On ϵ-sensitive monotone computations

We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f ∈ R [ x 1 , ⋯ , x n ] of degree d has an arithmetic circuit of size s then (...

Full description

Saved in:
Bibliographic Details
Published in:Computational complexity Vol. 29; no. 2
Main Author: Hrubeš, Pavel
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2020
Springer Nature B.V
Subjects:
ISSN:1016-3328, 1420-8954
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f ∈ R [ x 1 , ⋯ , x n ] of degree d has an arithmetic circuit of size s then ( x 1 + ⋯ + x n + 1 ) d + ϵ f has a monotone arithmetic circuit of size O ( s d 2 + n log n ) , for some ϵ > 0 . Second, if f : { 0 , 1 } n → { 0 , 1 } is a Boolean function, we associate with f an explicit exponential-size matrix M ( f ) such that the Boolean circuit size of f is at least Ω ( min ϵ > 0 ( rk + ( M ( f ) - ϵ J ) ) - 2 n ) , where J is the all-ones matrix and rk + denotes the nonnegative rank of a matrix. In fact, the quantity min ϵ > 0 ( rk + ( M ( f ) - ϵ J ) ) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar ϵ -sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.
AbstractList We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f ∈ R [ x 1 , ⋯ , x n ] of degree d has an arithmetic circuit of size s then ( x 1 + ⋯ + x n + 1 ) d + ϵ f has a monotone arithmetic circuit of size O ( s d 2 + n log n ) , for some ϵ > 0 . Second, if f : { 0 , 1 } n → { 0 , 1 } is a Boolean function, we associate with f an explicit exponential-size matrix M ( f ) such that the Boolean circuit size of f is at least Ω ( min ϵ > 0 ( rk + ( M ( f ) - ϵ J ) ) - 2 n ) , where J is the all-ones matrix and rk + denotes the nonnegative rank of a matrix. In fact, the quantity min ϵ > 0 ( rk + ( M ( f ) - ϵ J ) ) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar ϵ -sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.
We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f∈R[x1,⋯,xn] of degree d has an arithmetic circuit of size s then (x1+⋯+xn+1)d+ϵf has a monotone arithmetic circuit of size O(sd2+nlogn), for some ϵ>0. Second, if f:{0,1}n→{0,1} is a Boolean function, we associate with f an explicit exponential-size matrix M(f) such that the Boolean circuit size of f is at least Ω(minϵ>0(rk+(M(f)-ϵJ))-2n), where J is the all-ones matrix and rk+ denotes the nonnegative rank of a matrix. In fact, the quantity minϵ>0(rk+(M(f)-ϵJ)) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar ϵ-sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.
ArticleNumber 6
Author Hrubeš, Pavel
Author_xml – sequence: 1
  givenname: Pavel
  surname: Hrubeš
  fullname: Hrubeš, Pavel
  email: pahrubes@gmail.com
  organization: Institute of Mathematics of ASCR
BookMark eNp9kM1KAzEUhYNUsK2-gKuCuIze_EwyWUrxDwrd6DpkZhKZ0iY1yQg-mM_hKxkdQXDR1b0Xznfu4czQxAdvEToncEUA5HUCACYxUMAARAksjtCU8HLWquKTsgMRmDFan6BZSpsiqmrGp-hy7RefHzhZn_rcv9nFLviQi_miDbv9kE3ug0-n6NiZbbJnv3OOnu9un5YPeLW-f1zerHDLiMpYEuCKVK4CRzrqmpbVte1UoyivGJfGEmeMkbQhrLGsU9RQ6ZRoVVc1xEjH5uhi9N3H8DrYlPUmDNGXl5pyKhQDKmRR1aOqjSGlaJ1u-zFojqbfagL6uxQ9lqJLKfqnFC0KSv-h-9jvTHw_DLERSkXsX2z8S3WA-gLs4HXa
CitedBy_id crossref_primary_10_1007_s00037_025_00269_4
crossref_primary_10_1007_s00454_022_00419_3
Cites_doi 10.1016/S0022-0000(02)00020-X
10.1137/16M109884X
10.1145/3313276.3316311
10.1016/0304-3975(80)90060-2
10.1007/3-540-33099-2
10.1145/2213977.2213988
10.1007/s10107-012-0574-3
10.1007/3-540-18170-9_185
10.1137/0215037
10.1145/1007352.1007353
10.1109/LICS.2019.8785792
10.1017/CBO9780511526633.007
10.1145/103418.103462
10.1145/3127497
10.1016/0022-0000(91)90024-Y
10.1145/800135.804419
10.1109/FOCS.2012.10
10.1017/CBO9780511529948
10.1016/j.laa.2009.02.034
10.1137/070709967
10.1007/978-3-662-03338-8
10.1016/j.ipl.2012.02.009
10.1007/s00037-011-0007-3
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00037-020-00196-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
ExternalDocumentID 10_1007_s00037_020_00196_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-7104915f50f1d2fbc388ed9b9245347ae1faaa72b13be3d92a27f96c9d5b1a7f3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552200600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Wed Sep 17 23:56:17 EDT 2025
Sat Nov 29 02:52:51 EST 2025
Tue Nov 18 22:12:02 EST 2025
Fri Feb 21 02:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonnegative rank
Extension complexity
69Q09
Arithmetic circuit complexity
68Q17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7104915f50f1d2fbc388ed9b9245347ae1faaa72b13be3d92a27f96c9d5b1a7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2426930267
PQPubID 2044003
ParticipantIDs proquest_journals_2426930267
crossref_citationtrail_10_1007_s00037_020_00196_6
crossref_primary_10_1007_s00037_020_00196_6
springer_journals_10_1007_s00037_020_00196_6
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Pavel Hrubeš & Amir YehudayoffHomogeneous formulas and symmetric polynomialsComputational Complexity2011203559578282480910.1007/s00037-011-0007-3
S. A. Vavasis (2008). On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization20(3), 1364-1377
HrubešPOn the nonnegative rank of distance matricesInformation Processing Letters201211211457461290514810.1016/j.ipl.2012.02.009
D. deCaen, D. Gregory & N. Pullman (1981). The Boolean rank of zero one matrices. In Proceedings of the Third Caribean Conference on Combinatorics and Computing, 169–173
G. Braun, S. Fiorini, S. Pokutta & D. Steuer (2012). Approximation Limits of Linear Programs (Beyond Hierarchies). In FOCS, 480–489
GoosMJainRWatsonTExtension complexity of independent set polytopesSIAM J. Comput.2018471241269376592410.1137/16M109884X
BeasleyLLaffeyTReal rank versus nonnegative rankLinear Algebra and its Applications20094311223302335256302510.1016/j.laa.2009.02.034
A. Yehudayoff (2019). Separating monotone VP and VNP. In STOC
Thomas Rothvoß (2011). Some 0/1 polytopes need exponential size extended formulations. CoRRarXiv:1105.0036
Amir Shpilka & Avi Wigderson (1999). Depth-3 arithmetic formulae over fields of characteristic zero. In In CCC, 87. IEEE Computer Society
S. Basu, R. Pollack & M.F. Roy (2006). Algorithms in real algebraic geometry. Springer-Verlag.
P. Pudlák & M. de Oliveira Oliveira (2017). Representations of monotone Boolean functions by linear programs. In Proceedings of the 32nd Computational Complexity Conference
ValiantLGNegation is powerless for Boolean slice functionsSIAM J. Comput.198615253153583760110.1137/0215037
P. Bürgisser, M. Clausen & M. A. Shokrollahi (1997). Algebraic complexity theory, volume 315 of A series of comprehensive studies in mathematics. Springer
ValiantLGNegation can be exponentially powerfulTheoretical Computer Science19801230331458931110.1016/0304-3975(80)90060-2
YannakakisMihalisExpressing combinatorial optimization problems by linear programsJournal of Computer and System Sciences1991433441466113547210.1016/0022-0000(91)90024-Y
Amir Shpilka & Amir YehudayoffArithmetic Circuits: A survey of recent results and open questionsFoundations and Trends in Theoretical Computer Science20105320738827561661205.68175
L. G. Valiant (1979). Completeness Classes in Algebra. In STOC, 249–261
P. Hrubeš (2019). On the complexity of computing a random Boolean function over the reals. ECCC
ValiantLGReducibility by algebraic projectionsEnseign. Math.1982282532686842360493.68045
A. Atserias, A. Dawar & J. Ochremiak (2019). On the power of symmetric linear programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
A. Razborov (1992). On submodular complexity measures. In Boolean functions complexity, 76–83. Cambridge University Press
KrajíčekJBounded arithmetic, propositional logic, and complexity theory1995USACambridge University Press10.1017/CBO9780511529948
N. Nisan (1991). Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, 410–418
Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary & Ronald de Wolf (2011). Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds. CoRRarXiv:1111.0837
ShamirESnirMOn the depth complexity of formulasJournal Theory of Computing Systems19791313013225910100445.68031
R. Raz (2004). Multi-linear formulas for Permanent and Determinant are of super-polynomial size. In Proceeding of the 36th STOC, 633–641
AtseriasAGalesiNPudlákPMonotone simulations of non-monotone proofsJ. of Computer and System Sciences200265626638196464610.1016/S0022-0000(02)00020-X
T. Rothvoss (2017). The matching polytope has exponential extension complexity. J. of the ACM 64(6).
I. Wegener (1987). The complexity of Boolean functions
196_CR30
196_CR8
L Beasley (196_CR4) 2009; 431
LG Valiant (196_CR24) 1980; 12
Pavel Hrubeš & Amir Yehudayoff (196_CR12) 2011; 20
196_CR3
196_CR1
J Krajíček (196_CR13) 1995
196_CR6
196_CR7
196_CR5
P Hrubeš (196_CR10) 2012; 112
196_CR27
196_CR28
196_CR23
Amir Shpilka & Amir Yehudayoff (196_CR22) 2010; 5
196_CR21
LG Valiant (196_CR26) 1986; 15
LG Valiant (196_CR25) 1982; 28
E Shamir (196_CR20) 1979; 13
196_CR19
196_CR15
196_CR16
196_CR17
196_CR18
A Atserias (196_CR2) 2002; 65
M Goos (196_CR9) 2018; 47
196_CR11
Mihalis Yannakakis (196_CR29) 1991; 43
196_CR14
References_xml – reference: N. Nisan (1991). Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, 410–418
– reference: A. Razborov (1992). On submodular complexity measures. In Boolean functions complexity, 76–83. Cambridge University Press
– reference: L. G. Valiant (1979). Completeness Classes in Algebra. In STOC, 249–261
– reference: P. Pudlák & M. de Oliveira Oliveira (2017). Representations of monotone Boolean functions by linear programs. In Proceedings of the 32nd Computational Complexity Conference
– reference: Pavel Hrubeš & Amir YehudayoffHomogeneous formulas and symmetric polynomialsComputational Complexity2011203559578282480910.1007/s00037-011-0007-3
– reference: GoosMJainRWatsonTExtension complexity of independent set polytopesSIAM J. Comput.2018471241269376592410.1137/16M109884X
– reference: T. Rothvoss (2017). The matching polytope has exponential extension complexity. J. of the ACM 64(6).
– reference: ValiantLGNegation can be exponentially powerfulTheoretical Computer Science19801230331458931110.1016/0304-3975(80)90060-2
– reference: Amir Shpilka & Amir YehudayoffArithmetic Circuits: A survey of recent results and open questionsFoundations and Trends in Theoretical Computer Science20105320738827561661205.68175
– reference: AtseriasAGalesiNPudlákPMonotone simulations of non-monotone proofsJ. of Computer and System Sciences200265626638196464610.1016/S0022-0000(02)00020-X
– reference: S. A. Vavasis (2008). On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization20(3), 1364-1377
– reference: S. Basu, R. Pollack & M.F. Roy (2006). Algorithms in real algebraic geometry. Springer-Verlag.
– reference: I. Wegener (1987). The complexity of Boolean functions
– reference: YannakakisMihalisExpressing combinatorial optimization problems by linear programsJournal of Computer and System Sciences1991433441466113547210.1016/0022-0000(91)90024-Y
– reference: Thomas Rothvoß (2011). Some 0/1 polytopes need exponential size extended formulations. CoRRarXiv:1105.0036
– reference: ShamirESnirMOn the depth complexity of formulasJournal Theory of Computing Systems19791313013225910100445.68031
– reference: ValiantLGNegation is powerless for Boolean slice functionsSIAM J. Comput.198615253153583760110.1137/0215037
– reference: P. Hrubeš (2019). On the complexity of computing a random Boolean function over the reals. ECCC
– reference: R. Raz (2004). Multi-linear formulas for Permanent and Determinant are of super-polynomial size. In Proceeding of the 36th STOC, 633–641
– reference: D. deCaen, D. Gregory & N. Pullman (1981). The Boolean rank of zero one matrices. In Proceedings of the Third Caribean Conference on Combinatorics and Computing, 169–173
– reference: HrubešPOn the nonnegative rank of distance matricesInformation Processing Letters201211211457461290514810.1016/j.ipl.2012.02.009
– reference: G. Braun, S. Fiorini, S. Pokutta & D. Steuer (2012). Approximation Limits of Linear Programs (Beyond Hierarchies). In FOCS, 480–489
– reference: P. Bürgisser, M. Clausen & M. A. Shokrollahi (1997). Algebraic complexity theory, volume 315 of A series of comprehensive studies in mathematics. Springer
– reference: A. Atserias, A. Dawar & J. Ochremiak (2019). On the power of symmetric linear programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
– reference: KrajíčekJBounded arithmetic, propositional logic, and complexity theory1995USACambridge University Press10.1017/CBO9780511529948
– reference: ValiantLGReducibility by algebraic projectionsEnseign. Math.1982282532686842360493.68045
– reference: A. Yehudayoff (2019). Separating monotone VP and VNP. In STOC
– reference: Amir Shpilka & Avi Wigderson (1999). Depth-3 arithmetic formulae over fields of characteristic zero. In In CCC, 87. IEEE Computer Society
– reference: BeasleyLLaffeyTReal rank versus nonnegative rankLinear Algebra and its Applications20094311223302335256302510.1016/j.laa.2009.02.034
– reference: Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary & Ronald de Wolf (2011). Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds. CoRRarXiv:1111.0837
– volume: 65
  start-page: 626
  year: 2002
  ident: 196_CR2
  publication-title: J. of Computer and System Sciences
  doi: 10.1016/S0022-0000(02)00020-X
– volume: 47
  start-page: 241
  issue: 1
  year: 2018
  ident: 196_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/16M109884X
– ident: 196_CR30
  doi: 10.1145/3313276.3316311
– volume: 12
  start-page: 303
  year: 1980
  ident: 196_CR24
  publication-title: Theoretical Computer Science
  doi: 10.1016/0304-3975(80)90060-2
– ident: 196_CR3
  doi: 10.1007/3-540-33099-2
– ident: 196_CR7
– volume: 5
  start-page: 207
  issue: 3
  year: 2010
  ident: 196_CR22
  publication-title: Foundations and Trends in Theoretical Computer Science
– ident: 196_CR8
  doi: 10.1145/2213977.2213988
– ident: 196_CR19
  doi: 10.1007/s10107-012-0574-3
– ident: 196_CR28
  doi: 10.1007/3-540-18170-9_185
– volume: 15
  start-page: 531
  issue: 2
  year: 1986
  ident: 196_CR26
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215037
– volume: 28
  start-page: 253
  year: 1982
  ident: 196_CR25
  publication-title: Enseign. Math.
– ident: 196_CR16
  doi: 10.1145/1007352.1007353
– ident: 196_CR1
  doi: 10.1109/LICS.2019.8785792
– volume: 13
  start-page: 301
  issue: 1
  year: 1979
  ident: 196_CR20
  publication-title: Journal Theory of Computing Systems
– ident: 196_CR17
  doi: 10.1017/CBO9780511526633.007
– ident: 196_CR14
  doi: 10.1145/103418.103462
– ident: 196_CR18
  doi: 10.1145/3127497
– volume: 43
  start-page: 441
  issue: 3
  year: 1991
  ident: 196_CR29
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/0022-0000(91)90024-Y
– ident: 196_CR15
– ident: 196_CR11
– ident: 196_CR23
  doi: 10.1145/800135.804419
– ident: 196_CR5
  doi: 10.1109/FOCS.2012.10
– volume-title: Bounded arithmetic, propositional logic, and complexity theory
  year: 1995
  ident: 196_CR13
  doi: 10.1017/CBO9780511529948
– volume: 431
  start-page: 2330
  issue: 12
  year: 2009
  ident: 196_CR4
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/j.laa.2009.02.034
– ident: 196_CR27
  doi: 10.1137/070709967
– ident: 196_CR6
  doi: 10.1007/978-3-662-03338-8
– volume: 112
  start-page: 457
  issue: 11
  year: 2012
  ident: 196_CR10
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2012.02.009
– volume: 20
  start-page: 559
  issue: 3
  year: 2011
  ident: 196_CR12
  publication-title: Computational Complexity
  doi: 10.1007/s00037-011-0007-3
– ident: 196_CR21
SSID ssj0015834
Score 2.2597327
Snippet We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithm Analysis and Problem Complexity
Arithmetic
Boolean
Boolean algebra
Boolean functions
Circuits
Computational Mathematics and Numerical Analysis
Computer Science
Lower bounds
Mathematical analysis
Polynomials
Title On ϵ-sensitive monotone computations
URI https://link.springer.com/article/10.1007/s00037-020-00196-6
https://www.proquest.com/docview/2426930267
Volume 29
WOSCitedRecordID wos000552200600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrbIHPWmgm-xukqOIxYtVfNHbks0DBGmlW_1n_g7_kkk2u0VRQc95LfPITHZmvgE41KnRSjKNDOYZSmiikGAJR8795RjrtC-EbzZBh0M2GvHrUBRW1tnudUjS39RNsZvHSkHuueNBXVC2CEvW3DGnjje3D03sIGVVLNk6M4gQzEKpzPd7fDZHcx_zS1jUW5tB-3_fuQ5rwbuMTitx2IAFPe5Au-7cEAVF7sDqZYPWWm7C0dU4en9Dpctld7dfZEVz4kC6I-lXVj_1tuB-cH53doFC-wQkrV7NXJZlwuPUpH0TK2wKSRjTihf2xZWShAodGyEExUVMCk0UxwJTwzPJVVrEghqyDa2xPWsHImLHsVFMOcAzIVVh_TahpbC-Bqb2wdeFuKZiLgO2uGtx8ZQ3qMieKrmlSu6pkmddOG7WPFfIGr_O7tXMyYOWlbmvwyWuh1YXTmpmzId_3m33b9P3YAU7fvoslh60ZtMXvQ_L8nX2WE4PvPR9ABr_0do
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBalWsVt2DnjTQTfaRHEUsFdsqWqW3JZsHCFKlW_1n_g7_kkn2URQV9JzXMo_MZGfmG4BDFWolBVVIYxahIA4k4jRgyLq_DGMVtjl3zSbiwYCORuy6KArLymz3MiTpbuqq2M1hpSD73HGgLiiah4XAWCybyHdze1_FDkKax5KNM4MIwbQolfl-j8_maOZjfgmLOmvTqf_vO9dgtfAuvdNcHNZhTo0bUC87N3iFIjdgpV-htWYbcHQ19t7fUGZz2e3t5xnRfLIg3Z5wK_Ofeptw1zkfnnVR0T4BCaNXU5tlGTA_1GFb-xLrVBBKlWSpeXGFJIi58jXnPMapT1JFJMMcx5pFgskw9XmsyRbUxuasbfCIGcdaUmkBz7iQqfHbuBLc-Bo4Ng--JvglFRNRYIvbFhePSYWK7KiSGKokjipJ1ITjas1zjqzx6-xWyZyk0LIscXW4xPbQasJJyYzZ8M-77fxt-gEsdYf9XtK7GFzuwjK2vHUZLS2oTScvag8Wxev0IZvsO0n8APrf1L4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgOFAqIsuYAJ7Da2Nl8REAFAkolFvUWOV4kJBSqJvBnfAe_hO0sBQRIiLOXRDPjeCYz8x7AnvSVFDySSGEaIC_0BGKRR5FxfynG0u8yZskmwn4_Gg7p4EMXv612r1KSRU-DQWlK885IqE7d-GZxU5AJfSzACwqmYcYzpEEmXr-5r_MIflTklbVjgwjBUdk28_0en6-mib_5JUVqb55e8__vvASLpdfpHBVmsgxTMm1Bs2J0cMoD3oKFqxrFNVuB_evUeXtFmalxN19FR5vskwHvdrhdWfzsW4W73unt8RkqaRUQ1-ctN9WXHnV95XeVK7BKOIkiKWiiIzGfeCGTrmKMhThxSSKJoJjhUNGAU-EnLgsVWYNGqp-1Dg7R41iJSBggNMZFov05JjnTPggOdSDYBreSaMxLzHFDffEY12jJViqxlkpspRIHbTio14wKxI1fZ29ViorL05fFtj-XGG6tNhxWipkM_7zbxt-m78Lc4KQXX573LzZhHhvV2kKXLWjk42e5DbP8JX_IxjvWKN8BY-Tdog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+%CF%B5-sensitive+monotone+computations&rft.jtitle=Computational+complexity&rft.au=Hrube%C5%A1+Pavel&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=29&rft.issue=2&rft_id=info:doi/10.1007%2Fs00037-020-00196-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon