service oriented computing and applications
PublicationTitleAbbrev SOCA
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BabuGSRaoSTRaoRRAutomated assessment for Alzheimer's disease diagnosis from MRI images: meta-heuristic assisted deep learning modelInt J Imaging Syst Technol202232254456310.1002/ima.22650
KumarYGuptaSDeep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular Edema, DRUSEN and healthy eyes: an experimental reviewArch Computat Methods Eng20233052154110.1007/s11831-022-09807-7
EshtayMFarisHObeidNImproving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problemsExpert Syst Appl201810413415210.1016/j.eswa.2018.03.024
AmpomahEKQinZNyameGEvaluation of tree-based ensemble machine learning models in predicting stock price direction of movementInformation202011633210.3390/info11060332
Gupta A, Koul A, Kumar Y (2022) Pancreatic cancer detection using machine and deep learning techniques. In: 2022 2nd international conference on innovative practices in technology and management (ICIPTM). IEEE, vol 2, pp 151–155
AmirsadriSMousaviradSJEbrahimpour-KomlehHA Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network trainingNeural Comput Appl2018303707372010.1007/s00521-017-2952-5
GandomiAHYangXSAlaviAHCuckoo search algorithm: a metaheuristic approach to solve structural optimization problemsEng Comput201329173510.1007/s00366-011-0241-y
OyeladeONEzugwuAESMohamedTIAbualigahLEbola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithmIEEE Access202210161501617710.1109/ACCESS.2022.3147821
KumarYGuptaSSinglaRA systematic review of artificial intelligence techniques in cancer prediction and diagnosisArch Computat Methods Eng2022292043207010.1007/s11831-021-09648-w
SinghPKottathRAn ensemble approach to meta-heuristic algorithms: comparative analysis and its applicationsComput Ind Eng202116210.1016/j.cie.2021.107739
Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Comput Methods Eng 1–34
Micheli-TzanakouEArtificial neural networks: an overviewNetw Comput Neural Syst2011221–420823010.3109/0954898X.2011.638355
ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728
MienyeIDSunYA survey of ensemble learning: concepts, algorithms, applications, and prospectsIEEE Access202210991299914910.1109/ACCESS.2022.3207287
Nadimi-ShahrakiMHZamaniHMirjaliliSEnhanced whale optimization algorithm for medical feature selection: a COVID-19 case studyComput Biol Med202214810.1016/j.compbiomed.2022.105858
TrognonACherifiYIHabibiIDemangeLPrudentCUsing machine-learning strategies to solve psychometric problemsSci Rep20221211892210.1038/s41598-022-23678-9
Alzubi J, Nayyar A, Kumar A (2018) Machine learning from theory to algorithms: an overview. In: Journal of physics: conference series. IOP Publishing, vol 1142, p 012012
Lu Y, Ye T, Zheng J (2022) Decision tree algorithm in machine learning. In: 2022 IEEE international conference on advances in electrical engineering and computer applications (AEECA). IEEE, pp 1014–1017
ChitradeviDPrabhaSPrabhuADDiagnosis of Alzheimer disease in MR brain images using optimization techniquesNeural Comput Appl20213322323710.1007/s00521-020-04984-7
CanayazMMH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray imagesBiomed Signal Process Control20216410.1016/j.bspc.2020.102257
Brownlee J (2016) Supervised and unsupervised machine learning algorithms. Mach Learn Mastery 16(03)
KumarYKoulASisodiaPSShafiJKavitaVGheisariMDavoodiMBHeart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical thingsWirel Commun Mob Comput20212021116
BhardwajPBhandariGKumarYAn investigational approach for the prediction of gastric cancer using artificial intelligence techniques: a systematic reviewArch Computat Methods Eng2022294379440010.1007/s11831-022-09737-4
