A convergence analysis for iterative sparsification projection with soft-thresholding

The recently proposed iterative sparsification projection (ISP), a fast and robust sparse signal recovery algorithm framework, can be classified as smooth-ISP and nonsmooth-ISP. However, no convergence analysis has been established for the nonsmooth-ISP in the previous works. Motivated by this absen...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing Vol. 15; no. 8; pp. 1705 - 1712
Main Author: Zhu, Tao
Format: Journal Article
Language:English
Published: London Springer London 01.11.2021
Springer Nature B.V
Subjects:
ISSN:1863-1703, 1863-1711
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recently proposed iterative sparsification projection (ISP), a fast and robust sparse signal recovery algorithm framework, can be classified as smooth-ISP and nonsmooth-ISP. However, no convergence analysis has been established for the nonsmooth-ISP in the previous works. Motivated by this absence, the present paper provides a convergence analysis for ISP with soft-thresholding (ISP-soft) which is an instance of the nonsmooth-ISP. In our analysis, the composite operator of soft-thresholding and proximal projection is viewed as a fixed point mapping, whose nonexpansiveness plays a key role. Specifically, our convergence analysis for the sequence generated by ISP-soft can be summarized as follows: 1) For each inner loop, we prove that the sequence has a unique accumulation point which is a fixed point, and show that it is a Cauchy sequence; 2) for the last inner loop, we prove that the accumulation point of the sequence is a critical point of the objective function if the final value of the threshold satisfies a condition, and show that the corresponding objective values are monotonically nonincreasing. A numerical experiment is given to validate some of our results and intuitively present the convergence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1863-1703
1863-1711
DOI:10.1007/s11760-021-01910-9