On ϵ-sensitive monotone computations
We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f ∈ R [ x 1 , ⋯ , x n ] of degree d has an arithmetic circuit of size s then (...
Gespeichert in:
| Veröffentlicht in: | Computational complexity Jg. 29; H. 2 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1016-3328, 1420-8954 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!