Kumar Y, Kaul S, Sood K (2019) Effective use of the machine learning approaches on different clouds. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India
SarkerIHMachine learning: algorithms, real-world applications and research directionsSN Comput Sci20212316010.1007/s42979-021-00592-x
FarisHAljarahIMirjaliliSTraining feedforward neural networks using multi-verse optimizer for binary classification problemsAppl Intell20164532233210.1007/s10489-016-0767-1
AlfianGSyafrudinMFahrurroziIFitriyaniNLAtmajiFTDWidodoTRheeJPredicting breast cancer from risk factors using SVM and extra-trees-based feature selection methodComputers202211913610.3390/computers11090136
RoostaeeSGhaffaryHRDiagnosis of heart disease based on meta heuristic algorithms and clustering methodsJ Electr Comput Eng Innov (JECEI)201642105110
Kumar GD, Deepa V, Vineela N, Emmanuel G (2022) Detection of Parkinson’s disease using LightGBM Classifier. In: 2022 6th International conference on computing methodologies and communication (ICCMC). IEEE, pp 1292–1297
SarkerIHDeep learning: a comprehensive overview on techniques, taxonomy, applications and research directionsSN Comput Sci20212642010.1007/s42979-021-00815-1
Wang J, Xu J, Wang X (2018) Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning. https://arxiv.org/abs/1801.01596
FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019102901292010.1007/s13042-018-00913-2
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2)
TaoZHuilingLWenwenWXiaYGA-SVM based feature selection and parameter optimization in hospitalization expense modelingAppl Soft Comput20197532333210.1016/j.asoc.2018.11.001
IlyasHAliSPonumMHasanOMahmoodMTIftikharMMalikMHChronic kidney disease diagnosis using decision tree algorithmsBMC Nephrol202122111110.1186/s12882-021-02474-z
Lauri J, Dutta S, Grassia M, Ajwani D (2020) Learning fine-grained search space pruning and heuristics for combinatorial optimization. https://arxiv.org/abs/2001.01230
Shankar K, Manickam P, Devika G, Ilayaraja M (2018) Optimal feature selection for chronic kidney disease classification using deep learning classifier. In: 2018 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE, pp 1–5
RashidTAFattahPAwlaDKUsing accuracy measure for improving the training of LSTM with metaheuristic algorithmsProcedia Comput Sci201814032433310.1016/j.procs.2018.10.307
Karimi-MamaghanMMohammadiMPasdeloupBMeyerPLearning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problemEur J Oper Res2023304312961330448806410.1016/j.ejor.2022.03.054
MirjaliliSHow effective is the Grey Wolf optimizer in training multi-layer perceptronsAppl Intell20154315016110.1007/s10489-014-0645-7
Gallo C (2015) Artificial neural networks tutorial. In: Encyclopedia of information science and technology, Third Edition. IGI Global, pp 6369–6378
HuARazmjooyNBrain tumor diagnosis based on metaheuristics and deep learningInt J Imaging Syst Technol202131265766910.1002/ima.22495
Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search, genetic algorithm: a big comparison for NAS. https://arxiv.org/abs/1912.06059
SipperMFuWAhujaKMooreJHInvestigating the parameter space of evolutionary algorithmsBioData Min20181111410.1186/s13040-018-0164-x
KaurSKumarYKoulAA systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challengesArch Computat Methods Eng202210.1007/s11831-022-09853-1
XuYLiuXCaoXHuangCLiuEQianSZhangJArtificial intelligence: a powerful paradigm for scientific researchInnov202124
ChaudharyAKolheSKamalRAn improved random forest classifier for multi-class classificationInf Process Agric201634215222
AljarahIAl-ZoubiAMFarisHHassonahMAMirjaliliSSaadehHSimultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithmCogn Comput20181047849510.1007/s12559-017-9542-9
Karimnahas (2018) Medical data. Kaggle. https://www.kaggle.com/datasets/karimnahas/medicaldata
LinardatosPPapastefanopoulosVKotsiantisSExplainable ai: a review of machine learning interpretability methodsEntropy20202311810.3390/e23010018
382_CR9
ON Oyelade (382_CR29) 2022; 10
382_CR10
H Faris (382_CR17) 2019; 10
TA Rashid (382_CR27) 2018; 140
382_CR12
Z Tao (382_CR16) 2019; 75
382_CR1
M Eshtay (382_CR21) 2018; 104
G Alfian (382_CR36) 2022; 11
E Micheli-Tzanakou (382_CR40) 2011; 22
M Canayaz (382_CR24) 2021; 64
382_CR47
M Sipper (382_CR46) 2018; 11
S Kaur (382_CR48) 2022
ZM Elgamal (382_CR28) 2020; 8
A Chaudhary (382_CR31) 2016; 3
382_CR43
382_CR45
MH Nadimi-Shahraki (382_CR26) 2022; 148
P Bhardwaj (382_CR50) 2022; 29
A Trognon (382_CR39) 2022; 12
GS Babu (382_CR13) 2022; 32
ID Mienye (382_CR37) 2022; 10
S Amirsadri (382_CR19) 2018; 30
P Linardatos (382_CR2) 2020; 23
AH Gandomi (382_CR3) 2013; 29
P Singh (382_CR4) 2021; 162
Y Kumar (382_CR7) 2021; 2021
382_CR38
I Aljarah (382_CR15) 2018; 10
382_CR32
382_CR34
IH Sarker (382_CR11) 2021; 2
IH Sarker (382_CR8) 2021; 2
M Karimi-Mamaghan (382_CR6) 2023; 304
Y Kumar (382_CR44) 2023; 30
382_CR42
Y Xu (382_CR5) 2021; 2
382_CR41
S Roostaee (382_CR25) 2016; 4
EK Ampomah (382_CR35) 2020; 11
A Hu (382_CR20) 2021; 31
382_CR22
D Chitradevi (382_CR23) 2021; 33
H Ilyas (382_CR33) 2021; 22
H Faris (382_CR14) 2016; 45
S Mirjalili (382_CR18) 2015; 43
Y Kumar (382_CR49) 2022; 29
382_CR30
References_xml – reference: Brownlee J (2016) Supervised and unsupervised machine learning algorithms. Mach Learn Mastery 16(03)
– reference: CanayazMMH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray imagesBiomed Signal Process Control20216410.1016/j.bspc.2020.102257
– reference: RashidTAFattahPAwlaDKUsing accuracy measure for improving the training of LSTM with metaheuristic algorithmsProcedia Comput Sci201814032433310.1016/j.procs.2018.10.307
– reference: MirjaliliSHow effective is the Grey Wolf optimizer in training multi-layer perceptronsAppl Intell20154315016110.1007/s10489-014-0645-7
– reference: RoostaeeSGhaffaryHRDiagnosis of heart disease based on meta heuristic algorithms and clustering methodsJ Electr Comput Eng Innov (JECEI)201642105110
– reference: Alzubi J, Nayyar A, Kumar A (2018) Machine learning from theory to algorithms: an overview. In: Journal of physics: conference series. IOP Publishing, vol 1142, p 012012
– reference: ChitradeviDPrabhaSPrabhuADDiagnosis of Alzheimer disease in MR brain images using optimization techniquesNeural Comput Appl20213322323710.1007/s00521-020-04984-7
– reference: KumarYGuptaSDeep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular Edema, DRUSEN and healthy eyes: an experimental reviewArch Computat Methods Eng20233052154110.1007/s11831-022-09807-7
– reference: Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search, genetic algorithm: a big comparison for NAS. https://arxiv.org/abs/1912.06059
– reference: KaurSKumarYKoulAA systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challengesArch Computat Methods Eng202210.1007/s11831-022-09853-1
– reference: FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019102901292010.1007/s13042-018-00913-2
– reference: EshtayMFarisHObeidNImproving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problemsExpert Syst Appl201810413415210.1016/j.eswa.2018.03.024
– reference: HuARazmjooyNBrain tumor diagnosis based on metaheuristics and deep learningInt J Imaging Syst Technol202131265766910.1002/ima.22495
– reference: Kumar Y, Kaul S, Sood K (2019) Effective use of the machine learning approaches on different clouds. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India
– reference: ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728
– reference: BabuGSRaoSTRaoRRAutomated assessment for Alzheimer's disease diagnosis from MRI images: meta-heuristic assisted deep learning modelInt J Imaging Syst Technol202232254456310.1002/ima.22650
– reference: FarisHAljarahIMirjaliliSTraining feedforward neural networks using multi-verse optimizer for binary classification problemsAppl Intell20164532233210.1007/s10489-016-0767-1
– reference: SarkerIHDeep learning: a comprehensive overview on techniques, taxonomy, applications and research directionsSN Comput Sci20212642010.1007/s42979-021-00815-1
– reference: IlyasHAliSPonumMHasanOMahmoodMTIftikharMMalikMHChronic kidney disease diagnosis using decision tree algorithmsBMC Nephrol202122111110.1186/s12882-021-02474-z
– reference: Gupta A, Koul A, Kumar Y (2022) Pancreatic cancer detection using machine and deep learning techniques. In: 2022 2nd international conference on innovative practices in technology and management (ICIPTM). IEEE, vol 2, pp 151–155
– reference: MienyeIDSunYA survey of ensemble learning: concepts, algorithms, applications, and prospectsIEEE Access202210991299914910.1109/ACCESS.2022.3207287
– reference: XuYLiuXCaoXHuangCLiuEQianSZhangJArtificial intelligence: a powerful paradigm for scientific researchInnov202124
– reference: KumarYKoulASisodiaPSShafiJKavitaVGheisariMDavoodiMBHeart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical thingsWirel Commun Mob Comput20212021116
– reference: OyeladeONEzugwuAESMohamedTIAbualigahLEbola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithmIEEE Access202210161501617710.1109/ACCESS.2022.3147821
– reference: KumarYGuptaSSinglaRA systematic review of artificial intelligence techniques in cancer prediction and diagnosisArch Computat Methods Eng2022292043207010.1007/s11831-021-09648-w
– reference: Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Comput Methods Eng 1–34
– reference: SipperMFuWAhujaKMooreJHInvestigating the parameter space of evolutionary algorithmsBioData Min20181111410.1186/s13040-018-0164-x
– reference: Nadimi-ShahrakiMHZamaniHMirjaliliSEnhanced whale optimization algorithm for medical feature selection: a COVID-19 case studyComput Biol Med202214810.1016/j.compbiomed.2022.105858
– reference: Karimnahas (2018) Medical data. Kaggle. https://www.kaggle.com/datasets/karimnahas/medicaldata
– reference: AmirsadriSMousaviradSJEbrahimpour-KomlehHA Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network trainingNeural Comput Appl2018303707372010.1007/s00521-017-2952-5
– reference: Lu Y, Ye T, Zheng J (2022) Decision tree algorithm in machine learning. In: 2022 IEEE international conference on advances in electrical engineering and computer applications (AEECA). IEEE, pp 1014–1017
– reference: ChaudharyAKolheSKamalRAn improved random forest classifier for multi-class classificationInf Process Agric201634215222
– reference: Wang J, Xu J, Wang X (2018) Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning. https://arxiv.org/abs/1801.01596
– reference: AmpomahEKQinZNyameGEvaluation of tree-based ensemble machine learning models in predicting stock price direction of movementInformation202011633210.3390/info11060332
– reference: TrognonACherifiYIHabibiIDemangeLPrudentCUsing machine-learning strategies to solve psychometric problemsSci Rep20221211892210.1038/s41598-022-23678-9
– reference: Lauri J, Dutta S, Grassia M, Ajwani D (2020) Learning fine-grained search space pruning and heuristics for combinatorial optimization. https://arxiv.org/abs/2001.01230
– reference: AlfianGSyafrudinMFahrurroziIFitriyaniNLAtmajiFTDWidodoTRheeJPredicting breast cancer from risk factors using SVM and extra-trees-based feature selection methodComputers202211913610.3390/computers11090136
– reference: TaoZHuilingLWenwenWXiaYGA-SVM based feature selection and parameter optimization in hospitalization expense modelingAppl Soft Comput20197532333210.1016/j.asoc.2018.11.001
– reference: Shankar K, Manickam P, Devika G, Ilayaraja M (2018) Optimal feature selection for chronic kidney disease classification using deep learning classifier. In: 2018 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE, pp 1–5
– reference: SarkerIHMachine learning: algorithms, real-world applications and research directionsSN Comput Sci20212316010.1007/s42979-021-00592-x
– reference: Karimi-MamaghanMMohammadiMPasdeloupBMeyerPLearning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problemEur J Oper Res2023304312961330448806410.1016/j.ejor.2022.03.054
– reference: GandomiAHYangXSAlaviAHCuckoo search algorithm: a metaheuristic approach to solve structural optimization problemsEng Comput201329173510.1007/s00366-011-0241-y
– reference: LinardatosPPapastefanopoulosVKotsiantisSExplainable ai: a review of machine learning interpretability methodsEntropy20202311810.3390/e23010018
– reference: Micheli-TzanakouEArtificial neural networks: an overviewNetw Comput Neural Syst2011221–420823010.3109/0954898X.2011.638355
– reference: Gallo C (2015) Artificial neural networks tutorial. In: Encyclopedia of information science and technology, Third Edition. IGI Global, pp 6369–6378
– reference: BhardwajPBhandariGKumarYAn investigational approach for the prediction of gastric cancer using artificial intelligence techniques: a systematic reviewArch Computat Methods Eng2022294379440010.1007/s11831-022-09737-4
– reference: Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2)
– reference: AljarahIAl-ZoubiAMFarisHHassonahMAMirjaliliSSaadehHSimultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithmCogn Comput20181047849510.1007/s12559-017-9542-9
– reference: Kumar GD, Deepa V, Vineela N, Emmanuel G (2022) Detection of Parkinson’s disease using LightGBM Classifier. In: 2022 6th International conference on computing methodologies and communication (ICCMC). IEEE, pp 1292–1297
– reference: SinghPKottathRAn ensemble approach to meta-heuristic algorithms: comparative analysis and its applicationsComput Ind Eng202116210.1016/j.cie.2021.107739
– volume: 10
  start-page: 99129
  year: 2022
  ident: 382_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3207287
– volume: 11
  start-page: 332
  issue: 6
  year: 2020
  ident: 382_CR35
  publication-title: Information
  doi: 10.3390/info11060332
– ident: 382_CR38
  doi: 10.1109/ICCMC53470.2022.9753909
– volume: 31
  start-page: 657
  issue: 2
  year: 2021
  ident: 382_CR20
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22495
– ident: 382_CR41
  doi: 10.4018/978-1-4666-5888-2.ch626
– year: 2022
  ident: 382_CR48
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-022-09853-1
– volume: 2
  start-page: 420
  issue: 6
  year: 2021
  ident: 382_CR11
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00815-1
– volume: 10
  start-page: 478
  year: 2018
  ident: 382_CR15
  publication-title: Cogn Comput
  doi: 10.1007/s12559-017-9542-9
– ident: 382_CR32
  doi: 10.1088/1742-6596/1142/1/012012
– ident: 382_CR43
– volume: 33
  start-page: 223
  year: 2021
  ident: 382_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04984-7
– volume: 3
  start-page: 215
  issue: 4
  year: 2016
  ident: 382_CR31
  publication-title: Inf Process Agric
– volume: 11
  start-page: 136
  issue: 9
  year: 2022
  ident: 382_CR36
  publication-title: Computers
  doi: 10.3390/computers11090136
– volume: 104
  start-page: 134
  year: 2018
  ident: 382_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.024
– ident: 382_CR30
– volume: 75
  start-page: 323
  year: 2019
  ident: 382_CR16
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.001
– volume: 140
  start-page: 324
  year: 2018
  ident: 382_CR27
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.10.307
– volume: 22
  start-page: 208
  issue: 1–4
  year: 2011
  ident: 382_CR40
  publication-title: Netw Comput Neural Syst
  doi: 10.3109/0954898X.2011.638355
– volume: 43
  start-page: 150
  year: 2015
  ident: 382_CR18
  publication-title: Appl Intell
  doi: 10.1007/s10489-014-0645-7
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: 382_CR33
  publication-title: BMC Nephrol
  doi: 10.1186/s12882-021-02474-z
– volume: 2
  issue: 4
  year: 2021
  ident: 382_CR5
  publication-title: Innov
– ident: 382_CR9
– volume: 45
  start-page: 322
  year: 2016
  ident: 382_CR14
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0767-1
– ident: 382_CR10
  doi: 10.1109/ICIPTM54933.2022.9754010
– volume: 304
  start-page: 1296
  issue: 3
  year: 2023
  ident: 382_CR6
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2022.03.054
– volume: 148
  year: 2022
  ident: 382_CR26
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105858
– volume: 30
  start-page: 3707
  year: 2018
  ident: 382_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2952-5
– volume: 4
  start-page: 105
  issue: 2
  year: 2016
  ident: 382_CR25
  publication-title: J Electr Comput Eng Innov (JECEI)
– volume: 29
  start-page: 2043
  year: 2022
  ident: 382_CR49
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-021-09648-w
– volume: 10
  start-page: 16150
  year: 2022
  ident: 382_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147821
– volume: 12
  start-page: 18922
  issue: 1
  year: 2022
  ident: 382_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-23678-9
– ident: 382_CR45
– ident: 382_CR47
  doi: 10.1007/s11831-022-09818-4
– ident: 382_CR12
– volume: 10
  start-page: 2901
  year: 2019
  ident: 382_CR17
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-00913-2
– volume: 11
  start-page: 1
  year: 2018
  ident: 382_CR46
  publication-title: BioData Min
  doi: 10.1186/s13040-018-0164-x
– volume: 162
  year: 2021
  ident: 382_CR4
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107739
– volume: 64
  year: 2021
  ident: 382_CR24
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102257
– ident: 382_CR22
  doi: 10.1109/ICCIC.2018.8782340
– volume: 30
  start-page: 521
  year: 2023
  ident: 382_CR44
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-022-09807-7
– volume: 23
  start-page: 18
  issue: 1
  year: 2020
  ident: 382_CR2
  publication-title: Entropy
  doi: 10.3390/e23010018
– volume: 29
  start-page: 17
  year: 2013
  ident: 382_CR3
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: 382_CR8
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00592-x
– volume: 8
  start-page: 186638
  year: 2020
  ident: 382_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029728
– ident: 382_CR34
  doi: 10.1109/AEECA55500.2022.9918857
– ident: 382_CR42
– volume: 32
  start-page: 544
  issue: 2
  year: 2022
  ident: 382_CR13
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22650
– ident: 382_CR1
– volume: 2021
  start-page: 1
  year: 2021
  ident: 382_CR7
  publication-title: Wirel Commun Mob Comput
– volume: 29
  start-page: 4379
  year: 2022
  ident: 382_CR50
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-022-09737-4
SSID ssj0000327867
Score 2.4069707
Snippet Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like regression, classification, rule...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Clustering
Computer Appl. in Administrative Data Processing
Computer Science
Computer Systems Organization and Communication Networks
Datasets
Decision trees
e-Commerce/e-business
Graphical representations
Health care
Health services
Heuristic methods
IT in Business
Machine learning
Management of Computing and Information Systems
Neural networks
Optimization
Searching
Software Engineering/Programming and Operating Systems
Special Issue Paper
Support vector machines
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXjxLdYXOXjT4CZpN8lJRBRBLB4UvC3ZPLRgt7Vd_f1OslmLgl48bzYEJpnvm8xkPoSOTemVElmPlAAOEKDknAAqUsL6TlNPlaXaR7EJMRjIpyd1ny7cZqmssvWJ0VHbsQl35GccsFlJ1e_L88kbCapRIbuaJDQW0RJljIZ9fivI1x1LxpmQUUSWSlgEoFOe3s00r-coxPAEQIuE_Bg4hu_YNCecP3KkEXqu1_676HW0mkgnvmh2yQZacNUmWmsFHXA631todOdq_eLem-7NJCCcxS8QqU5Dh_BRqJzBY_Axo_R4EwPjxbEkkaRED7aujsVdFdaVxbYp5BvO8LDCo1i36XASqnjeRo_XVw-XNyTpMRADB7Umome4E7nNmPPc2Fw4AwTAlr7U0mnpgcwYxbXLZMm1Nj53jCvdsyo0iTfU8h3UqcaV20U4E0I6yVRunO8xbbX1wGQ0cJEyhxCm30W0tURhUrPyoJnxWszbLAfrFWC9IlqvkF108vXPpGnV8efog9ZkRTq2s2Jury46bY0-__z7bHt_z7aPVhiQoabE7AB16um7O0TL5qMezqZHcdN-AsL180I
  priority: 102
  providerName: ProQuest
Title Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning
URI https://link.springer.com/article/10.1007/s11761-023-00382-8
https://www.proquest.com/docview/3256989558
Volume 18
WOSCitedRecordID wos001146962100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: P5Z
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: K7-
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: M7S
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6Vx4ELlBZUHl350FtrKYk3sX0ExAoJsVrxqFa9RI4f3ZXYUO0Gfj9jx9lVUUEql1ycONHY428m880MwDddOSl50qcVggM6KAWjiIopzXKrUpdKkyoXmk3w4VCMx3IUk8IWHdu9C0mGk3qV7Jaiy00RY6gPZ6Eer8EGwp3w6nh983P5ZyVhGRehdWwq8NWISUXMlvn3NH8j0srMfBEZDYAz2Hnfp36E7WhgkpN2R-zCB1t_gp2ueQOJuvwZZle2URP72FZqph7NDJmgVzr31cBnniVDHvA8mcVETYLWLQn0QxqDOsTYJhC5aqJqQ0xL2psuyLQms8DRtCQ2pfi9B3eD89uzCxp7L1CNStlQ3tfM8sIkmXVMm4JbjWBvKlcpYZVwaLhoyZRNRMWU0q6wGZOqb6QvCK9Tw_ZhvX6o7RcgCefCikwW2rp-powyDq0WhXZHVaC7kh9A2sm_1LEwue-PcV-uSip7eZYozzLIsxQH8H35zJ-2LMebdx93y1pGFV2UDI09KWSe4_CPbhlXw6_Pdvh_tx_BVoaGUEsvO4b1Zv5ov8Kmfmqmi3kPNk7Ph6PrHqxdctrzzNMbvI7yX72wqZ8BRjXtsA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvtLzE0gc-wAksEjsb2weEEG3VatsVhyL1Fhw_6Epstt1NQfwpfmPHjtMVSO2tB85JLDn-PN-MPTMfwGtTe6VEVtAayQEDlJJTZMWcsqHTuc-VzbWPYhNiPJanp-rLCvzpa2FCWmVvE6OhtjMTzsjfc-RmJdVwKD-eX9CgGhVuV3sJjQ4WI_f7F4Zsiw-Hu7i-bxjb3zv5fECTqgA1CLeWisJwJ0qbMee5saVwBmnM1r7W0mnpkZKN4tplsuZaG186xpUurAqtzk1uOY57D-4XXIrQq38k6PWZTsaZkFG0Npc4aWTDMtXpdNV6uSgxdmechvs4NER_c-HSwf3nTjZS3f76__aTNuBRcqrJp24XPIYV1zyB9V6wgiT79RSmx67VZ-6y605NA4NbcoaR-Dx0QJ-GzCAyQxs6TcWpBD16ElMuabrIIta1MXmtIbqxxHaJipMFmTRkGvNSHUlCHN-fwdc7mfRzWG1mjXsBJBNCOslUaZwvmLbaevTUNPpadYkh2nAAeb_ylUnN2IMmyI9q2UY6oKVCtFQRLZUcwNvrb867ViS3vr3VQ6RKZmlRLfExgHc9yJaPbx7t5e2jvYKHByfHR9XR4Xi0CWsMHb8unW4LVtv5pduGB-ZnO1nMd-KGIfDtrsF3BX1PU1s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA5eiC_e4rFqHnzTYNv0SB5FXRR1ETzYt5LmcBfcKrvV3-8kTV0VFcTnpiEkmX7fdL6ZQWhPFobzLIhJAeAADkpKCaBiSKJEi9CEXIXCuGYTWafDul1-_SGL36ndm5BkndNgqzSV1eGzMofjxLcQ3G8CeENsaAtsehJNx7ZpkPXXb-7f_7IENMqYayMbMlgG4FPqM2e-n-YzOo0p55coqQOf9sL_l72I5j3xxEf1TVlCE7pcRgtNUwfsbXwFDa50JXr6pa7gTCzKKdwDb3Voq4QPrHoGP8F3ZuATODGwXuxkicQHe7DSlRN4lViUCqtazNcf4X6JB067qbFvVvGwiu7ap7fHZ8T3ZCASjLUiWSypzlIVRNpQqdJMSyABqjCFYFowA4RGcip0wAoqhDSpjigXseK2ULwMFV1DU-VTqdcRDrKMaRbxVGoTR0IJZYDNCOAjRQpuTLKBwuYscukLltu-GY_5uNSy3c8c9jN3-5mzDbT__s5zXa7j19Gt5ohzb7qjnAIJ5IwnCTw-aI50_Pjn2Tb_NnwXzV6ftPPL887FFpqLgCvVCrQWmqqGL3obzcjXqj8a7rgb_QbK3_UW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristic-based+hyperparameter+optimization+for+multi-disease+detection+and+diagnosis+in+machine+learning&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Singh%2C+Jagandeep&rft.au=Sandhu%2C+Jasminder+Kaur&rft.au=Kumar%2C+Yogesh&rft.date=2024-06-01&rft.pub=Springer+London&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=18&rft.issue=2&rft.spage=163&rft.epage=182&rft_id=info:doi/10.1007%2Fs11761-023-00382-8&rft.externalDocID=10_1007_s11761_023_00382_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon