Research on the improvement effect of machine learning and neural network algorithms on the prediction of learning achievement

In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 34; číslo 12; s. 9369 - 9383
Hlavní autoři: Su, Yingying, Wang, Shengxu, Li, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.06.2022
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to calculate the similarity of courses. Simultaneously, this paper proposes an improved hybrid multi-weight improvement algorithm to improve the cold start problem that cannot be solved by traditional algorithms. In addition, this paper combines the neural network structure to construct a model framework structure, sets the functional modules according to actual needs, and analyzes and predicts students' personal performance through student portraits. Finally, this paper designs experiments to analyze the effectiveness of the model proposed in this paper. From the experimental data, it can be seen that the model proposed in this paper basically meets the expected requirements.
AbstractList In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to calculate the similarity of courses. Simultaneously, this paper proposes an improved hybrid multi-weight improvement algorithm to improve the cold start problem that cannot be solved by traditional algorithms. In addition, this paper combines the neural network structure to construct a model framework structure, sets the functional modules according to actual needs, and analyzes and predicts students' personal performance through student portraits. Finally, this paper designs experiments to analyze the effectiveness of the model proposed in this paper. From the experimental data, it can be seen that the model proposed in this paper basically meets the expected requirements.
Author Li, Yi
Su, Yingying
Wang, Shengxu
Author_xml – sequence: 1
  givenname: Yingying
  surname: Su
  fullname: Su, Yingying
  email: 2005008@muc.edu.cn, syylesyu@163.com
  organization: School of Mechanical Engineering, Shenyang University
– sequence: 2
  givenname: Shengxu
  surname: Wang
  fullname: Wang, Shengxu
  organization: School of Mechanical Engineering, Shenyang University
– sequence: 3
  givenname: Yi
  surname: Li
  fullname: Li, Yi
  organization: School of Mechanical Engineering, Shenyang University
BookMark eNp9kE9LxDAQxYOs4Lr6BTwFPFenTdOmR1n8BwuC6Lmk6XSbtU3XJKt48bObUmXBw0KGJOT93kzeKZmZwSAhFzFcxQD5tQPgSRzBWBljLBJHZB6n4cCAixmZQ5GOTyk7IafObQAgzQSfk-9ndCitaulgqG-R6n5rhw_s0XiKTYPK06GhvVStNki7oDXarKk0NTW4s7ILm_8c7BuV3Xqw2re9-_PaWqy18jpcg8eeDV44tTgjx43sHJ7_7gvyenf7snyIVk_3j8ubVaRYXPgohyrhAljD0jyWssYKQeWVyuqEhaV4rpgSDeOCV3XMElGAzERVFbVMkIdAFuRy8g2fe9-h8-Vm2FkTWpZJlqUFz0MeQSUmlbKDcxabUmkvx_m9lborYyjHtMsp7RLGGtMuRUCTf-jW6l7ar8MQmyAXxGaNdj_VAeoHjgyWQw
CitedBy_id crossref_primary_10_1155_2022_2718787
crossref_primary_10_1177_14727978241312995
crossref_primary_10_1007_s00521_022_07342_x
crossref_primary_10_1109_ACCESS_2024_3471681
crossref_primary_10_1109_ACCESS_2023_3295580
crossref_primary_10_1155_2022_4221254
Cites_doi 10.3102/0002831214549453
10.1016/j.jsp.2016.06.001
10.1016/j.enconman.2013.10.060
10.1148/radiol.2016150409
10.1037/edu0000125
10.1016/j.eswa.2014.10.040
10.1016/j.cedpsych.2014.03.004
10.1016/j.energy.2015.08.019
10.1016/j.dsp.2014.05.008
10.1002/pits.21940
10.1111/1756-2171.12062
10.1038/s41467-018-07882-8
10.1016/j.labeco.2016.12.008
10.1016/j.intell.2018.05.006
10.1021/pr501173s
10.17105/SPR45-2.250-267
10.2298/PSI1604357M
10.1007/s10212-017-0361-x
10.1109/TIP.2017.2740564
10.1021/acs.chemmater.6b04663
10.1016/j.ssci.2015.08.008
10.1016/j.solener.2018.06.092
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-021-06333-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 9383
ExternalDocumentID 10_1007_s00521_021_06333_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-70b25803f3471aadebe0c7bc6d23d23c57c3c8f3585bd132890a68bb9da2e5633
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675747400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 00:55:12 EST 2025
Sat Nov 29 02:59:22 EST 2025
Tue Nov 18 22:30:41 EST 2025
Fri Feb 21 02:45:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Student performance
Neural network
Machine learning
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-70b25803f3471aadebe0c7bc6d23d23c57c3c8f3585bd132890a68bb9da2e5633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2664957046
PQPubID 2043988
PageCount 15
ParticipantIDs proquest_journals_2664957046
crossref_citationtrail_10_1007_s00521_021_06333_8
crossref_primary_10_1007_s00521_021_06333_8
springer_journals_10_1007_s00521_021_06333_8
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Patwardhan, Patidar, George (CR17) 2014; 32
Kelly, Rainford, Darcy (CR10) 2016; 280
Rabiner, Godwin, Dodge (CR19) 2016; 45
Chen, Meng, Cao (CR6) 2019; 10
Zhu, Wu, Huang (CR21) 2017; 27
Klusmann, Richter, Lüdtke (CR12) 2016; 108
Benson, Kranzler, Floyd (CR3) 2016; 58
Koulayev (CR13) 2014; 45
Beigi, Maroosi (CR2) 2018; 171
Brown, Hanna (CR5) 2018; 69
Pinxten, Soom, Peeters (CR18) 2019; 34
Mohoric, Taksic (CR16) 2016; 49
Ayala, dos Santos, Mariani (CR1) 2015; 93
Gotmare, Patidar, George (CR9) 2015; 42
Varley, Miglio, Ha (CR20) 2017; 29
Brehm, Imberman, Lovenheim (CR4) 2017; 44
Kertesz-Farkas, Keich, Noble (CR11) 2015; 14
Mcgill, Spurgin (CR15) 2016; 53
Chen, Yuan, Tian (CR7) 2014; 78
Dzeng, Lin, Fang (CR8) 2016; 82
Zimmerman, Kitsantas (CR22) 2014; 39
Marsh, Abduljabbar, Parker (CR14) 2015; 52
A Gotmare (6333_CR9) 2015; 42
Barry J Zimmerman (6333_CR22) 2014; 39
DL Rabiner (6333_CR19) 2016; 45
Z Chen (6333_CR7) 2014; 78
RJ Mcgill (6333_CR15) 2016; 53
M Brehm (6333_CR4) 2017; 44
HW Marsh (6333_CR14) 2015; 52
NF Benson (6333_CR3) 2016; 58
ZL Chen (6333_CR6) 2019; 10
X Zhu (6333_CR21) 2017; 27
AM Beigi (6333_CR2) 2018; 171
RJ Dzeng (6333_CR8) 2016; 82
M Pinxten (6333_CR18) 2019; 34
HVH Ayala (6333_CR1) 2015; 93
BS Kelly (6333_CR10) 2016; 280
A Kertesz-Farkas (6333_CR11) 2015; 14
S Koulayev (6333_CR13) 2014; 45
T Mohoric (6333_CR16) 2016; 49
GTL Brown (6333_CR5) 2018; 69
U Klusmann (6333_CR12) 2016; 108
AP Patwardhan (6333_CR17) 2014; 32
JB Varley (6333_CR20) 2017; 29
References_xml – volume: 52
  start-page: 168
  issue: 1
  year: 2015
  end-page: 202
  ident: CR14
  article-title: The internal/external frame of reference model of self-concept and achievement relations: age-cohort and cross-cultural differences[J]
  publication-title: Am Educ Res J
  doi: 10.3102/0002831214549453
– volume: 58
  start-page: 1
  issue: 3
  year: 2016
  end-page: 19
  ident: CR3
  article-title: Examining the integrity of measurement of cognitive abilities in the prediction of achievement: comparisons and contrasts across variables from higher-order and bifactor models[J]
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2016.06.001
– volume: 78
  start-page: 306
  issue: 4
  year: 2014
  end-page: 315
  ident: CR7
  article-title: Improved gravitational search algorithm for parameter identification of water turbine regulation system[J]
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.10.060
– volume: 280
  start-page: 252
  issue: 1
  year: 2016
  end-page: 260
  ident: CR10
  article-title: The development of expertise in radiology: in chest radiograph interpretation, “expert” search pattern may predate “expert” levels of diagnostic accuracy for pneumothorax identification[J]
  publication-title: Radiology
  doi: 10.1148/radiol.2016150409
– volume: 108
  start-page: 1193
  issue: 8
  year: 2016
  end-page: 1203
  ident: CR12
  article-title: Teachers’ emotional exhaustion is negatively related to students’ achievement: evidence from a large-scale assessment study [J]
  publication-title: J Edu Psychol
  doi: 10.1037/edu0000125
– volume: 42
  start-page: 2538
  issue: 5
  year: 2015
  end-page: 2546
  ident: CR9
  article-title: Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model[J]
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.040
– volume: 39
  start-page: 145
  issue: 2
  year: 2014
  end-page: 155
  ident: CR22
  article-title: Comparing students’ self-discipline and self-regulation measures and their prediction of academic achievement[J]
  publication-title: Contemp Edu Psychol
  doi: 10.1016/j.cedpsych.2014.03.004
– volume: 93
  start-page: 1515
  issue: 1
  year: 2015
  end-page: 1522
  ident: CR1
  article-title: An improved free search differential evolution algorithm: a case study on parameters identification of one diode equivalent circuit of a solar cell module[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.019
– volume: 32
  start-page: 156
  issue: 3
  year: 2014
  end-page: 163
  ident: CR17
  article-title: On a cuckoo search optimization approach towards feedback system identification[J]
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2014.05.008
– volume: 53
  start-page: 677
  issue: 7
  year: 2016
  end-page: 689
  ident: CR15
  article-title: ASSESSING THE INCREMENTAL VALUE OF KABC-II LURIA MODEL SCORES IN PREDICTING ACHIEVEMENT: WHAT DO THEY TELL US BEYOND THE MPI?[J]
  publication-title: Psychol Sch
  doi: 10.1002/pits.21940
– volume: 45
  start-page: 553
  issue: 3
  year: 2014
  end-page: 575
  ident: CR13
  article-title: Search for differentiated products: identification and estimation[J]
  publication-title: Rand J Econ
  doi: 10.1111/1756-2171.12062
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  ident: CR6
  article-title: A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides[J]
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07882-8
– volume: 44
  start-page: 133
  issue: 5
  year: 2017
  end-page: 150
  ident: CR4
  article-title: Achievement effects of individual performance incentives in a teacher merit pay tournament[J]
  publication-title: Labour Econ
  doi: 10.1016/j.labeco.2016.12.008
– volume: 69
  start-page: 94
  issue: 3
  year: 2018
  end-page: 103
  ident: CR5
  article-title: Swedish student perceptions of achievement practices: the role of intelligence[J]
  publication-title: Intelligence
  doi: 10.1016/j.intell.2018.05.006
– volume: 14
  start-page: 3027
  issue: 8
  year: 2015
  end-page: 3038
  ident: CR11
  article-title: Tandem mass spectrum identification via cascaded search[J]
  publication-title: J Proteome Res
  doi: 10.1021/pr501173s
– volume: 45
  start-page: 250
  issue: 2
  year: 2016
  end-page: 267
  ident: CR19
  article-title: Predicting academic achievement and attainment: the contribution of early academic skills, attention difficulties, and social competence[J]
  publication-title: Sch Psychol Rev
  doi: 10.17105/SPR45-2.250-267
– volume: 49
  start-page: 357
  issue: 4
  year: 2016
  end-page: 374
  ident: CR16
  article-title: Emotional understanding as a predictor of socio-emotional functioning and school achievement in adolescence[J]
  publication-title: Psihologija
  doi: 10.2298/PSI1604357M
– volume: 34
  start-page: 45
  issue: 1
  year: 2019
  end-page: 66
  ident: CR18
  article-title: At-risk at the gate: prediction of study success of first-year science and engineering students in an open-admission university in Flanders—any incremental validity of study strategies?[J]
  publication-title: Eur J Psychol Edu
  doi: 10.1007/s10212-017-0361-x
– volume: 27
  start-page: 2286
  issue: 5
  year: 2017
  end-page: 2300
  ident: CR21
  article-title: Fast open-world person re-identification[J]
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2740564
– volume: 29
  start-page: 2568
  issue: 6
  year: 2017
  end-page: 2573
  ident: CR20
  article-title: High-throughput design of non-oxide p-type transparent conducting materials: data mining, search strategy, and identification of boron phosphide[J]
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b04663
– volume: 82
  start-page: 56
  issue: 2
  year: 2016
  end-page: 67
  ident: CR8
  article-title: Using eye-tracker to compare search patterns between experienced and novice workers for site hazard identification[J]
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2015.08.008
– volume: 171
  start-page: 435
  issue: 2
  year: 2018
  end-page: 446
  ident: CR2
  article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms[J]
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.06.092
– volume: 78
  start-page: 306
  issue: 4
  year: 2014
  ident: 6333_CR7
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.10.060
– volume: 93
  start-page: 1515
  issue: 1
  year: 2015
  ident: 6333_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.019
– volume: 69
  start-page: 94
  issue: 3
  year: 2018
  ident: 6333_CR5
  publication-title: Intelligence
  doi: 10.1016/j.intell.2018.05.006
– volume: 32
  start-page: 156
  issue: 3
  year: 2014
  ident: 6333_CR17
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2014.05.008
– volume: 52
  start-page: 168
  issue: 1
  year: 2015
  ident: 6333_CR14
  publication-title: Am Educ Res J
  doi: 10.3102/0002831214549453
– volume: 27
  start-page: 2286
  issue: 5
  year: 2017
  ident: 6333_CR21
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2740564
– volume: 44
  start-page: 133
  issue: 5
  year: 2017
  ident: 6333_CR4
  publication-title: Labour Econ
  doi: 10.1016/j.labeco.2016.12.008
– volume: 34
  start-page: 45
  issue: 1
  year: 2019
  ident: 6333_CR18
  publication-title: Eur J Psychol Edu
  doi: 10.1007/s10212-017-0361-x
– volume: 82
  start-page: 56
  issue: 2
  year: 2016
  ident: 6333_CR8
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2015.08.008
– volume: 280
  start-page: 252
  issue: 1
  year: 2016
  ident: 6333_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2016150409
– volume: 29
  start-page: 2568
  issue: 6
  year: 2017
  ident: 6333_CR20
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b04663
– volume: 42
  start-page: 2538
  issue: 5
  year: 2015
  ident: 6333_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.040
– volume: 53
  start-page: 677
  issue: 7
  year: 2016
  ident: 6333_CR15
  publication-title: Psychol Sch
  doi: 10.1002/pits.21940
– volume: 58
  start-page: 1
  issue: 3
  year: 2016
  ident: 6333_CR3
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2016.06.001
– volume: 14
  start-page: 3027
  issue: 8
  year: 2015
  ident: 6333_CR11
  publication-title: J Proteome Res
  doi: 10.1021/pr501173s
– volume: 45
  start-page: 250
  issue: 2
  year: 2016
  ident: 6333_CR19
  publication-title: Sch Psychol Rev
  doi: 10.17105/SPR45-2.250-267
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 6333_CR6
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07882-8
– volume: 108
  start-page: 1193
  issue: 8
  year: 2016
  ident: 6333_CR12
  publication-title: J Edu Psychol
  doi: 10.1037/edu0000125
– volume: 45
  start-page: 553
  issue: 3
  year: 2014
  ident: 6333_CR13
  publication-title: Rand J Econ
  doi: 10.1111/1756-2171.12062
– volume: 171
  start-page: 435
  issue: 2
  year: 2018
  ident: 6333_CR2
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.06.092
– volume: 49
  start-page: 357
  issue: 4
  year: 2016
  ident: 6333_CR16
  publication-title: Psihologija
  doi: 10.2298/PSI1604357M
– volume: 39
  start-page: 145
  issue: 2
  year: 2014
  ident: 6333_CR22
  publication-title: Contemp Edu Psychol
  doi: 10.1016/j.cedpsych.2014.03.004
SSID ssj0004685
Score 2.3321252
Snippet In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9369
SubjectTerms Algorithms
Artificial Intelligence
Colleges & universities
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Data processing
Image Processing and Computer Vision
Machine learning
Neural networks
Performance prediction
Probability and Statistics in Computer Science
S.I.: AI-based Web Information Processing
Similarity
Special Issue on AI-based Web Information Processing
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSyUpygveWCDiDhu4mRCCIGYUAeQKpbIr0ClNi1NYeS3c-c4BJDoghQvSXy2cuf47nx3HyGnlslQW6UDKwym5Kg4SFmiA13EhciYwogABzYh7u_TwSDre4db5cMqm3-i-1GbiUYf-QVsJKDLCzDnLqevAaJG4emqh9BYJqtYJQGhG_rx07e8SAfJCRYMRvf0uE-acalz6A-Fu9gSznmQ_tyYWm3z1wGp23duO_-d8SbZ8BonvapFZIss2XKbdBo0B-oX9w75aILw6KSkoBbSofM3OPchrcM-6KSgYxd9aamHm3imsjQUq2LCGGUdU07l6BkmMn8ZVw2t6QwPhFAIkEbbF2jZeohd8nh783B9F3h0hkDDsp0HIlRRnIa84LC_SWlAGkItlE5MxOHSsdBcpwUHe0QZsHnTLJRJqlRmZGRj-OZ7ZKWclHaf0KTHhNWiJ0FKeowpxawGu9PIrMhsZFiXsIY1ufalyxFBY5R_FV127MxDbMjOPO2Ss68-07pwx8K3jxoe5n4RV3nLwC45b6Sgffw3tYPF1A7JeoRJFM6Xc0RW5rM3e0zW9Pt8WM1OnAh_AhmY-FU
  priority: 102
  providerName: ProQuest
Title Research on the improvement effect of machine learning and neural network algorithms on the prediction of learning achievement
URI https://link.springer.com/article/10.1007/s00521-021-06333-8
https://www.proquest.com/docview/2664957046
Volume 34
WOSCitedRecordID wos000675747400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TsMw8MRrYOGNKI_KAxtEiuMmdkZARUxVxUsVS2Q7DlSiaZUURr6ds5O0gAAJpHjK-Rz5zrmH7wFwbKj0tVHaMzy1KTkq9ASNtKezMOMxVTYiwDWb4L2eGAzifp0UVjbR7s2VpPtTz5LdrAcTTV87IsaYJxZhGcWdsA0brm_uP2RDukacaLdYyA6rU2W-x_FZHM11zC_Xok7aXK7_7zs3YK3WLslZxQ6bsGDyLVhvOjeQ-iBvw1sTcEfGOUEVkAydb8G5CkkV4kHGGRm5SEtD6tYSj0TmKbEVMHGNvIofJ_L5cVwMp0-jssE1KezljyW4xTGfi7hMtcQO3F12by-uvLoTg6fxiE497qsgFD7LGMoyKVOkvK-50lEaMHx0yDXTImNoe6gU7VsR-zISSsWpDEyIu7ALS_k4N3tAog7lRvOORI7oUKoUNRptzFTGWWyClLaANgRJdF2m3HbLeE5mBZbdBie-HXaDE9GCk9mcSVWk41fow4bOSX1gywT1FDQVOTJPC04bus5f_4xt_2_gB7Aa2AQK58c5hKVp8WKOYEW_Todl0Ybl826vf92GxX740HZs_Q63vfCj
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqNRe2D7F8ig-0FOJGufl5FAh1BaBoCsOIKFeUr-yILHZZXcB9dKf1N_IjBOzBQluHJDiSx5j2fk8nhnPA2DDchlqq3RghaGQHJUGOc90oKu0EgVX5BHgik2IXi8_OSkO5-Cfj4Uht0rPEx2jNkNNNvIvuJGgLC9QndsaXQRUNYpOV30JjQYW-_bPNapsk6973_H_foqinR9H33aDtqpAoBFu00CEKkrzMK5i5MtSGhxFqIXSmYlivHQqdKzzKkY5WhnU1fIilFmuVGFkZNOMDKDI8heSJAppFR2mv_6Lw3QlQFFjIm-iJG6DdFyoHtlf8S41pBEH-d2NcCbd3juQdfvcTue5zdBrWGwlarbdLIE3MGfrt9Dx1SpYy7zewV_vZMiGNUOxl505e4ozj7LGrYUNKzZw3qWWteU0-kzWhlHWT-yjbnzmmTzv48Cnp4OJpzUa04EXgZxozL5FWrbp4j0cP8ksfID5eljbJWBZwoXVIpG4ChLOleJWo15tZFEVNjK8C9xDodRtanaqEHJe3iaVdvApQ2oEnzLvwufbb0ZNYpJH3171mClbJjUpZ4DpwqZH3ezxw9SWH6e2Di93j34elAd7vf0VeBVRwIizW63C_HR8adfghb6ank3GH93yYfD7qdF4A59NVXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58i-szB29abJq2aY-iLoqyCD7wVvKqLmh32a0e_e1O0nZXRQURmlOTaUkmZL7JfDMAe4YKXxmpPMO1peTIyEtorDyVRzlPqbQRAa7YBO90kvv79OoDi99FuzdXkhWnwWZpKsrDvs4PR8Q3681EGGxbzBjzkkmYDm0gvcXr13cfmJGuKCdiGNszZDVt5nsZn4-msb355YrUnTzthf__8yLM11YnOarUZAkmTLEMC01FB1Jv8BV4awLxSK8gaBqSrvM5OBciqUI_SC8nzy4C05C65MQDEYUmNjMmfqOo4sqJeHroDbrl4_OwkdUf2EshqwhWxngsyjLVJ1bhtn16c3zm1RUaPIVbt_S4L4Mo8VnO8IwTQqNG-IpLFeuA4aMirphKcoaYRGrEvUnqiziRMtUiMBHOwhpMFb3CrAOJQ8qN4qFATQkplZIahdhTizRPTaBpC2izOJmq05fbKhpP2SjxspvgzLfNTnCWtGB_NKZfJe_4tfdWs-ZZvZGHGdovCCE5KlILDpo1Hr_-WdrG37rvwuzVSTu7PO9cbMJcYDkWztWzBVPl4MVsw4x6LbvDwY7T73fbNfnR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+improvement+effect+of+machine+learning+and+neural+network+algorithms+on+the+prediction+of+learning+achievement&rft.jtitle=Neural+computing+%26+applications&rft.au=Su%2C+Yingying&rft.au=Wang%2C+Shengxu&rft.au=Li%2C+Yi&rft.date=2022-06-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=12&rft.spage=9369&rft.epage=9383&rft_id=info:doi/10.1007%2Fs00521-021-06333-8&rft.externalDocID=10_1007_s00521_021_06333_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon